
1/18

Welcome to Goot Camp: Tracking the Evolution of GOOTLOADER Operations
mandiant.com/resources/blog/tracking-evolution-gootloader-operations

Since January 2021, Mandiant Managed Defense has consistently responded to GOOTLOADER infections. Threat actors cast a widespread
net when spreading GOOTLOADER and impact a wide range of industry verticals and geographic regions. We currently only attribute
GOOTLOADER malware and infrastructure to a group we track as UNC2565, and we believe it to be exclusive to this group.

Beginning in 2022, UNC2565 began incorporating notable changes to the tactics, techniques, and procedures (TTPs) used in its operations.
These changes include the use of multiple variations of the FONELAUNCH launcher, the distribution of new follow-on payloads, and changes
to the GOOTLOADER downloader and infection chain, including the introduction of GOOTLOADER.POWERSHELL. These changes are
illustrative of UNC2565’s active development and growth in capabilities.

Mandiant’s observation of post-compromise GOOTLOADER activity has largely been limited to internal reconnaissance, as these intrusions
have been quickly detected and mitigated.

This blog post will also cover the various methods used by the malware to obscure its code, as well as provide scripts that can automate the
deobfuscation process.

Infection Chain

GOOTLOADER infections begin with the user searching for business-related documents online, like templates, agreements, or contracts. The
victim is lured into visiting a compromised website and downloading a malicious archive that contains a JavaScript file known as
GOOTLOADER.

Successful execution of the GOOTLOADER file will download additional payloads, FONELAUNCH and Cobalt Strike BEACON or
SNOWCONE that will be stored in the registry. These payloads are executed via PowerShell in the later stages.

Since late 2020, GOOTLOADER campaigns have implemented relatively consistent infection chains. However, the infection chain incorporated
notable shifts starting in mid-November 2022. Prior to November 2022, the typical GOOTLOADER infection chain consisted of the following:

1. The user visits an UNC2565-compromised site (usually related to business documents) and downloads a malicious ZIP archive.
2. The malicious ZIP file is saved to the user's Downloads folder.

https://www.mandiant.com/resources/blog/tracking-evolution-gootloader-operations

2/18

3. The user opens the ZIP file and clicks the .JS file inside.
4. The JS file is launched using WScript.exe.
5. The WScript.exe process reaches out to three hard coded domains and downloads two payloads that are saved to the registry.
6. WScript.exe stores the first registry payload (FONELAUNCH) as a value in the path HKCU\SOFTWARE\Microsoft\

<STRING>\%USERNAME%0.
7. WScript.exe stores the second registry payload (usually BEACON) as a value in the path HKCU\SOFTWARE\Microsoft\

<STRING>\%USERNAME%.
8. WScript.exe executes a PowerShell script that decodes and executes the first payload. This payload is a .NET-based launcher that

Mandiant tracks as FONELAUNCH.
9. WScript.exe executes a PowerShell command that creates a scheduled task which executes the same PowerShell script mentioned in

the previous step. The current account username will be used for the task name, and the task will be set to run when the user logs in.
10. The first registry payload (FONELAUNCH) decodes and executes the second registry payload, which contains Cobalt Strike BEACON or

SNOWCONE malware.

Figure 1: GOOTLOADER attack chain
In November 2022, Managed Defense observed a new variant of GOOTLOADER, tracked as GOOTLOADER.POWERSHELL, leveraging a
new infection chain. This new variant writes a second .JS file to disk and creates a scheduled task to execute it. The script reaches out to 10
hard coded URLs. The URL request contains encoded data about the host such as running processes and local drives. Follow up activity is
similar to previous GOOTLOADER versions where payloads are written to the registry. The attack chain of this new variant is listed as follows:

1. The user visits an UNC2565-compromised site (usually related to business documents) and downloads a malicious ZIP archive.
2. The malicious ZIP file is saved to the user's Downloads folder.
3. The user opens the ZIP file and clicks the .JS file inside. This is a trojanized JavaScript library containing an obfuscated JScript file,

which will ultimately execute GOOTLOADER.POWERSHELL. Recently observed trojanized JavaScript libraries include jQuery,
Chroma.js, and Underscore.js.

