
1/17

January 30, 2023

Following the Scent of TrickGate: 6-Year-Old Packer Used
to Deploy the Most Wanted Malware

research.checkpoint.com/2023/following-the-scent-of-trickgate-6-year-old-packer-used-to-deploy-the-most-wanted-
malware/

January 30, 2023
Research by: Arie Olshtein

Executive summary

Initially observed in July 2016, TrickGate is a shellcode-based packer offered as a
service to hide malware from EDRs and antivirus programs.
Over the last 6 years, TrickGate was used to deploy the top members of the “Most
Wanted Malware” list, such as Cerber, Trickbot, Maze, Emotet, REvil, Cobalt Strike,
AZORult, Formbook, AgentTesla and more.
TrickGate managed to stay under the radar for years because it is transformative – it
undergoes changes periodically. This characteristic caused the research community to
identify it by numerous attributes and names.
While the packer’s wrapper changed over time, the main building blocks within
TrickGate shellcode are still in use today.
Check Point Threat Emulation successfully detects and blocks the TrickGate packer.

Introduction

https://research.checkpoint.com/2023/following-the-scent-of-trickgate-6-year-old-packer-used-to-deploy-the-most-wanted-malware/
https://www.linkedin.com/in/arie-olshtein-95267590/
https://www.checkpoint.com/infinity/zero-day-protection/

2/17

Cyber criminals increasingly rely on packers to carry out their malicious activities. The
packer, also referred to as “Crypter” and “FUD” on hacking forums, makes it harder for
antivirus programs to detect the malicious code. By using a packer, malicious actors can
spread their malware more easily with fewer repercussions. One of the main characteristics
of a commercial Packer-as-a-Service is that it doesn’t matter what the payload is, which
means it can be used to pack many different malicious samples. Another important
characteristic of the packer is that it is transformative – the packer’s wrapper is changed on a
regular basis which enables it to remain invisible to security products.

TrickGate is a good example of a strong, resilient Packer-as-a-Service, which has managed
to stay under the cyber security radar for many years and continually improve itself in
different ways. We managed to track TrickGate’s breadcrumb trail despite its propensity for
rapidly changing its outer wrapper.

Although a lot of excellent research was conducted on the packer itself, TrickGate is a
master of disguises and has been given many names based on its varied attributes. Its
names include “TrickGate”, “Emotet’s packer”, “new loader”, “Loncom”, “NSIS-based crypter”
and more. We connect the dots from previous researches and with high confidence point to a
single operation that seems to be offered as a service.

TrickGate over the years.

We first observed TrickGate at the end of 2016. Back then, it was used to deliver Cerber
ransomware. Since that time, we are continually observing TrickGate and found it is used to
spread all types of malwares tools, such as ransomware, RATs, info-stealers, bankers, and
miners. We noticed that many APT groups and threat actors regularly use TrickGate to wrap
their malicious code to prevent detection by security products. TrickGate has been involved
in wrapping some of the best-known top-distribution malware families, such as Cerber,
Trickbot, Maze, Emotet, REvil, CoinMiner, Cobalt Strike, DarkVNC, BuerLoader, HawkEye,
NetWire, AZORult, Formbook, Remcos, Lokibot, AgentTesla, and many more.

Figure 1 – TrickGate over the years.

https://www.gosecure.net/blog/2021/12/03/trickbot-leverages-zoom-work-from-home-interview-malspam-heavens-gate-and-spamhaus/
https://www.virusbulletin.com/virusbulletin/2019/10/vb2019-paper-exploring-emotet-elaborate-everyday-enigma/
https://blog.talosintelligence.com/rats-and-stealers-rush-through-heavens/
https://securelist.com/loncom-packer-from-backdoors-to-cobalt-strike/96465/
https://www.malwarebytes.com/blog/threat-intelligence/2021/05/revisiting-the-nsis-based-crypter

3/17

TrickGate Distribution.

We monitored between 40 to 650 attacks per week during the last 2 years. According to our
telemetry, the threat actors who use TrickGate primarily target the manufacturing sector, but
also attack education facilities, healthcare, finance and business enterprises. The attacks are
distributed all over the world, with an increased concentration in Taiwan and Turkey. The
most popular malware family used in the last 2 months is Formbook with 42% of the total
tracked distribution.

Figure 2 – TrickGate statistics during Oct-Nov 2022.

Attack flow:

Following is an overview of the attack flow that is commonly found in attacks involving
TrickGate.

4/17

Initial Access

The initial access made by the packer’s users can vary significantly. We monitor the packed
samples spreading mainly via phishing emails with malicious attachments, but also via
malicious links.

