
1/10

Antonis Terefos

Cl0p Ransomware Targets Linux Systems with Flawed
Encryption | Decryptor Available

sentinelone.com/labs/cl0p-ransomware-targets-linux-systems-with-flawed-encryption-decryptor-available/

Executive Summary

SentinelLabs has observed the first Linux variant of Cl0p ransomware.
The ELF executable contains a flawed encryption algorithm making it possible to
decrypt locked files without paying the ransom.
SentinelLabs has published a free decryptor for this variant here.

Background

SentinelLabs observed the first ELF variant of Cl0p (also known as Clop) ransomware
variant targeting Linux systems on the 26th of December 2022. The new variant is similar to
the Windows variant, using the same encryption method and similar process logic.

The mentioned sample appears to be part of a bigger attack that possibly occurred around
the 24th of December against a University in Colombia (sample1, sample2, sample3,
sample4, sample5). On the 5th of January the cybercrime group leaked victim’s data on their
onion page.

ELF Technical Analysis

The ELF Cl0p variant is developed in a similar logic to the Windows variant, though it
contains small differences mostly attributed to OS differences such as API calls. It appears to
be in its initial development phases as some functionalities present in the Windows versions
do not currently exist in this new Linux version.

A reason for this could be that the threat actor has not needed to dedicate time and
resources to improve obfuscation or evasiveness due to the fact that it is currently
undetected by all 64 security engines on VirusTotal. SentinelOne Singularity detects Cl0p
ransomware on both Linux and Windows devices.

https://www.sentinelone.com/labs/cl0p-ransomware-targets-linux-systems-with-flawed-encryption-decryptor-available/
https://github.com/SentineLabs/Cl0p-ELF-Decryptor
https://www.virustotal.com/gui/file/09d6dab9b70a74f61c41eaa485b37de9a40c86b6d2eae7413db11b4e6a8256ef
https://www.virustotal.com/gui/file/a9741b16f4169f56ae0f2e49c87f3c5360ed5ab4370e6d16bd86179999f11795
https://www.virustotal.com/gui/file/c793a9225d799150538f058c886e2806083f6bc33813a3bd8231ab2775b7ec2f
https://www.virustotal.com/gui/file/dd2f458a29b666bbfe5a5dbf6a36c906d0140e0ae15b599e8b4da1863e7e41ff
https://www.virustotal.com/gui/file/46cd508b7e77bb2c1d47f7fef0042a13c516f8163f9373ef9dfac180131c65ed
https://www.virustotal.com/gui/file/f1b8c7b2d20040f1dd9728de9808925fdcf035a1a289d42f63e5faa967f50664
https://twitter.com/TMRansomMonitor/status/1610779008332959745
https://www.virustotal.com/gui/file/09d6dab9b70a74f61c41eaa485b37de9a40c86b6d2eae7413db11b4e6a8256ef
https://www.sentinelone.com/platform/

2/10

SentinelOne Singularity detects Cl0p Linux ransomware
Initially, the ransomware creates a new process by calling fork and exits the parent-process.
The child-process sets its file mode creation mask to any permission (read, write, execute)
by calling umask(0). It then calls setsid, creates a session and sets the process group ID. It
tries to access root by changing the working directory to “/” (chdir(“/”)). Once the permissions
are set, the ransomware proceeds encrypting other directories.

Targeted Folders & Files

While the Windows versions contain a hashing algorithm in order to avoid encrypting specific
folders and files, such functionality was not observed in the Linux variant. The ELF variant
targets specific folders, subfolders and all files/types.

The discovered ELF sample targets files contained in the following directories for encryption,
though we do not exclude the possibility of future versions including more directories.

Folder Description

/opt Contains subdirectories for optional software packages

/u01 Oracle Directory, mount point used for the Oracle software only.

/u02 Oracle Directory, used for the database files.

/u03 Oracle Directory, used for the database files.

/u04 Oracle Directory, used for the database files.

/home Contains the home directory of each user.

/root Contains the home directory of the root user.