4. The JS file is launched using WScript.exe.
5. The WScript.exe process creates an inflated file with a .LOG extension to C:\Users\%USERNAME%\AppData\Roaming\

<RANDOM_DIRECTORY>\<HARD_CODED_FILE_NAME>. The dropper writes more obfuscated JScript code followed by a padding of
random characters to increase the file size.

6. The .LOG file is renamed with a .JS file extension.
7. The dropper creates a scheduled task that executes the new JScript file. The scheduled task is executed immediately after creation but

also serves as a persistence mechanism to run the second JScript file at the next logon.
8. WScript.exe and CScript.exe launch a PowerShell process that reaches out to 10 hard coded domains.

Victim information collected includes environment variables, Windows OS version, filenames, and running processes. This
information is Gzip compressed, Base64 encoded, and sent to the command and control (C2) server in the Cookie header.

9. The C2 returns a payload, which is executed using the Invoke-Expression PowerShell cmdlet. This leads to the download of two
payloads into registry keys: FONELAUNCH and a secondary payload to be executed by FONELAUNCH (mirroring steps 6 through 10 of
the previous infection chain).

3/18

Figure 2: GOOTLOADER.POWERSHELL attack chain

The Evolution of GOOTLOADER Obfuscation

In addition to observing GOOTLOADER.POWERSHELL, several variants of FONELAUNCH, and a new infection chain, Mandiant has also
observed an evolution in the methods used to obfuscate GOOTLOADER. Mandiant currently tracks three obfuscation variants that have been
leveraged. Beginning in early 2021, GOOTLOADER was distributed as a small JS file with one obfuscated block of code (MD5:
ab1171752af289e9f85a918845859848). These samples have been tracked as obfuscation variant 1 (Figure 3).

Figure 3: GOOTLOADER obfuscation variant 1 in February 2021
Around October 2021, Managed Defense observed GOOTLOADER embedded within trojanized jQuery libraries instead of being on its own,
likely in attempt to evade detection and hinder analysis (MD5: 82607b68e061abb1d94f33a2e06b0d20). These samples have been tracked as
obfuscation variant 2 (Figure 4).

4/18

Figure 4: GOOTLOADER obfuscation variant 2 in October 2021
In August 2022, Managed Defense observed new samples with slight variations in the obfuscation code. These new samples spread the
obfuscated string variables throughout the file rather than having them all on the same line (MD5: d3787939a5681cb6d6ac7c42cd9250b5).
These GOOTLOADER samples trojanized jit.js file rather than jQuery (Figure 5).

Figure 5: GOOTLOADER obfuscation variant 2 in August 2022
Beginning in November 2022, Managed Defense observed a new obfuscation variant, tracked as variant 3, with modified infection that is more
complex than the previous variants. This new variant contains additional string variables that are used in a second deobfuscation stage. This
new variant has been observed trojanizing several legitimate JavaScript libraries, including jQuery, Chroma.js, and Underscore.js (MD5:
ea2271179e75b652cafd8648b698c6f9).

https://github.com/philogb/jit/blob/master/Jit/jit.js

5/18

Figure 6: GOOTLOADER obfuscation variant 3 in November 2022

GOOTLOADER Obfuscation Variant Comparison

Table 1 compares different obfuscation variants of the GOOTLOADER JavaScript files based on samples observed by Mandiant.

Table 1: Comparison between different GOOTLOADER obfuscation variants

 Variant 1 Variant 2 Variant 3

First
Observed

Feb 2021 Oct 2021 Nov 2022

Malicious
Code

One obfuscated
block of code,
easily
recognizable.

Malicious code has been nested within the file. Early
samples had all the variables in one block of code, later
samples spread the code throughout the file.