Initial Files

The first stage mainly comes in the form of an archived executable, but we monitored many
file types and delivery permutations that lead to the same shellcode. We observed the
following file types at the first stage:

Archive: 7Z * ACE * ARJ * BZ * BZ2 * CAB * GZ * IMG * ISO * IZH * LHA * LZ * LZH * R00 *
RAR * TAR * TGZ * UU * UUE * XZ * Z * ZIP * ZIPX * ZST.

Executable: BAT * CMD * COM * EXE * LNK * PIF * SCR.

Document: DOC * DOCX * PDF * XLL * XLS * XLSX * RTF.

Shellcode Loader

The second stage is the shellcode loader which is responsible for decrypting and running the
shellcode.

We noticed 3 different types of code language used for the shellcode loader. NSIS script,
AutoIT script and C all implement similar functionality.

Shellcode

The shellcode is the core of the packer. It’s responsible for decrypting the payload and
stealthily injecting it into a new process.

Payload

The payload is the actual malicious code and is responsible for carrying out the intended
malicious activity. The payloads differ according to the actor who used the packer.

5/17

Initial access

Initial files

Shellcode loader

Shellcode

Payload

1

2

3

4

5

Figure 3 – Attack flow.

Examples of the different attack flows we observed in the past year:

FEB 24, 2022

1.

Email
2.

RAR
3.

LNK
4.

Download
5.

EXE NSIS
6.

C++
7.

Shellcode
8.

Formboo

Figure 4 – LNK flow

RAR: 3f5758da2f4469810958714faed747b2309142ae

LNK: bba7c7e6b4cb113b8f8652d67ce3592901b18a74

URL: jardinaix[.]fr/w.exe

EXE 63205c7b5c84296478f1ad7d335aa06b8b7da536

Mar 10, 2022

1.

Email
2.

PDF
3.

XLSX
4.

Download
5.

EXE NSIS
6.

C++
7.

Shellcode
8.

Formboo

6/17

Figure 5 – PDF flow.

PDF: 08a9cf364796b483327fb76335f166fe4bf7c581

XLSX: 36b7140f0b5673d03c059a35c10e96e0ef3d429a

URL: 192.227.196[.]211/t.wirr/XLD.exe

EXE: 386e4686dd27b82e4cabca7a099fef08b000de81

Oct 3, 2022

1.

Email
2.

7Z
3.

EXE SFX
4.

C++
5.

Shellcode
6.

Formboo

Figure 6 – SFX flow.

7Z: fac7a9d4c7d74eea7ed87d2ac5fedad08cf1d50a

EXE: 3437ea9b7592a4a05077028d54ef8ad194b45d2f

Nov 15, 2022

1.

Email
2.

R11
3.

EXE NSIS
4.

AutoIT
5.

Shellcode
6.

Remcos

Figure 7 – AutoIT flow.

R11: 755ee43ae80421c80abfab5481d44615784e76da

EXE: 666c5b23521c1491adeeee26716a1794b09080ec

Shellcode loader

The Shellcode loader usually contains a single function which is responsible for decrypting
and loading the shellcode into memory. These are the basic steps:

1. Read the encrypted shellcode. The encrypted shellcode can be stored in a file on the
disc, in the “.rdata” section or as a resource.

2. Allocate memory for the shellcode, usually by calling VirtualAlloc.
3. Decrypt the shellcode.

7/17

4. Trigger the shellcode. As we explain below, this can be done using a direct call or by
callback functions.

Figure 8 – Shellcode loader – deobfuscated AutoIT version.

Figure 9 – Shellcode loader C version.

In the more recent versions of TrickGate, the shellcode loader abuses the “Callback
Functions” mechanism. The loader utilizes many native API calls which take a memory
address as an argument of a callback function. Instead of the Callback Function, the loader
passes on the address of the newly allocated memory which holds the shellcode. When
Windows reaches the point of the registered events, the DriverCallback executes the
shellcode. This technique breaks the flow of the behavior we’re monitoring by having
Windows OS run the shellcode at an unknown time. In the shellcode loader above, you can
see two examples of this in the images “EnumTimeFormatsA” and
“EnumSystemCodePagesW”.

Shellcode similarity and TrickGate vacation

https://learn.microsoft.com/en-us/windows/win32/multimedia/callback-functions
https://learn.microsoft.com/en-us/windows/win32/api/mmiscapi/nf-mmiscapi-drivercallback

8/17

Usually, when we find code similarity between unrelated malware families, it is more likely
that the actors copied from a mutual resource or shared some pieces of code. For a long
time, we noticed a unique injection technique that incorporated the use of direct kernel
syscalls, but we didn’t realize the significance, thinking it was probably a fragment of shared
code. What caused us to suspect that this unique injection may be controlled solely by one
actor is the fact that we saw an occasional “time-off” in operation, and it is very unlikely that
several different groups will take a break at exactly the same time. The last break, which was
more than 3 months long (from June 13, 2022 to September 26, 2022) was an opportunity
for us to verify our suspicion, and dive into the shellcode.

