
1/17

Eli Salem January 16, 2023

Dancing With Shellcodes: Analyzing Rhadamanthys
Stealer

elis531989.medium.com/dancing-with-shellcodes-analyzing-rhadamanthys-stealer-3c4986966a88

Eli Salem

Jan 16

·

20 min read

Threat Background

Rhadamanthys is a newly emerged Information-Stealer that is written in C++. according to
multiple reports[1] the malware has been active since late 2022.

 In addition, the malware appears to masquerade itself as legitimate software such as
AnyDesk installers[2], and Google Ads[3][13] to get the initial foothold.

As for usage, in the dark web, the malware authors offer various deals for using the malware
such as monthly or even lifetime payments.

Rhadamanthys
Also, the authors emphasize the malware's capabilities ranging from stealing digital coins,
and system information collection, to execution of other processes such as Powershell.

In this article, I will investigate the Rhadamanthys stealer and reverse engineer the entire
chain, from the first dropper to the malware itself.

https://elis531989.medium.com/dancing-with-shellcodes-analyzing-rhadamanthys-stealer-3c4986966a88
https://elis531989.medium.com/?source=post_page-----3c4986966a88--------------------------------
https://elis531989.medium.com/?source=post_page-----3c4986966a88--------------------------------


2/17

As always, I will do it in a hybrid step-by-step tutorial and an actual presentation and will
focus on the parts that I personally find more interesting(the ways the malware tries to evade
detection).

1. 
2. 
3. 

The Dropper

File hash: 89ec4405e9b2cab987f2e4f7e4b1666e

The dropper
The Rhadamanthys’s dropper is a 32-bit file and similar to many droppers, it has relatively
large entropy which indicates potentially packed content inside of it.

One of the relatively new features of PEstudio is the ability to check if the ASLR[4] feature is
enabled. In my analysis, I always prefer to disable the ASLR so the addresses in IDA and in
XDBG will be the same for tracking purposes.

In PEstudio, go to “optional-header” and then to the ASLR bar, then you can see under the
“detail” column if it is false (disabled) or true (enabled).

Check ASLR

Unpacking mechanism: getting to the first shellcode

As we observe the dropper in IDA, we see a large embedded “blob” in the .rdata section.
Usually, these kinds of blobs can potentially contain data that will be decrypted during
runtime.

Blob
The first activity the dropper do is to create a new heap

Creating new heap
Then, the function sub_408028 will be the core function that will deal with encrypting the
blob. Inside sub_408028, there are two interesting functions:

1. - this function is responsible for returning an address containing the data to be written.
2. - a wrapper of memcpy

In the first iteration, the embedded blob will be written into the newly created heap

Decrypting the shellcode
Next, the same function will override the blob and will decrypt a shellcode.



3/17

Decrypting the shellcode
Then, a call to VirtualAlloc will happen to create a newly allocated memory followed by
memcpy to copy the shellcode from the heap to the new memory. Lastly, a VirtualProtect API
call will be used to change the permission of the memory segment to RWX.

Decrypting the shellcode
The entire chain can also be seen in the following pseudo-code of IDA pro:

Decrypting the shellcode
The next thing we’ll do is go to the address 004065A1 in the WinMain function (remember,
ASLR is disabled so we can navigate easily in IDA and the debugger).

We could see that the value of the shellcode (that is dynamically located in the EAX register)
is being transferred to another offset variable 42F6F0.

Assign the shellcode address

Shellcode execution via Callback

After having a shellcode with EXECUTE permission, we need a way to execute it, in this
case, the authors choose a cool trick in form of a Callback function.

The shellcode execution will go as the following:

1. The function is responsible to invoke the API call
2. receives as a parameter function named which is just a wrapper for another function

that jumps to the shellcode address
3. The final result is that will get the address of the shellcode in its second argument “lpfn”

and will execute it.