Encryption Flaw

https://man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man2/umask.2.html
https://man7.org/linux/man-pages/man2/setsid.2.html
https://man7.org/linux/man-pages/man2/chdir.2.html

3/10

Windows versions of Cl0p ransomware use a Mersenne Twister PRNG (MT19937) to
generate a 0x75 bytes size RC4 key for each file. This key is then validated (checks if the
first five bytes are NULL) and used for file encryption. Then, by using the RSA public key, it
encrypts the generated RC4 key and stores it to $filename.$clop_extension. Victims who
pay the ransom demand receive a decryptor which decrypts the generated Cl0p file using the
RSA private key, retrieves the generated RC4 key, and then decrypts the encrypted file.

This core functionality is missing in the Linux variant. Instead, we discovered a flawed
ransomware-encryption logic which makes it possible to retrieve the original files without
paying for a decryptor.

The Linux variant contains a hardcoded RC4 “master-key” which, during the execution of the
main function, is copied into the global variable szKeyKey.

Sample’s RC4 “master-key”:

Jfkdskfku2ir32y7432uroduw8y7318i9018urewfdsZ2Oaifwuieh~~cudsffdsd

During the file encryption phase, the ransomware – similar to the Windows version –
generates a 0x75 bytes size RC4 key, with the use of a lookup table and a PRNG byte. This
generated RC4 key is used to encrypt the mappedAddress and write it back to the file.

Then by using the RC4 “master-key” the ransomware encrypts the generated RC4 key and
stores it to $filename.$clop_extension. By using a symmetric algorithm (second RC4) to
“encrypt” the file’s RC4 key, we were able to take advantage of this flaw and decrypt Cl0p-
ELF encrypted files.

Cl0p-ELF encryption flaw
Cl0p-ELF Decryption Logic:

1. Retrieve RC4 “master-key”.
2. Read all $filename.$clop_extension.
3. Decrypt with RC4 using the RC4 “master-key”, the generated RC4 key.
4. Decrypt $filename with RC4 using the generated RC4 key.
5. Write decrypted to $filename.

We packed all this logic into the following Python script.

https://dl.acm.org/doi/10.1145/272991.272995
https://github.com/SentineLabs/Cl0p-ELF-Decryptor

4/10

Cl0p File-Key Creation Flaw

The 0x75 bytes size PRNG RC4 key is encrypted with RC4 using the RC4 “master-key”. The
encrypted RC4 output is 0x75 bytes size, though writes 0x100 bytes into the created Cl0p
key $filename.$clop_extension. This results in writing memory data to the file and more
specifically stack variables.

Cl0p-ELF file-key creation flaw.
This flaw provides some information regarding the file before encryption. This includes:

File fstat64 result
total size, in bytes, file size (st_size)
time of last status change, exact time of file encryption (st_ctime)
and more forensics information regarding the file before the encryption.

Size of buffer for file encryption (with check of >= 0x5f5e100)

https://man7.org/linux/man-pages/man2/lstat.2.html

5/10

RC4 “master-key” size
RC4 PRNG key size

struct clopelfkeyfile {
byte encr_rc4key[117]; // encrypted RC4 PRNG key, size 0x75 bytes
stat fdstat; // stat(fd, &fdstat), size 0x58 bytes
long fdid; // file node unique id, size 0x8 bytes
int fd; // file descriptor, size 0x4 bytes
int fdmappedaddr; // file mapped address, size 0x4 bytes
off_t fdsize; // file size, size 0x8 bytes
int rc4_msize; // RC4 "master-key" size, size 0x4 bytes
long rc4_fsize; // RC4 PRNG key size, size 0x8 bytes
int fdnameaddr; // filename string address, size 0x4 bytes
int frameaddr; // frame pointer address, size 0x4 bytes
int retaddr; // function return address, size 0x4 bytes
byte fdpathaddr[3]; // part of filepath strings address, size 0x3 bytes

}

Developed Functions & Names

In ELF binaries the .symtab, Symbol Table Section, holds information needed to locate and
relocate a program’s symbolic definitions and references, allowing us to retrieve function and
global variable names.

Function Name Description

do_heartbeat(void) Main function which starts the encryption of various folders.

find(char *,char
const*)

Multiple calls of this function are done by do_heartbeat; this function
takes as parameter 1) the starting folder to encrypt (example, “/opt”)
2) regex of files to encrypt (example, “*.*”) and performs a recursive
search from the starting folder until encrypts the “matching” regex
files.