Figure 10 – TrickGate in the last 2 years.

To verify our suspicion, we started to analyze samples across the timeline.

We started our analysis by comparing a fresh sample to an older one. For this test we used

2022-12_Remcos: a1f73365b88872de170e69ed2150c6df7adcdc9c

compared to

2017-10_CoinMiner: 1a455baf4ce680d74af964ea6f5253bbeeacb3de

We know from the behavioral analysis that a similarity exists in the shellcode, so we ran the
samples till the point the shellcode is decrypted in memory and then we dumped the
shellcode to the disk. Next, we used the Zynamics BinDiff tool (owned by Google) to check
similarities in both shellcodes. The results showed a 50% similarity between the tested
shellcodes. Fifty percent over a long period of time – more than five years – for quite a large
piece of shellcode (~5kb) is unexpected. This automatically raised suspicions that this might
be a maintained shellcode, but we needed further evidence in the form of similarity analysis
over shorter periods of times to see if it had changed gradually.

https://www.zynamics.com/bindiff.html

9/17

Figure 11 – BinDiff result on shellcode extracted 2022-12_Remcos:
a1f73365b88872de170e69ed2150c6df7adcdc9c VS 2017-10_CoinMiner:
1a455baf4ce680d74af964ea6f5253bbeeacb3de.

For further analysis, we took random samples from the past 6 years. For each sample, we
dumped the shellcode and checked the similarity of the result over time. As you can see in
the following graph, the results point to small changes made over time. On the left side we
see samples dating from 2016 till 2020 showing about 90% similarity. On the right side, we
see a forked version showing a high similarity within itself, but lower similarity with the
original version on the left.

10/17

Figure 12 – Bindiff result on extracted shellcodes.

We then dived into the gap between the shellcodes to see the impact caused by:

Different compilers
Obfuscations
Evasion modules
Persistence modules (run the packet payload at the next login)
Function order
Local variables vs structures

After we cleaned the gap noise, we got the core functionality of the packer. The author
constantly maintained the shellcode but used “building blocks” as described in the next
section.

11/17

Figure 13 – Control flow graph – on the main injection function. Diffing 2016-07_ Cerber:
24aa45280c7821e0c9e404f6ce846f1ce00b9823 VS 2022-12_Remcos:
a1f73365b88872de170e69ed2150c6df7adcdc9c

12/17

Figure 14 – Diffing kernel direct call of NtWriteVirtualMemory 2022-12_Remcos:
a1f73365b88872de170e69ed2150c6df7adcdc9c VS 2016-07_ Cerber:
24aa45280c7821e0c9e404f6ce846f1ce00b9823

TrickGate shellcode’s construction elements

As mentioned above, the shellcode has been constantly updated, but the main functionalities
exist on all the samples since 2016. An overview of the shellcode’s building-blocks can be
described as follows:

API hash resolving.
Load to memory and decrypt the payload.
Injection using direct kernel calls.

Manually map a fresh copy of ntdll.
Dynamically retrieve the kernel syscall numbers.
Invoke the desired syscalls.
Inject and run the payload.

13/17

API hash resolving.

When we analyzed the TrickGate code, no constant strings can be found. Many times,
TrickGate intentionally adds clean code and debug strings to throw off any analysis. To hide
the needed strings and its intentions, TrickGate uses a common technique called API
hashing, in which all the needed Windows APIs are hidden with a hash number. Until
January 2021, TrickGate used to hash the shellcode string with CRC32. In the newer
version, TrickGate started using a custom hash function.

The equivalent Python hashing functions used in the last 2 years:

def hash_str_ror1(str):
 h = 8998
 for c in str:
 h += ord(c) + (((h >> 1) & 0xffffffff) | ((h << 7) & 0xffffffff))
 return h & 0xffffffff

def hash_str21(str):
 h = 8998
 for c in str:
 h = ord(c) + (0x21 * h)
 return h & 0xffffffff

The following Kernel32 API names have been hashed in TrickGate samples:

API NAME CRC32 hash_str_ror1 hash_str21

CloseHandle 0xB09315F4 0x7fe1f1fb 0xd6eb2188

CreateFileW 0xA1EFE929 0x7fe63623 0x8a111d91

CreateProcessW 0x5C856C47 0x7fe2736c 0xa2eae210

ExitProcess 0X251097CC 0x7f91a078 0x55e38b1f

GetCommandLineW 0xD9B20494 0x7fb6c905 0x2ffe2c64

GetFileSize 0xA7FB4165 0x7fbd727f 0x170c1ca1

GetModuleFileNameW 0XFC6B42F1 0xff7f721a 0xd1775dc4

GetThreadContext 0x649EB9C1 0x7fa1f993 0xc414ffe3

IsWow64Process 0x2E50340B 0xff06dc87 0x943cf948

ReadFile 0x95C03D0 0x7fe7f840 0x433a3842

ReadProcessMemory 0xF7C7AE42 0x7fa3ef6e 0x9f4b589a

SetThreadContext 0x5688CBD8 0xff31bf16 0x5692c66f

14/17

VirtualAlloc 0x9CE0D4A 0x7fb47add 0xa5f15738

VirtualFree 0xCD53F5DD 0x7f951704 0x50a26af

Figure 15 – API hashing.

