
1/6

Hack Sydney February 8, 2023

AsyncRAT: Analysing the Three Stages of Execution
medium.com/@hcksyd/asyncrat-analysing-the-three-stages-of-execution-378b343216bf

Hack Sydney

Feb 8

·

8 min read

Michael Elford

Michael is a cybersecurity professional that is passionate about malware analysis and
reverse engineering.

In the second half of 2022, I led an investigation that involved a suspicious registry key,
comprising a value that would run a potentially malicious executable file.

Further analysis of the executable file resulted in confirmation of the file being malicious.

In this blog post, I aim to share the findings from the investigation, with the goal of making
the audience aware of the techniques that can be used to effectively analyse malware in
general and specifically analyse ASyncRAT.

ASyncRAT Analysis

Note: All malware analysis should be carried out in a sandboxed environment.

Tools used

This is the list of tools that were used for this analysis:

https://medium.com/@hcksyd/asyncrat-analysing-the-three-stages-of-execution-378b343216bf
https://medium.com/?source=post_page-----378b343216bf--------------------------------
https://medium.com/?source=post_page-----378b343216bf--------------------------------
https://www.linkedin.com/in/michael-elford-2a342b8a/

2/6

Stage One

Starting the analysis of Stage One of the malware, the first step was to check the executable
in PEStudio, which confirmed that we were dealing with a .NET file. Furthermore, we
interpreted the fairly high entropy as indicative of malware packing, where malware adds
complexity to stay undetected by security solutions.

PEstudio file overview
Our next step was to peruse the strings of the malware, and take note of anything strange
we may want to look into a little bit deeper later on.

PEstudio file overview
Examining the strings, we immediately identified some strings that appear to be obfuscated.
As a note to ourselves, we highlighted that we may need to deploy a ‘find and replace’ later
on.

Going Further

After determining that the file was written in .NET and making note of the obfuscated strings,
we then turned to dnSpy, a .NET debugger.

One of the first things we noticed was a naming discrepancy. The name of the executable on
the host and the name of the executable shown in dnSpy are completely different. The
reason as to why the executable having a completely different name is of interest is due to
many threat actors that use malware rename them so that they do not draw as much
attention and can be hidden on the host and quietly run in the background so that even if the
user does notice the something strange is going on with their system, they will skip over the
file thinking that it is normal and doesn’t raise any alarms with the user and their AV.

Looking through the code, there is a replace function for a string we had noted earlier. Now
that we are certain about what is replacing the obfuscation pattern, we can check what those
strings are, which could possibly give us a clue as to what is happening.

Executable name and replace function

Pulling on the Thread

For analysing the obfuscated strings, we used CyberChef. In CyberChef, we used the
`Find/Replace` feature to perform the replace function found in the code. This enabled us to
see the clear text of what was obfuscated which resulted in getting a clearer understanding
of what was going on within the code.

https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://practicalsecurityanalytics.com/file-entropy/
https://gchq.github.io/CyberChef/#recipe=Find_/_Replace(%7B'option':'Regex','string':''%7D,'',true,false,true,false)
https://github.com/dnSpy/dnSpy

3/6

The end-result of the above exercise gave us the de-obfuscated version of strings which
contained “Load” and “Invoke”. This showed that something was going to be loaded and
executed (“invoked”) by the code contained within the executable.

If at any time you are unsure what actions these methods perform, the best thing to do is
Google around and find some docs. It may be time consuming at first but it is an important
part of analysing malware.

De-obfuscated strings
At this stage of the analysis, we had accumulated enough findings to start sketching out the
trajectory of the malware’s execution flow. We had identified the malware was loading and
executing something, and that the malware was packed and contained executable data that
we would see in the next stage of analysis.

Hunting for the Hidden

The tool Garbage Man is used for heap analysis — a technique that allows analysts to
intervene and observe as the .NET malware is unraveling itself.

Analysing the malware in Garbage Man aided in extraction of hidden data that composed the
second executable within the first executable.

In order to further analyse the malware, we executed the original malware found on the host
in Garbage Man. To get started, we added in a delay of 300ms with 10 snapshots taken at
100ms intervals.

We added in the delay to allow time for the process to start running and added the extra
snapshots and intervals so that we can compare the difference between the intervals if we
need to.

Once Garbage Man had executed the file, we had these options:

Sift through the heap manually, and look at the strings and values that are contained
within the executable
Use the search function to look through all the snapshots. Specifically looking for bytes
that start with the value of — which is the for executables and dll files, and then order
them by size in descending order. The search function gives us a list of results, and we
can save the binaries with MZ headers and save them for further analysis.