CreateRadMe(char
*)

This function takes as parameter the folder to create the ransom
note.

EncrFile(char *) Encrypts given filepath.

existsFile(char *) Checks if File exists, or if the process has the permissions to open.

_rc4Full(void
const*,ushort,void
*,ulong)

Wrapper function to _rc4Init and _rc4, which is used to encrypt a
buffer with a given key.

Createkey(char
*,uchar *)

Creates and writes into “%s.C_I_0P” the encrypted buffer.

https://refspecs.linuxbase.org/elf/gabi4+/ch4.symtab.html

6/10

Global
Variable

Description

szKeyKey Global variable of 0x64 bytes size, initialized during main function, containing
RC4 “master-key” which encrypts the “randomly” generated 0x75 bytes size
RC4 key.

Differences to Windows Variant

Rather than simply port the Windows version of Cl0p directly, the authors have chosen to
build bespoke Linux payloads. We understand this to be the primary reason for the lack of
feature parity between the new Linux version and the far more established Windows variant.

SentinelLabs expects future versions of the Linux variant to start eliminating those
differences and for each updated functionality to be applied in both variants simultaneously.

Some of the differences worth highlighting are detailed below:

Differences Description

Files/Folders
exclusions

The Windows variant contains a hashing algorithm which excludes
specific folders and files from encryption. This functionality was not
observed in the Linux variant.

Extension
exclusions

The Windows variant contains a hardcoded list of extensions to exclude
from encryption. This functionality was not observed in the Linux
variant.

Different
methods of
Reading/Writing
depending on
file size.

The Windows variant, depending on the size of the file, will choose
different methods of reading a file and writing the encrypted buffer.
Small files are ignored, medium-sized files will make use of
ReadFile/WriteFile, large files will use
CreateFileMappingW/MapViewOfFile/UnmapViewOfFile. The Linux
variant encrypts all the files using mmap64/munmap. Both variants only
encrypt the first 0x5f5e100 bytes of large files.

Ransom Note
Decryption

The Windows variant stores the encrypted ransom note as a resource
and decrypts it with a simple XOR algorithm. The Linux variant stores
the note as plain text in “.rodata”.

Drive
enumeration

The Windows variant initially enumerates through drives in order to
“find” the starting point to recursively encrypt the folders. The Linux
variant contains hardcoded “starting” folders.

RC4 default
Key

Once the Windows variant generates a 0x75 size PRNG RC4 Key, it will
check if the first 5 bytes are NULL; if so, it uses the default key for
encryption. The Linux version does not perform this validation and does
not contain a default RC4 key in case the first 5 bytes of the PRNG RC4
are NULL.

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-createfilemappingw
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-unmapviewoffile
https://linux.die.net/man/3/mmap64
https://linux.die.net/man/2/munmap

7/10

Command Line
Parameters

The Windows variant can be executed in three ways: 1) without
parameters encrypting all local and network drives, 2) with “runrun”
parameter encrypting only network drives, 3) with a file as parameter
which contains the folders to be encrypted (observed
temp.ocx/temp.dat). The Linux variant does not accept command line
parameters and recursively encrypts the specified hardcoded folders.

RC4 Key
Encryption

The Windows variant encrypts the generated RC4 key responsible for
the file encryption using the asymmetric algorithm RSA and a public key.
In the Linux variant, the generated RC4 key is encrypted with a RC4
“master-key” (flawed logic).

Ransom Notes

The Linux variant of Clop ransomware drops a ransom note on victim machines with a .txt
format.

ELF sample ransom note, “README_C_I_0P.TXT”.
This differs somewhat from the Windows .rtf ransom note, although both use the email
addresses [.]com and [.]com as ways for victims to
contact the attackers.

https://www.sentinelone.com/cdn-cgi/l/email-protection
https://www.sentinelone.com/cdn-cgi/l/email-protection

8/10

Window samples ransom note, “!_READ_ME.RTF”.

Conclusion

Over the last twelve months or so we have continued to observe the increased targeting of
multiple platforms by individual ransomware operators or variants. The discovery of an ELF-
variant of Cl0p adds to the growing list of the likes of Hive, Qilin, Snake, Smaug, Qyick and
numerous others.