Malicious code has been nested throughout
the file. Additional string variables added for
the second deobfuscation iteration.

Payload
(See
Infection
Chain)

GOOTLOADER GOOTLOADER GOOTLOADER.POWERSHELL

Fileless Registry Payloads

The successful execution of GOOTLOADER will result in the download of two additional payloads, FONELAUNCH and an in-memory dropper
that typically delivers BEACON, to the registry paths in Figure 7. These are registry resident malware samples stored in the Windows registry
to remain persistent and evade detection. GOOTLOADER subsequently launches these payloads in memory.

Figure 7: Payloads downloaded to the registry hive by GOOTLOADER

HKCU\SOFTWARE\Microsoft\Phone\%USERNAME%0 (FONELAUNCH)

HKCU\SOFTWARE\Microsoft\Phone\%USERNAME% (Secondary registry payload)

HKCU\SOFTWARE\Microsoft\Personalization\%USERNAME%0 (FONELAUNCH)

HKCU\SOFTWARE\Microsoft\Personalization\%USERNAME% (Secondary registry payload)

HKCU\SOFTWARE\Microsoft\Fax\%USERNAME%0 (FONELAUNCH)

HKCU\SOFTWARE\Microsoft\Fax\%USERNAME% (Secondary registry payload)

HKCU\SOFTWARE \Microsoft\Personalization\<RANDOM_STRING> (FONELAUNCH & The secondary registry payload)

The second stage PowerShell script attempts to create a scheduled task (Figure 8) that launches the malicious payloads that were saved to
the registry (Figure 9).

Figure 8: Second stage PowerShell script that creates a scheduled task for malware persistence

6/18

Figure 9: The Base64 data from Figure 8 is a PowerShell script that reconstructs and executes the first registry payload.
The PowerShell script performs the following steps to execute the FONELAUNCH malware in memory:

1. Query the HKCU\SOFTWARE\Microsoft\Phone\%USERNAME%0 registry key
2. Merge all the registry values together (usually 7 entries)
3. Replace the "#" character with the string "1000"
4. Convert the data from hex to bytes
5. Load the payload (FONELAUNCH) into memory and execute it

FONELAUNCH

FONELAUNCH is one of the payloads written into the registry by GOOTLOADER. It is a .NET-based loader that loads an encoded payload
from the registry into memory.

Since May 2021 Mandiant has observed UNC2565 use three different variants of FONELAUNCH, distinguished by their loading mechanism
(Table 2). The evolution of FONELAUNCH variants over time has allowed UNC2565 to distribute and execute a wider variety of payloads,
including DLLs, .NET binaries, and PE files.

FONELAUNCH.FAX reads and decodes data from the HKCU\SOFTWARE\Microsoft\Fax\%USERNAME% registry key. The returned
content is expected to be a .NET assembly, which is loaded at runtime into memory.

FONELAUNCH.FAX establishes its persistence by creating a registry key in the current user registry hive (Figure 10) (MD5:
d6220ca85c44e2012f76193b38881185).

FONELAUNCH.PHONE mainly reads and decodes data placed in a specific registry key. The returned data is expected to be a DLL,
which is loaded via a publicly available DynamicDllLoader project.

Initial samples of FONELAUNCH.PHONE read and decoded data from the HKCU\SOFTWARE\Microsoft\Phone\%USERNAME%
registry key (MD5: 35238d2a4626e7a1b89b13042f9390e9).
Starting in October 2022 a subset of FONELAUNCH.PHONE samples read and decoded data from the
HKCU\SOFTWARE\Microsoft\Personalization\%USERNAME% registry key.

FONELAUNCH.DIALTONE reads and decodes data from the HKCU\SOFTWARE\Microsoft\%USERNAME% registry key. The returned
content is expected to be a PE file, which is injected into a separate process and executed (MD5:
aef6d31b3249218d24a7f3682a00aa10). Notably, all incidents in which FONELAUNCH.DIALTONE was deployed have led to the
execution of SNOWCONE.GZIPLOADER.

