
1/12

ANY.RUN January 26, 2023

CryptBot Infostealer: Malware Analysis
any.run/cybersecurity-blog/cryptbot-infostealer-malware-analysis/

HomeMalware Analysis
CryptBot Infostealer: Malware Analysis
We recently analyzed CryptBot, an infostealer detected by the ANY.RUN online malware sandbox.

Through our research, we collected information about MITRE ATT&CK techniques used by this malware. We also learned about how this
infostealer stores and encrypts its configuration information, and we wrote a Python script to extract the configuration.

Let’s go over the whole process step-by-step.

Brief description of CryptBot malware

CryptBot is an infostealer targeting Windows operation systems that was first discovered in the wild in 2019. It is designed to steal sensitive
information from infected computers, such as credentials for browsers, cryptocurrency wallets, browser cookies, credit card information, and
screenshots of the infected system. It is distributed through phishing emails and cracked software.

CryptBot malware

CryptBot dynamic analysis in a malware sandbox

During the analysis we’ll take a look at the sample:

https://any.run/cybersecurity-blog/cryptbot-infostealer-malware-analysis/
https://any.run/cybersecurity-blog/
https://any.run/cybersecurity-blog/category/malware-analysis/
https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_campaign=cryptbot&utm_content=landing

2/12

MD5: 12d20a973f8cd9c6373929ae14efe123
 URL: https://app.any.run/tasks/5c6e7021-f223-495c-a332-21ef1276e4cf

A single process (Fig. 1) is created when the malware starts, which actively uses the file system (15k+ events) and the registry (2k+ events).

Fig. 1 — CryptBot’s process

Ok, now that we got the basics out of the way, let’s break down this malware and list all of the techniques it uses. We’ll break sort the
information by technique as we go from here.

Credentials from password stores: credentials from web browsers (T1555.003)

CryptBot steals information from popular browsers — Chrome, Firefox, and Edge, as the “Actions looks like stealing of personal data”
indicator (Fig. 2) and “Reads browser cookies” indicators tell us:

Fig. 2 — CryptBot steals Firefox data
 To detect access to personal data stored in the browser, we can use the pseudo-signature:

process_name NOT (“chrome.exe”, ”firefox.exe”, “msedge.exe”, “opera.exe”)
AND
file_access (
%LOCALAPPDATA%\\MICROSOFT\\EDGE\\USER DATA*,
%APPDATA%\\Roaming\\Mozilla\\Firefox*,
%LOCALAPPDATA%\\Local\\Google\\Chrome\\User Data*
%LOCALAPPDATA%\\AppData\\Local\\Opera Software\\Opera Stable*
)

Software discovery (T1518)

CryptBot checks the presence of installed software in the system by going through the “Uninstall” registry tree (Fig. 3):

https://app.any.run/tasks/5c6e7021-f223-495c-a332-21ef1276e4cf?utm_source=anyrunblog&utm_medium=article&utm_campaign=cryptbot&utm_content=task

3/12

Fig. 3 — CryptBot searches for installed software
 To detect an attempt to access the list of installed software, we can use a pseudo-signature:

reg_key is (“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall”)
AND
operation read

System information discovery (T1082)

The malware collects system information, including operating system installation date, computer name, key, CPU information, and this
behavior triggers the corresponding indicators (Fig. 4):

Fig. 4 — CryptBot collects system information

It is possible to detect the collection of system configuration information by accessing certain registry keys. For example, reading the system
installation date can be detected by the following pseudo-signature:

reg_key is (“HKLM\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTVERSION”)
AND
reg_name is (“INSTALLDATE”)
AND
operation read

Application layer protocol: web protocols (T1071.001)

CryptBot sends the collected OS information and personal data to the control server, which we can see in multiple connection attempts (see
Figure 5):

4/12

Fig. 5 — CryptBot attempts to send data to the control server
 We can detect attempts to connect to the C2 server with the following pseudo-signature:

network connect
AND
(
domains are (“sginiv12[.]top” or “bytcox01[.]top”)
OR (ip == “23[.]217.138.108” and port==80)
)

Additionally, we investigated the content of the network stream and detected that the data is sent through the HTTP protocol, using a POST
request with an attached file (see Fig. 6). Having restarted the malware several times we found that the file name is most likely randomly
generated. However, the request is always sent to the “gate.php” page.

Fig. 6 — Malware sends information to the control server
Potentially malicious traffic is also detected in the results of the Suricata (see Fig. 7):

Fig. 7 — Potentially malicious traffic detected by the Suricata rules
Let’s create a pseudo-signature to detect CryptBot in the traffic:

network send
AND
http_verb is “POST” AND location is “gate.php”
AND
http_content includes (“form-data”, “name=\”files[]\””, “filename”)

5/12

Analyzing the contents of the transmitted file gives nothing of interest, since it is probably encrypted.