We know that Cl0p operations have shown little if no slow-down since the disruption in June
2021. While the Linux-flavored variation of Cl0p is, at this time, in its infancy, its development
and the almost ubiquitous use of Linux in servers and cloud workloads suggests that
defenders should expect to see more Linux-targeted ransomware campaigns going forward.

SentinelLabs continues to monitor the activity associated with Cl0p. SentinelOne Singularity
protects against malicious artifacts and behaviors associated with Cl0p attacks including the
ELF variant described in this post.

Indicators of Compromise

IOC Type IOC Value

https://www.sentinelone.com/blog/watchtower-trends-and-top-cybersecurity-takeaways-from-2022/
https://www.sentinelone.com/labs/hive-attacks-analysis-of-the-human-operated-ransomware-targeting-healthcare/
https://www.youtube.com/watch?v=Ouzwu79abbs&t=5s
https://www.sentinelone.com/labs/new-snake-ransomware-adds-itself-to-the-increasing-collection-of-golang-crimeware/
https://www.sentinelone.com/labs/multi-platform-smaug-raas-aims-to-see-off-competitors/
https://www.sentinelone.com/labs/crimeware-trends-ransomware-developers-turn-to-intermittent-encryption-to-evade-detection/
https://www.bleepingcomputer.com/news/security/clop-ransomware-is-back-in-business-after-recent-arrests/
https://cyberpolice.gov.ua/news/kiberpolicziya-vykryla-xakerske-ugrupovannya-u-rozpovsyudzhenni-virusu-shyfruvalnyka-ta-nanesenni-inozemnym-kompaniyam-piv-milyarda-dolariv-zbytkiv-2402/

9/10

SHA1
ELF Cl0p

46b02cc186b85e11c3d59790c3a0bfd2ae1f82a5

SHA1
Win Cl0p

40b7b386c2c6944a6571c6dcfb23aaae026e8e82

SHA1
Win Cl0p

4fa2b95b7cde72ff81554cfbddc31bbf77530d4d

SHA1
Win Cl0p

a1a628cca993f9455d22ca2c248ddca7e743683e

SHA1
Win Cl0p

a6e940b1bd92864b742fbd5ed9b2ef763d788ea7

SHA1
Win Cl0p

ac71b646b0237b487c08478736b58f208a98eebf

SHA1
ELF Cl0p
Note

ba5c5b5cbd6abdf64131722240703fb585ee8b56

SHA1
Win Cl0p
Note

77ea0fd635a37194efc1f3e0f5012a4704992b0e

ELF
Ransom
Note

README_C_I_0P.TXT

Win
Ransom
Note

!_READ_ME.RTF

Cl0p
Ransom
Extension

.C_I_0P

Cl0p
Contact
Email

unlock[@]support-mult.com

Cl0p
Contact
Email

unlock[@]rsv-box.com

Cl0p
Onion
Leak
Page

hxxp[:]//santat7kpllt6iyvqbr7q4amdv6dzrh6paatvyrzl7ry3zm72zigf4ad[.]onion

10/10

Cl0p
Onion
Chat
Page

hxxp[:]//6v4q5w7di74grj2vtmikzgx2tnq5eagyg2cubpcnqrvvee2ijpmprzqd[.]onion

YARA Rule

rule ClopELF
{
 meta:
 author = "@Tera0017/@SentinelLabs"
 description = "Temp Clop ELF variant yara rule based on $hash"
 reference = "https://s1.ai/Clop-ELF”
 hash = "09d6dab9b70a74f61c41eaa485b37de9a40c86b6d2eae7413db11b4e6a8256ef"
 strings:
 $code1 = {C7 45 ?? 00 E1 F5 05}
 $code2 = {81 7D ?? 00 E1 F5 05}
 $code3 = {C7 44 24 ?? 75 00 00 00}
 $code4 = {C7 44 24 ?? 80 01 00 00}
 $code5 = {C7 00 2E [3] C7 40 04}
 $code6 = {25 00 F0 00 00 3D 00 40 00 00}
 $code7 = {C7 44 24 04 [4] C7 04 24 [4] E8 [4] C7 04 24 FF FF FF FF E8 [4] C9
C3}
 condition:
 uint32(0) == 0x464c457f and all of them
}