Table 2: Comparison between FONELAUNCH variants

FONELAUNCH.FAX FONELAUNCH.PHONE FONELAUNCH.D

First
Observed

May 2021 September 2021 May 2022

7/18

Observed
Registry
Paths

HKCU\SOFTWARE\Microsoft\Fax\%USERNAME% HKCU\SOFTWARE\Microsoft\Phone\%USERNAME%

 HKCU
\SOFTWARE\Microsoft\Personalization\%USERNAME%

 HKCU\SOFTWA

Supported
Payload

.NET DLL PE

Persistence RunOnce registry key None None

Figure 10: FONELAUNCH.FAX persistence mechanism
Opening FONELAUNCH with dnSpy reveals a substitution cipher key that can be used to decode the second registry payload located in the
HKCU\SOFTWARE\Microsoft\Phone\%USERNAME% registry key.

Figure 11: The dnSpy screenshot shows the substitution table and loading function

The Secondary Registry Payload

The secondary registry payload written into the registry by GOOTLOADER is a memory-only dropper written in .NET or C++ that decodes an
embedded payload located in a randomly named function and executes it. Opening the .NET secondary registry payload with dnSpy reveals
that it will be decoded and eventually launched in memory (Figure 12). Mandiant has observed that in most cases, this is a Cobalt Strike

8/18

BEACON payload.

Figure 12: dnSpy screenshot showing the payload that will be launched in memory

Deobfuscating GOOTLOADER

You can download all scripts mentioned in this blog post from the Gootloader repository on GitHub.

GOOTLOADER Obfuscation Variant 1

As mentioned previously, deobfuscation of GOOTLOADER obfuscation variant 1 is straight-forward. Two iterations of the Python function in
Figure 13 deobfuscate the contents of the JavaScript file.

Figure 13: deobfuscation function

The function in the red box contains the relevant code from GOOTLOADER 1 that must be deobfuscated (Figure 14).

https://github.com/mandiant/gootloader

9/18

Figure 14: GOOTLOADER obfuscation variant 1 JS sample
The result of the first deobfuscation iteration is shown in Figure 15.

Figure 15: First GOOTLOADER deobfuscation iteration
Deobfuscating the code in single quotes again results in the decoded script. Figure 16 shows the result after using the CyberChef “Generic
Code Beautify” recipe.

10/18

Figure 16: Using CyberChef to beautify the code

GOOTLOADER Obfuscation Variant 2

Despite ultimately using the same decoding function, the updated variant of GOOTLOADER hides itself within over 10,000 lines of code for
additional obfuscation.

The regex expression “.*\+.*\+.*\+.*\+.*\+.*\+.*\+.*\+.*(\n.*\=.*\+.*)*” can be used to find the relevant code block.

11/18

Figure 17: Malicious code in the GOOTLOADER obfuscation variant 2 JS file sample
As shown in Figure 17, the code populates several variables and then concatenates them together. Using the GOOTLOADER 1 script would
not work here since there is no “single” string in the obfuscated code.

Truncated sample of the formula:

wabjrw = siyiqs+ektlkoi+nknhti+idkbqxaw+pqxyicj+vzphnjxnkwqcf+yycsvqac+udazlru+rnoyxn+pdolnhb+oznmgnee;

The following code block shows a different GOOTLOADER variant that uses multiple equals statements to further obfuscate the code:

Sdcsd= sdcdscs+sdcsdc; wabjrw =ujmlmdcd+sdcsd

Later samples spread the relevant code throughout the file rather than having it on a single line. However, the variables are still being set in the
same order (from the top of the file down) so it is possible to automate the deobfuscation of the script.

Another distinction between samples is the comment block at the top of the file. Early samples contain “jQuery JavaScript Library” (MD5:
82607b68e061abb1d94f33a2e06b0d20) whereas later samples contain “Copyright © 2011 Sencha In–. - Author: Nicolas Garcia Belmonte”
(MD5: d3787939a5681cb6d6ac7c42cd9250b5) (Figure 18 and Figure 19).