Load to memory and decrypt the payload.

TrickGate always changes the way the payload is decrypted, so unpacking solutions that we
observe now will not work on the next update. Most of the samples use a custom decryption
method but on older samples we also saw known cyphers such as RC4 implementation or
the use of Windows APIs for encryption.

Injection using direct kernel calls:

After decrypting the payload, the shellcode then injects it into a newly created process. After
the process is created using the create_suspended flag, the injection is done by a set of
direct calls to the kernel. For every one of these ntdll API calls:

NtCreateSection
NtMapViewOfSection
NtUnmapViewOfSection
NtWriteVirtualMemory
NtResumeThread

The following actions are executed:

Manually map a fresh copy of ntdll from the disk.
Resolve the address of a given hash in the newly mapped ntdll.
Dynamically extract the requested System Service Number (SSN).
Direct kernel Invoke with the SSN.

For Windows 64-bit: Switch to 64-bit mode using “Heaven’s Gate” technique and
SYSCALL SSN
For Windows 32-bit: Call SYSENTER SSN

https://github.com/darkspik3/Valhalla-ezines/blob/master/Valhalla%20%231/articles/HEAVEN.TXT

15/17

Figure 16 – Function call graph SYSCALL ID from Manually mapped DLL.

The way TrickGate invokes direct-syscalls is intriguing, as it uses a technique similar to Hell’s
Gate. Hell’s Gate is a technique presented publicly in 2020 as a way to dynamically retrieve
and execute direct syscall numbers. Here you can find samples dating to 2016 which
manage to accomplish the equivalent action to retrieve and execute direct system calls
without the need to maintain a System Service Descriptor Table (SSDT).

Figure 17 – SSN dynamically extracted 2016-07_Cerber:
24aa45280c7821e0c9e404f6ce846f1ce00b9823

The injection module has been the most consistent part over the years and has been
observed in all TrickGate shellcodes since 2016.

https://github.com/am0nsec/HellsGate

16/17

Conclusion

We created strings correlating the most wanted malware in the last 6 years to a single
Packer-as-a-Service named TrickGate, whose transformative abilities make it hard to identify
and track. Understanding the packer’s building blocks is of crucial importance to detect the
threat, as blocking the packer will protect against the threat in an early stage, before the
payload starts to run.

Packers often get less attention, as researchers tend to focus their attention on the actual
malware, leaving the packer stub untouched. However, the identified packer can now be
used as a focal point to detect new or unknown malware.

Analyzed samples.

03d9cbee9522c2c8a267b7e9599a9d245c35c7ac

043ae57e01ebd0a96fa30b92821b712504cfde03

1a455baf4ce680d74af964ea6f5253bbeeacb3de

22f26496f2e8829af9f5cfcd79c47e03fe9a21bb

24aa45280c7821e0c9e404f6ce846f1ce00b9823

30e0181a018fa7dcbd2344dc32adcf77cf840ebe

3437ea9b7592a4a05077028d54ef8ad194b45d2f

3817bad277aa50016e08eed35e92d4a3b5247633

4380044a9517a08514459005836c5f92e4a33871

4f6fa448454b581d6c8e7aa6ed3ef72e66062bf8

666c5b23521c1491adeeee26716a1794b09080ec

75d999d431819311abf8bd048cd084acdcd5f4e1

7f456f8b01fc8866aeed4678a14479b6eaa62fed

975629358bfbba0344ef0dae4d22697ceb2a32b4

977800bd7be3c5c9f2c0dac7f4806e586d8f7b1a

9f20d00b4ec898a33e130720d4d29e94070e1575

a1f73365b88872de170e69ed2150c6df7adcdc9c

17/17

a661541c4cbeb1db859f6cec6c53979b5633c75e

afbe838c881e5b223351ff8fa05ddeb3678581ba

b2d58dfee71ce9c509fab1f00ce04c9526c60695

e6dccf4b1fc5ab116b6bc1321346b35dbf42f387

fa5c79321dd4cc2fea795d6ebe2e823abe33ca6f

GO UP
BACK TO ALL POSTS

https://research.checkpoint.com/latest-publications/

