
1/3

Ilan Duhin January 26, 2023

Emotet Unpacking:. Writer: Ilan Duhin | by Ilan Duhin |
Jan, 2023

medium.com/@Ilandu/emotet-unpacking-35bbe2980cfb

Ilan Duhin

Jan 26

·

5 min read

Emotet Unpacking:

Writer: Ilan Duhin

Executive Summary:

Emotet is an advanced, self-propagating and modular Trojan. Emotet was once a banking
Trojan, but recently has been used as a downloader for other malware or malicious
campaigns. It uses multiple methods for maintaining persistence and Evasion techniques
like packing. In addition, it can be spread through phishing spam emails containing
malicious attachments or links.

https://medium.com/@Ilandu/emotet-unpacking-35bbe2980cfb
https://medium.com/@Ilandu?source=post_page-----35bbe2980cfb--------------------------------
https://medium.com/@Ilandu?source=post_page-----35bbe2980cfb--------------------------------

2/3

Emotet uses a number of malicious techniques when he locates on the victim’s computer
such as: allocating memory for process injection, and creating new processes/threads
to make persistence.

Starting with x32dbg & Running our sample until the Entry point.

We should now search for API call of VirtualAlloc (we saw earlier the allocation memory on
process hacker in the dynamic investigation).

So we need to search in the debugger (Ctrl + G)=VirtualAlloc and press OK so we can put
BP on her and see which arguments contain the original code.

When we get to the beginning of the function, our goal is to see the “ret” that describe the
end of the function so we can put BP.

To see the end we need to press Enter.

Now we put BP. To make sure that the BP is set we can look at Breakpoint tab.

Now Debug & Run + Step over (F8) the function (the debugger take now us to the original
code).

When we press step over we jump to the next function below. But if we scroll up one
function we see that the register edi store the VirtualAlloc function.

In situations like this when we found the call that contains our function we need to check the
arguments that it pushes into it for searching our MZ Header.

The two arguments we see between the “calls” that used by the function to push them into
her are: [esp+28] & [esp+2C].

Now we need to check there hex values of unpacked code by clicking “follow in dump”. The
first check is empty (we don’t see any clue about MZ Header).

Also the second one.

In this situation when we don’t find any hex values of unpacked code we need to Run +
Step over one more time to search for more functions call of VirtualAlloc so we can search
there if they have arguments that contain the original unpacked code.

So when we Run again we jumped to the ret 10 instruction again.

When we press (F8) — step over we jump into the function that calls ebp register that
contains VirtualAlloc function and a number of arguments we need to explore.

Similar to the first arguments, here we have another one: [edi+54].

3/3

Click “follow in dump” and let’s see the results. When we scroll up we see that the hex strings
looks like executable with description of “This program cannot run in DOS mode”, it is
perfect for us because every PE header starts like this. Now what is left to find out is
where the MZ.

Little bit scrolling up and we see the MZ Header that is probably the unpacked code!

In this stage of analysis (after finding the unpacked code) we should go to Memory map
TAB to locate the specific address that contains Execute permissions and dump her into
new file.

To do this, right click on the hex values table & “follow in memory map”.

Its automatically points us to the address that the malware doing it executable capabilities.

All we have left to do is dump the address of unpacked code into new file like I said earlier.

To do this, right click on memory address & “Dump memory to file”.

The most fun part for me in unpacking is when you drag the unpacked file into HxD and
clean all the beginning before the MZ.

First, we search the MZ string with Ctrl+F, when we locate him, we erase all strings before
him so we can save it into a cleaned PE File.