Using Garbage Man to search for executables and save the binary for analysis
When saving the executable, we chose an executable with the large size value and due to us
looking through all the snapshots we were getting repeats of the same executable, we could
then save it as “stage2.exe”. We then pivoted back to PEstudio to check the file. On
examination, our second hidden executable yet again turned out to be a .NET file.

4/6

PEstudio of stage2.exe

Stage Two

Delving into our stage2.exe, we found that checking its strings highlighted some noteworthy
Win32 APIs that malware leverages. Some APIs that jumped out were connected with
manipulating processes [T1055], specifically in this case, process hollowing [T1055.012] —
an adversarial technique to create a paused, legitimate process then swap out its memory
with malicious contents.

Some of the APIs and Strings that could indicate Process Hollowing
As our stage two was in the .NET world again, we used dnSpy to dig a little deeper. When
opening up the executable, we were met with a lot of information we had to get through. Like
the first stage, the second stage’s naming convention was also suspicious.

Stage 2 dnSpy
Examining dnSpy’s output, we discovered a section completely different to the other parts of
the code due to it being obfuscated, and seemingly performing a function in memory — both
of which are techniques used to evade detection [T1140].

Obfuscated section in Stage 2
We used Garbage Man once again to sneakily observe how the malware unraveled itself.
However, if you want an alternate technique to de-obfuscating this part of the code, you can
use de4dot which may also lay it out in an easier to read format.

Next, in Garbage Man the objective was to retrieve the hidden stage. Our prior technique
could be deployed here again, executing the binary and searching for the MZ headers.

We found an executable and saved it as “stage3.exe”. We then packaged this up and
shipped it to PEstudio (There is also information for procexp.sys contained in this but we are
not going to focus on that at this time).

Searching for MZ header in stage2.exe

Stage Three

When checking the third stage executable in PEstudio we observed it to be a .NET file and
that it contained strings and APIs that suggested it was trying to make a network connection
to an external source — like the API . This was a big hint that this was a Remote Access
Trojan; I smell a RAT [TA0011]!

APIs showing stage3 trying to connect to external sources

https://malapi.io/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1055/012/
https://attack.mitre.org/techniques/T1140/
https://github.com/de4dot/de4dot
https://attack.mitre.org/tactics/TA0011/

5/6

After we had a quick look at stage three’s strings through PEstudio, we hopped back over to
ol’ reliable dnSpy. Trawling through stage three, we identified that AES encryption was used
to encode the port and IP/domain that made up the adversary’s command-and-control (C2).
We were for sure dealing with a RAT, and we wanted to gather the IoCs associated with this
encryption.

AES encryption
We set a breakpoint in dnSpy where the AES decryption was performed, and then run the
debugger for this to find the decrypted string. Using a ‘stop-start’ technique with breakpoints
in a debugger allows a malware analyst to halt the malware at opportune moments as it
decodes or decrypts itself. This allows us to understand what the malware is doing as it is
doing it.

dnSpy breakpoint
When we got to our breakpoint it paused the malware’s execution. Now, we gingerly allowed
the malware to progress one step at a time by using the step over button. We did this until
eventually the malware began its decryption phase, and we were first gifted the ports used
by this RAT.

Ports decrypted in dnSpy
When we stepped over the different sections we were able to see that for this RAT it was
using ports “6606, 7707, 8808” and, eventually we unraveled the RAT until it delivered us the
adversarial server it reported back to: “109.206.241[.]84”.

Defending against RATs

Our remediations will vary, but the first step is to recommend blocking this public IPv4 at the
organisation firewall level so the RAT can no longer beacon out.

The advice for defending against RATs is really advice for malware overall:

Chief advice is to train staff to check what they are downloading. Whether it’s from an
email attachment, or a site that promises to make their computer run faster if they run
something, is the best and first layer of defense we’d advise you prioritise.
Leverage network telemetry to try and monitor for unexpected activity. Whether this is
VPN, firewall, or more security-focused netflow, keeping an eye on in- and outbound
traffic will help spot anomalous behaviour. Moreover, cultivating a well-maintained
deny-list for can only be a good thing.
Good security tools are the perfect enemy of our adversaries. Deploy what works for
your organisation, just please deploy . A machine without any security solutions is a
machine that presents an unmanageable, unacceptable risk to your business.

6/6

Big thanks to and for help and guidance. Hopefully this writeup has helped show
examples of some good tools and techniques that can be used to help decrypt and
understand what is going on with other .NET executables in the future.