Figure 18: Early GOOTLOADER obfuscation variant 2 JS file header

12/18

Figure 19: Later GOOTLOADER obfuscation variant 2 JS file header
Manually calculating the result of the concatenated variable would be time consuming since there are many variables, and they are declared
out of order. A better approach is to have a script run the string concatenation code and deobfuscate the result.

The manual deobfuscation script requires manually finding the relevant code block in the JavaScript file and entering it into the script. This is
useful since minor changes in the GOOTLOADER script could break a fully automated script. Detailed deobfuscation instructions can be found
in the Gootloader GitHub page.

Automated Deobfuscation of GOOTLOADER Obfuscation Variant 2 JS

Rather than manually finding the relevant code, the "GootLoaderAutoJsDecode.py" script can be used to automate the entire process. The
script uses the file headers to differentiate between samples and adjust the regex search accordingly. Passing the JavaScript file as a
parameter to the script will return a list of all malicious domains, and the deobfuscated code will be written to the file "DecodedJsPayload.js_".
The script can be found in the Gootloader GitHub page.

python GootLoaderAutoJsDecode.py evil.js

Figure 20: Result of the decoding script

GOOTLOADER Obfuscation Variant 3

Unlike previous variants, GOOTLOADER obfuscation variant 3 leverages two obfuscated JavaScript files during its execution. These samples
use a similar method of deobfuscation where multiple string variables are concatenated and decoded. However, an additional decoding routine
is used to decode the second file that is dropped (Figure 21). Manually decoding these samples is possible but too cumbersome, using an
automated script is preferred.

Figure 21: Python version of the decoding routine

Automated Deobfuscation of GOOTLOADER Obfuscation Variant 3 JS

The “GootLoaderAutoJsDecode.py” script can also be used to decode GOOTLOADER obfuscation variant 3 samples. The script uses the new
decoding routine to deobfuscate the first file and saves all the relevant output to “GootLoader3Stage2.js_” which is passed back into the script
for decoding. Once the script completes, the output is saved to “DecodedJsPayload.js_”, which will resemble Figure 22. The script can be
found in the Gootloader GitHub page.

https://github.com/mandiant/gootloader/blob/main/ManualDecoding.md
https://github.com/mandiant/gootloader/blob/main/GootLoaderAutoJsDecode.py
https://github.com/mandiant/gootloader/blob/main/GootLoaderAutoJsDecode.py

13/18

Figure 22: Decoded output showing the C2 domains

Reconstructing the Registry Payloads

It is possible to reconstruct the registry payloads depending on where their data resides.

Off Host — Python Script + CSV

The script “GootloaderRegDecode.py”, combined with a CSV registry export, can be used to automatically reconstruct the payloads. The script
provides details on how the CSV file must be formatted, one or both registry payloads can be processed at the same time.

GootloaderRegDecode.py Payload-1-and-2-Reg-Export.csv

GootloaderRegDecode.py Payload-1-Reg-Export.csv

GootloaderRegDecode.py Payload-2-Reg-Export.csv

Both payloads will be saved to the current directory and an MD5 hash for each payload will be provided.

This script was tested using a registry export from Redline and Trellix HX triage packages. The script should work with other EDRs directly or
with slight modification.

Off Host — CyberChef + Reg Export

CyberChef can be used to extract the payloads from a registry export.

1. Create separate .reg exports of the HKCU\SOFTWARE\Microsoft\Phone\%USERNAME%0 and
HKCU\SOFTWARE\Microsoft\Phone\%USERNAME% registry keys. The following commands can be used:

reg export HKCU\SOFTWARE\Microsoft\Phone\%USERNAME%0\ reg_stage1.reg

reg export HKCU\SOFTWARE\Microsoft\Phone\%USERNAME%\ reg_stage2.reg

2. Import the file into CyberChef.
3. Load the appropriate CyberChef recipe (GootloaderCyberChef-Stage1.recipie) (GootloaderCyberChef-Stage2.recipie).
4. Save the output.