ImmEnumInputcontext function in Microsoft documentation
The logic can be seen in the following pseudo-code

Shellcode execution
The reason for choosing this way is most likely to evade anti-virus products that rely on
CreateThread \ CreateRemoteThread as a trigger point to scan addresses that may contain
malicious content.

Shellcode entry point

Investigating the first shellcode

To investigate the shellcode we can choose one of the two:

1. Dump the entire allocated buffer and run it in Blobrunner[5]



4/17

2. Continue with the code dynamically (because why not?)

To investigate it statically, we obviously must dump the shellcode, to do it do the following:

1. Right click on the address of the shellcode and click “Follow in Memory Map”

Going to the memory map
2. Then, in the memory map, right click on the shellcode address and then “Dump Memory to
File”

Dumping the shellcode
Then, drag and drop the dumped file in IDA.

To summarize the steps until now see the following graph

Fixing the shellcode: Defining functions

After the shellcode was loaded, we can see 5 functions that appear in the Function name
bar. In addition, in the navigation bar, we can see the colors blue and brown.

According to the IDA website[6] blue means “Regular functions, i.e. functions not recognized
by FLIRT or Lumina.”

 And brown means “Instructions(code) not belonging to any functions. These could appear
when IDA did not detect or misdetected function boundaries, or hint at code obfuscation
being employed which could prevent proper function creation. It could also be data
incorrectly being treated as code.”

And when we look at an area in the IDA view that contains both we see the following:

Defining functions
We can obviously see that the brown color is a legit code, however, IDA doesn't consider it
as a code and therefore does not show it as a function.

To fix this, we can just scroll and observe statically from where this function starts and when
it ends.

 In our case, it starts at the address 000029E, we also see the prologue:
 push ebp mov ebp, esp

 And ends at the address 000036B with the epilogue: 
 leaveretrn

Defining functions
Now that we know the function boundaries, we can mark it all, and click “P”

Defining functions



5/17

Then, we can see that the brown code is now considered a function, and a new function
sub_29E was added to the function name bar.

Defining functions
NOTE: When fixing functions do not assume that the first “retrn” is the end of a function, pay
attention to the jumps that might bypass this return and might indicate a longer function.

Fixing the shellcode: Defining code

In addition to the convenient scenario of a code that looks like code and just doesn't interpret
as a function, we have a more tricky scenario when we need to change the data itself.

At the beginning of the shellcode, we can see dynamically the assembly code “call 450028”
that suppose to take us to the address in 450028 which starts with “pop eax” and eventually
calls to the function in the address 45029E which in our case called sub_29E.

 However, as we can see, statically we just see jibberish and it does not look like the dynamic
view.

Defining as code
To fix it, we need to tell IDA that some specific addresses are actual code.

 For example: in the dynamic view, we can see that the first 5 bytes are:
 Call 450028

Therefore, we should tell IDA that the first 5 bytes are code, then, we can tell IDA to look at it
as a function.

 To do it, do the following:

1. Mark the data
2. Right click
3. Click on “Undefine”

Defining as code
Then, mark the 5 bytes and tell IDA to look at it as Code.

Defining as code
Defining as code
After doing it, we can see that the same data looks like the code from the debugger view

Defining as code
And as said, we can always turn it into a function of its own (because why not?)

Defining as function



6/17

As we see, the function jumps to the address at “loc_28” (IDA) or “450028” (debugger),
however in IDA this content also needs to be fixed. Combining the two approaches of
defining as code and defining as function can fix will do the trick.

Defining as code and defining as function
After doing that, we now have 8 functions in the function name bar.

Function bar

Fixing the shellcode: Rebase the address

The last thing we need to do if we want to properly analyze the shellcode alongside the
debugger is to match the addresses. To do it do the following:

1. Go to Edit
2. Segments
3. Rebase program

Rebase
4. Change the value to the value of the actual entry point of the shellcode in the debugger

5. Click OK

Rebase
And now we can see that the addresses statically and dynamically the same

Rebase
Finally, we can start and actually analyze the shellcode

Shellcode functionality

The first thing we can see is that the actual code in shellcode is very small, there are 8\9
functions, and the rest is a big chunk of data. From this, we can assume that the shellcode
will potentially use that data.