Data staged: local data staging (T1074.001)

1. Preventing re-runs

When we launch the malware for the first time in the “%APPDATA%” directory an empty directory-marker “0D445946B53E9551” is created
(Figure 8). This directory allows the Malicious software to determine whether it has been launched before. If the CryptBot is restarted, it will
stop working immediately.

Marker-directory 0D445946B53E9551

Fig. 8 — Marker-directory 0D445946B53E9551
 Let’s make a pseudo-signature to detect the creation of the marker directory:

action create_directory
AND
directory_name is (“^%APPDATA%\\[A-F0-9]{16}$”)

2. Storing collected data

6/12

Collected information is stored in temporary files in various formats (sqlite, binary, text) in the %TEMP% directory (Fig. 9):

Fig. 9 — Temporary files in the %TEMP% directory
 For example, in Fig. 10 we see the content of one of the created temporary files, where information about the stolen logins and passwords is

stored in Base64 format. Note that the data also includes a website to which each login-password pair corresponds:

Fig. 10 — The contents of the files with the collected information
 To detect the creation of temporary files with personal data, we can, for example, apply the following pseudo-signature:

process_name NOT (“chrome.exe”)
AND
file_create (“%TEMP*.tmp”)
AND
file_content includes (
username,
password
)

Indicator removal: file deletion (T1070.004)

When the malware is done running, it removes itself using CMD.EXE with a short delay to give the process time to finish and unblock the
executable file (Fig. 11):

Fig. 11 — The malware self-deletes
We can use the following pseudo-signature in the command line for detection:

process_name is (“cmd.exe”)
AND
command_line includes (“timeout”, “del”)

CryptBot dynamic analysis using a debugger

Static packer check

In general, it’s a best practice to check the file statically to figure out its type and if there’s a packer present, before conducting the dynamic
analysis. Once we do that with the DiE tool shows that the file is not packed (see fig.12):

7/12

Fig. 12 — Checking the malware

file statically to detect a packer
In this case, even though we didn’t find a packer during our static analysis, the dynamic analysis revealed that the malware uses a T1027.002
– software packing technique.

Obfuscated files or information: software packing (T1027.002)

By analyzing the memory of a running process using Process Hacker, we stumble upon an RWX region that is not normally found in
legitimate programs. The beginning of the dump of this region allows you to see the header of the PE file (see Fig. 13):

Fig. 13 — CryptBot’s memory dump of a running process
On further analysis we discovered that the header of the PE file is also the beginning of the shellcode (see Fig. 14), which recovers the
register value, gets the ImageBase and passes control to the EntryPoint:

8/12

Figure 14 — Disassembling the PE header
Using the x64dbg debugger we have determined that the executable memory region is allocated by the unpacker using the WinAPI’s
VirtualAlloc function. Next, the unpacker writes payload to it and decrypts it with an XOR operation (see Figure 15):

Fig. 15 — Decrypting payload using XOR
The key to decrypt the payload is in the “.rdata” section of the running executable:

Fig. 16 — Key to decrypt the payload
 Thus, we can see that despite the absence of features of the payload in the static analysis, using the dynamic one we have identified the

presence of a packer and determined the key and the encryption algorithm.

Writing YARA rules to detect CryptBot shellcode in memory

A YARA rule for detecting a CryptBot shellcode in OS memory could look like this:

9/12

rule CryptBot_ShellCode
{
meta:
 author = "Any.Run"
 SHA256 = "183f842ce161e8f0cce88d6451b59fb681ac86bd3221ab35bfd675cb42f056ac"
 date = "2023-01-19"
 description = "Detect CryptBot shellcode in memory"

strings:
 $shellcode = { 4D 5A 45 52 E8 00 00 00 00 58 83 E8 09 50 05 [4] FF D0 C3 }

condition:
 uint16(0) != 0x5A4D and
 uint16(0) > 0 and
 $shellcode in (0x20..0x50)
}

Static analysis and configuration decoding

Finding and deciphering the configuration

The static analysis of the payload code led us to the conclusion that the malware configuration is located in the “.data” section and encrypted
with an XOR operation. Moreover, the decryption key lies in plaintext just before the encrypted data (see Figure 17):

Fig. 17 — Key and encrypted configuration
 The configuration is easily decrypted using CyberChef and the key “PU7GX2MZtl” (see Fig. 18):

Figure 18 — CryptBot decrypted configuration
 From the decrypted configuration it becomes clear what information should be stolen by CryptBot. For example, the screenshot variable tells

the malware to take a screenshot, and ChromeExt — to steal data from Chrome extensions.