On Host — PowerShell Script

The script “GootloaderWindowsRegDecode.ps1” can be run on a host that currently has the registry keys present. The script can be executed
against the current user, or another user that exists on the system.

14/18

#Run against the current user account

GootloaderWindowsRegDecode.ps1

#Run against the JSmith user account

GootloaderWindowsRegDecode.ps1 -User JSmith

Both payloads will be saved to the current directory and an MD5 hash for each payload will be provided.

Technical Indicators

GOOTLOADER ZIP file

1011b2cbe016d86c7849592a76b72853
80a79d0c9cbc3c5188b7a247907e7264
bee08c4481babb4c0ac6b6bb1d03658e

GOOTLOADER JS file

82607b68e061abb1d94f33a2e06b0d20
961cd55b17485bfc8b17881d4a643ad8
af9b021a1e339841cfdf65596408862d
d3787939a5681cb6d6ac7c42cd9250b5
ea2271179e75b652cafd8648b698c6f9
ab1171752af289e9f85a918845859848

Registry Payload 1 (FONELAUNCH)

FONELAUNCH.FAX
d6220ca85c44e2012f76193b38881185

FONELAUNCH.PHONE
35238d2a4626e7a1b89b13042f9390e9
53c213b090784a0d413cb00c27af6100
7352c70b2f427ef4ff58128a428871d3
a0b7da124962b334f6c788c27beb46e3
a4ee41bd81dc3b842ddb2952d01f14ed
d401dc350aff1e3fd4cc483238208b43
ec17564ac3e10530f11a455a475f9763
f9365bf8d4b021a873eb206ec98453d9
aec78c1ef489f3f4b621037113cbdf81

FONELAUNCH.DIALTONE
08fa99c70e90282d6bead3bb25c358dc
aef6d31b3249218d24a7f3682a00aa10

Registry Payload 2

Cobalt Strike BEACON
04746416d5767197f6ce02e894affcc7
2eede45eb1fe65a95aefa45811904824
3d768691d5cb4ae8943d8e57ea83cac1
84f313426047112bce498aad97778d38
92a271eb76a0db06c94688940bc4442b

SNOWCONE
328b032c5b1d8ad5cf57538a04fb02f2
7a1369922cfb6d00df5f8dd33ffb9991

Network Indicators

jonathanbartz[.]com
jp[.]imonitorsoft[.]com
junk-bros[.]com
kakiosk[.]adsparkdev[.]com
kepw[.]org
kristinee[.]com
lakeside-fishandchips[.]com

15/18

Cobalt Strike Beacon Backdoor

hxxps://108.61.242[.]65/dot.gif
hxxps://108.61.242[.]65/submit.php
hxxps://146.70.78[.]43/fwlink
hxxps://146.70.78[.]43/submit.php
hxxps://87.120.254[.]39/ga.js
hxxps://87.120.254[.]39/submit.php
hxxps://45.150.108[.]213/ptj
hxxps://45.150.108[.]213/submit.php
hxxps://92.204.160[.]240/load
hxxps://92.204.160[.]240/submit.php

More atomic indicators may be found in our Mandiant Advantage portal.

YARA Rules

The following YARA rules are not intended to be used on production systems or to inform blocking rules without first being validated through an
organization's own internal testing processes to ensure appropriate performance and limit the risk of false positives. These rules are intended
to serve as a starting point for hunting efforts to identify FONELAUNCH and GOOTLOADER.POWERSHELL samples; however, they may
need adjustment over time if the malware family changes.