So let's “go with the flow” and understand this shellcode

1. just jumps to
2. jump jumps to

sub_45029E is a larger function that contains multiple functions.

Shellcode functionality
sub_450249This function access the Process Environment Block to get the address of
Kernel32.dll. This behavior is traditional and happens in many shellcodes.



7/17

Get kernel32 address
sub_45036EThis function gets 3 arguments

1. Kernel32 address
2. Hashes
3. An array that holds 4 functions

It then iterates through the kernel32 export functions and sends the names of the functions to
another function named sub_45040C. The only job of sub_45040C is to hash the function
name it receives and return the hash.

Hashing function
Then, sub_45036E checks if the hashed function name matches the hash it got as an
argument, if yes, it puts it in the array and sends it back tosub_45029E.

 Overall the functions will be “VirtualAlloc, LocalFree, LocalAlloc, VirtualFree”

sub_450077
 This function will decrypt the large data that is stored in our shellcode, and write it to the

LocalAlloc we saw. This beginning of the decrypted data will look like this

Decrypting data
Next, in the address 00450314, we can see the call for VirtualAlloc, don't forget to observe
the allocated memory using follow in dump of the EAX register (in my case it's 00470000).

shellcode functionality
sub_45003A

 This function will happen several times and it is basically a memcpy that copies data from
one variable to the other.

copy function
sub_45003A will get the decrypted content and our newly allocated memory as arguments
and will copy the data to it.

copied data
And finally, in the address 00450365, we have a “call ebx” that will take us into this our
allocated memory in the offset 5BAB, and as we can see, it's also another shellcode.

Jump to another shellcode

Summarize the first shellcode

To summarize the entire shellcode activity, we can look at it from a code point of view

Shellcode functionality
And from the following graph's point of view



8/17

Second shellcode decryption

The second shellcode aka Rhadamanthys loader

The main objective of this shellcode is to be the actual loader of the Rhadamanthys stealer.
This shellcode has multiple evasion capabilities and we will observe some of them.

Note- In a similar way to the first shellcode, some fixes are needed.

Evasion Technique: Multiple Anti-Analysis

The Rhadamanthys loader contains large anti-analysis checks stolen from the al-khaser
project[7]. This project was also used in the Bumblebee malware.

Some of the checks are checking for a virtual environment

Anti-analysis checks
Anti-analysis checks
Checks for specific users that could hint about a lab environment

Anti-analysis checks
Check for security-related DLLs

Anti-analysis checks
At this point, it will be useless to continue writing the anti-analysis capabilities, so for those
who want to see all, please visit the al-khaser project GitHub page.

Evasion Technique: Manipulate Exception Handling

One of the most interesting capabilities of the Rhadamanthys loader is exception-handling
manipulation.

What is Exception handling?

According to Microsoft’s documentation[9]: “Structured exception handling (SEH) is a
Microsoft extension to C and C++ to handle certain exceptional code situations, such as
hardware faults, gracefully.”

The SEH is basically a linked list that has two pointers:

1. A pointer to the next SEH record
2. A pointer to the function that contains the code to deal with the error

Examples of errors are division by 0, and excessive string length.



9/17

Microsoft allows programmers to create their own exception handlers in order to manage
errors by themselves.

How the loader uses it?

First, the loader gets the address of ZwQueryInformationProcess, then it saves it on another
variable. Eventually, we enter the function named sub_5978.

Getting ZwQueryInformationProcess
In sub_5978, the loader gets the address of KiUserExceptionDispatcher and starts to iterate
on it to search for a specific location where ZwQueryInformationProcess is called.

Iterating in
In sub_5A5C the loader set the hook in the desired location of the call to
ZwQueryInformationProcess

Patch
So how the change looks like?