Automating configuration decryption

We have automated the CryptBot configuration extraction in Python and made the script public. You can always find it in our Git repo. The
result of the unpacked payload script is shown in Fig. 19:

https://github.com/anyrun/blog-scripts/blob/main/Extractors/CryptBot/CryptBot.py?utm_source=anyrunblog&utm_medium=article&utm_campaign=cryptbot&utm_content=script

10/12

Fig. 19 — The result of the configuration extraction script

Developing YARA Rules for detecting CryptBot configuration in memory

Some strings of the decrypted CryptBot configuration can be used as part of a YARA rule to detect it in memory:

rule CryptBot_Config {
meta:
 author = "Any.Run"
 SHA256 = "183f842ce161e8f0cce88d6451b59fb681ac86bd3221ab35bfd675cb42f056ac"
 date = "2022-01-19"
 description = "Detect CryptBot configuration in memory"
strings:
 $s1 = "CookiesEdge"
 $s2 = "ChromeDB<>_<>"
 $s3 = "EdgeDB<>_<>"
 $s4 = "ChromeExt<>_<>"
 $s5 = "HistoryChrome<>_<>"
 $s6 = "EdgeExt<>_<>"
 $s7 = "CookiesFirefox<>_<>"
 $s8 = "HistoryOpera<>_<>"
 $s9 = "CookiesOpera<>_<>"
 $s10 = "FirefoxDB<>_<>"
 $s11 = "CookiesChrome<>_<>"
 $s12 = "HistoryFirefox<>_<>"
 $s13 = "HistoryEdge<>_<>"
 $s14 = "DesktopFolder<>_<>"
 $s15 = "ChromeDBFolder<>_<>"
 $s16 = "ExternalDownload<>_<>"
 $s17 = "ScreenFile<>_<>"
 $s18 = "MessageAfterEnd<>_<>"
 $s19 = "HistoryFile<>_<>"
 $s20 = "FirefoxDBFolder<>_<>"
 $s21 = "PasswordFile<>_<>"
 $s22 = "WalletFolder<>_<>"
 $s23 = "DeleteAfterEnd<>_<>"
 $s24 = "EdgeDBFolder<>_<>"
 $s25 = "InfoFile<>_<>"
 $s26 = "CookiesFile<>"

condition:
 7 of them
}

11/12

Using ANY.RUN to efficiently analyze CryptBot

For your convenience, we have integrated automatic extraction of the CryptBot configuration into ANY.RUN interactive sandbox — just run
the sample and get all the IOCs in seconds (Fig. 20):

Fig. 20 – Automatic CryptBot configuration extraction in ANY.RUN sandbox

Conclusion

In this article, we looked into CryptBoT, its techniques and behavior when contained in the ANY.RUN sandbox. We also wrote a configuration
extractor that you can use to gather and interpret the data.

Fortunately, ANY.RUN is already set up to detect this malware automatically, making the relevant configuration details just a click away.

If you want to read more content like this, check out our analysis of the Raccoon Stealer, or Orcus RAT.

Appendix

Analyzed files

Title Description

Name 12d20a973f8cd9c6373929ae14efe123.exe

MD5 12d20a973f8cd9c6373929ae14efe123

SHA1 7f277f5f8f9c2831d40a2dc415566a089a820151

SHA256 183f842ce161e8f0cce88d6451b59fb681ac86bd3221ab35bfd675cb42f056ac

Extracted URLs

http://sginiv12[.]top/gate.php
http://bytcox01[.]top/gesell.dat

https://any.run/?utm_source=anyrunblog&utm_medium=article&utm_campaign=cryptbot&utm_content=landing
https://github.com/anyrun/blog-scripts/blob/main/Extractors/CryptBot/CryptBot.py?utm_source=anyrunblog&utm_medium=article&utm_campaign=cryptbot&utm_content=script
https://any.run/cybersecurity-blog/raccoon-stealer-v2-malware-analysis/
https://any.run/cybersecurity-blog/orcus-rat-malware-analysis/

12/12

MITRE (ARMATTACK)

Tactics Techniques Description

TA0005:
 defence evasion

T1070.004:
 Indicator Removal:

 File Deletion

Self-deleting
 after completion

 T1027.002:
 Obfuscated Files

 or Information:
 Software Packing

Malware is decrypted
 into memory before

 it starts working

TA0006:
 Credential access

T1555.003:
 Credentials from

 Web Browsers

Steals data from
 installed browsers

TA0007:
 Software discovery

T1518:
 Software Discovery

Searches for installed software
 in the system

 in the “Uninstall” key

 T1082:
 System Information

 Discovery

Collects system data

TA0009:
 Collection

T1113:
 Screen capture

Has an option to take
 a configuration screenshot

 T1074:
 Data Staged

Saving of gathered data
in a temporary directory

 before sending;
 prevention of relaunch

TA0011:
 Command and Control

T1071:
 Application Layer

 Protocol

Sending collected data
to the control server

malware analysis
What do you think about this post?

16 answers

Awful
Average
Great

No votes so far! Be the first to rate this post.

1 comments

https://any.run/cybersecurity-blog/tag/malware-analysis/