FONELAUNCH.FAX YARA rule

rule M_Launcher_FONELAUNCH_1

{

 meta:

 author = "Mandiant”

 description = "Hunting rule looking for FONELAUNCH.FAX samples.”

 md5 = "d6220ca85c44e2012f76193b38881185"

 strings:

 $str_method_a = "OpenSubKey" ascii

 $str_namespace = "System.Reflection" ascii

 $str_method_b = "[Environment]::GetEnvironmentVariable(" wide

 $ilasmx86_sequence_encoding_a = { 0A 06 02 7D [3] 04 00 16 06 }

 $ilasmx86_sequence_encoding_b = { 72 [3] 70 72 [3] 70 6F ?? 00 00 0A }

 condition:

 uint16(0) == 0x5A4D and all of ($str_*) and

 (

 $ilasmx86_sequence_encoding_a and #ilasmx86_sequence_encoding_b >= 16

)

}

FONELAUNCH.DIALTONE YARA rule

https://advantage.mandiant.com/malware/malware--0c0760b0-976d-5331-82e9-bcee24040d39

16/18

rule M_Launcher_FONELAUNCH_2

{

 meta:

 author = "Mandiant"

 description = "Hunting rule looking for FONELAUNCH.DIALTONE samples."

 md5 = "aef6d31b3249218d24a7f3682a00aa10"

 strings:

 $ilasmx86_sequence_fprototype_a = { 1F 30 20 1B 00 10 00 28 }

 $ilasmx86_sequence_fprototype_b = { 26 11 ?? 11 ?? 07 6A 20 ?? 30 00 00 1F 40 28 }

 $ilasmx86_sequence_encoding_a = { 0A 06 02 7D [3] 04 00 16 06 }

 $ilasmx86_sequence_encoding_b = { 72 [3] 70 72 [3] 70 6F ?? 00 00 0A }

 condition:

 uint16(0) == 0x5A4D and all of ($ilasmx86_sequence_fprototype_*) and

 (

 $ilasmx86_sequence_encoding_a and #ilasmx86_sequence_encoding_b >= 16

)

}

FONELAUNCH.PHONE YARA rule

rule M_Launcher_FONELAUNCH_3

{

 meta:

 author = “Mandiant”

 description = “Hunting rule looking for FONELAUNCH.PHONE samples.”

 md5 = "ec17564ac3e10530f11a455a475f9763"

 strings:

 $str_winfunction = "LoadLibrary" ascii

 $str_registrykey = "SOFTWARE\\" wide

 $str_constant = "PAGE_EXECUTE_READWRITE" ascii

 $ilasmx86_sequence_encoding_a = { 0A 06 02 7D [3] 04 00 16 06 }

 $ilasmx86_sequence_encoding_b = { 72 [3] 70 72 [3] 70 6F ?? 00 00 0A }

 condition:

 uint16(0) == 0x5A4D and all of ($str_*) and

 (

 $ilasmx86_sequence_encoding_a and #ilasmx86_sequence_encoding_b >= 16

)

}

GOOTLOADER.POWERSHELL YARA rule

17/18

rule M_Downloader_GOOTLOADER_POWERSHELL

{

 meta:

 author = "Mandiant"

 description = "Hunting rule looking for GOOTLOADER.POWERSHELL samples."

 md5 = "2567a2bca964504709820de7052d3486"

 strings:

 $ps_object_a = ".IsLink" ascii

 $ps_object_b = ".IsFolder" ascii

 $ps_object_c = ".IsFileSystem" ascii

 $ps_code_parseresponse = "[1] -replace" ascii nocase

 $ps_code_httpheader = ".Headers.Add(\"Cookie:" ascii nocase

 $ps_code_concatenatedata = "([String]::Join(\"|" ascii nocase

 condition:

 all of ($ps_code_*) and any of ($ps_object_*)

}

FONELAUNCH YARA rule

import "pe"

rule M_Hunting_Win_FONELAUNCH

{

 meta:

 author = "Mandiant"

 description = "Hunting rule looking for suspicious version information metadata observed in FONELAUNCH
samples"

 md5 = "35238d2a4626e7a1b89b13042f9390e9"

 strings:

 $m1 = { 49 00 6E 00 74 00 65 00 72 00 6E 00 61 00 6C 00 4E 00 61 00 6D 00 65 00 00 00 70 00 6F 00 77 00 65 00
72 00 73 00 68 00 65 00 6C 00 6C 00 2E 00 64 00 6C 00 6C 00 }

 $m2 = { 4F 00 72 00 69 00 67 00 69 00 6E 00 61 00 6C 00 46 00 69 00 6C 00 65 00 6E 00 61 00 6D 00 65 00 00 00
70 00 6F 00 77 00 65 00 72 00 73 00 68 00 65 00 6C 00 6C 00 2E 00 64 00 6C 00 6C 00 }

 condition:

 filesize < 15MB and uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550 and
(pe.version_info["OriginalFilename"] == "powershell.dll" or pe.version_info["InternalName"] == "powershell.dll" or any of
($m*))

}

Detection Techniques

Product Signature

Trellix Endpoint Security SUSPICIOUS POWERSHELL USAGE B (METHODOLOGY)
Powershell Encoded Command
JS loader extracted from ZIP file
Potential GootLoader File
CRITICAL: JS loader extracted from ZIP file

18/18

Trellix Endpoint Security (Hunting) WSCRIPT WRITES LARGE REG KEY VALUE (METHODOLOGY)
EXPLORER LAUNCHING WSCRIPT (METHODOLOGY)
FILEWRITE TO ARCHIVE (FILETRACKER)

Microsoft Defender for Endpoint Suspicious PowerShell command line
Suspicious file launch
Suspicious JavaScript process
An active 'Gootkit' malware in a PowerShell script was detected while executing via AMSI
An active 'Gootkit' malware in a PowerShell script was prevented from executing via AMSI

Trellix Network Security Downloader.JS.GOOTLOADER
Backdoor.BEACON
M.Malicious.SSL.Certificate.[CobaltStrike]
M.Malicious.SSL.Certificate.[146473198]

Malware Definitions

BEACON

BEACON is a backdoor written in C/C++ that is part of the Cobalt Strike framework. Supported backdoor commands include shell command
execution, file transfer, file execution, and file management. BEACON can also capture keystrokes and screenshots as well as act as a proxy
server. BEACON may also be tasked with harvesting system credentials, port scanning, and enumerating systems on a network. BEACON
communicates with a C2 server via HTTP or DNS.

FONELAUNCH

FONELAUNCH is a .NET-based loader that loads an encoded payload from registry into memory.

GOOTLOADER

GOOTLOADER is a JavaScript downloader that comes in an obfuscated form. It downloads another JavaScript file which drops and executes
the intended payload.

GOOTLOADER.POWERSHELL

GOOTLOADER.POWERSHELL is a variant of the GOOTLOADER downloader that was rewritten in PowerShell and retrieves payloads via
HTTP. Prior to obtaining the payload, the downloader collects specific victim host information, including current Windows OS version,
environment variables, list of files and running processes, and sends this information to one of ten hard-coded C2 URLs. We have observed
instances where several decoy URLs were distributed amongst the list of hard-coded C2s.

SNOWCONE

SNOWCONE is a family of downloaders that retrieve their next stage payloads via HTTP and have historically been observed to download
ICEDID.

Acknowledgements

Ng Choon Kiat, David Lindquist, Yash Gupta, Jonathan Lepore, Tufail Ahmed and Moritz Raabe

https://advantage.mandiant.com/malware/malware--448e822d-8496-5021-88cb-599062f74176
https://advantage.mandiant.com/malware/malware--19cefe8e-b3ce-5d17-a0c4-987d208b1305
https://advantage.mandiant.com/malware/malware--0c0760b0-976d-5331-82e9-bcee24040d39
https://advantage.mandiant.com/malware/malware--84ffef06-5aaa-5691-92f8-a6878809f52c
https://advantage.mandiant.com/malware/malware--5a482a36-511c-5031-8ee3-8f8bc4e76a25