In the following image, we can see the call to ZwQueryInformationProcess that happens
inside KiUserExceptionDispatcher from Ntdll as part of KiUserExceptionDispatcher's
legitimate behavior.

After the change, we can see that the call was replaced to jump to a function in the loader
that will perform the ZwQueryInformationProcess and will modify the ProcessInformation flag
to be 6D or MEM_EXECUTE_OPTION_IMAGE_DISPATCH_ENABLE.

Why does this flag matters?

This flag determines whether to allow execution outside the memory space of the loaded
module. In other words, it enables exception handling to be performed on shellcode.

So how the exception handling will be managed?

Without being noticed, the initial dropper has registered an SEH record in the process
memory with the name _except_handler3. Therefore, every exception that will be triggered
by the shellcode will go there and will be managed by whatever logic the author decided.

This activity is most likely done to avoid raising suspicions if errors or exceptions anomalies
will trigger.

The entire activity can be seen in the following graph

Manipulating the SEH

Evasion Technique: Avoiding error message



10/17

After controlling the exceptions, the loader will use the API call SetErrorMode with 0x8003 as
an argument, this argument consists of the following three:

1. - The system does not display the critical-error-handler message box. Instead, the
system sends the error to the calling process.

2. — The system does not display the Windows Error Reporting dialog.
3. — The OpenFile function does not display a message box when it fails to find a file.

Instead, the error is returned to the caller.

In other words, the loader doesn't want the system to display any error on the screen, and
wants to handle them by himself.

Similar to controlling the exception handling, this is another maneuver of the loader to not
raise any suspicions.

setErrorMode

Evasion Technique: Creating Mutex and impersonating a legitimate

The loader continues with creating a Mutex with the name that starts with
“Global\MSCTF.Asm.{digits}”.

Creating Mutex
Note that mutexes with this name are already found in the OS and are created by MSCTF.dll,
and more info can be found in this[10] article.

After creating the Mutex, we moved to a function named sub_2B92 which holds the core
activity and the main purpose of the loader.

Evasion Technique: Disabling hooks

In the function named sub_8060, we see one of the cool tricks of malware to protect
themselves against user mode hooking.

It first gets a handle to ntdll.dll and loads it to virtual memory, then, the loader gets the handle
of the real ntdll.dll that is already loaded.

Check for hooks
It will then copy the bytes of the SYSCALL of ZwProtectVirtualMemory into another virtual
memory in order to use it without explicitly using the ZwProtectVirtualMemory in ntdll address
space.



11/17

Then, it will get the export table of both real and fake modules and will iterate on them. They
will be compared using memcmp, and if they will found different, the loader will change the
protection of the real function of ntdll and will use memcpy to copy the data from the fake to
the real one. In this way, the malware verifies that no hooks are set.

Check for hooks
If we inspect it dynamically, this is a normal state when two functions are compared. We can
see that the virtual address is different but the bytes are the same

Check for hooks
For learning purposes, I changed the first byte of the real function to start with E9. Then, the
loader took us to the memcpy function that copied the data from the fake to the real to
correct the change I made.

Disable hooks
Except for ntdll.dll, the loader will check the following DLLs:

1. 
2. 
3. 

Check for hooks in other DLLs
The entire activity can be seen in the following graph (Was lazy so I just copy paste this from
my previous blob)

Check for hooks logic

Config Decryption

The config decryption occurs in a function named sub_3DD4, which is a function that will do
various activities that the main loader activity requires.

In sub_3DD4 we have two functions that will deal with the config decryption: sub_28AA and
sub_2911.

sub_28AA

This function is basically just an RC4 algorithm

Config decryption
sub_2911

This function is also part of the decryption algorithm

Config decryption



12/17

When we step over sub_2911 dynamically, we can see the data that hold the encrypted
config at the third argument (address 42F6F8 in my case).

Config decryption
In our case, we can see that the C2 will be http://185[.]209.160.99/blob/top.mp4

Network

To start the network activity, the loader first collects two key pieces of information from the
machine:

1. The default language using
2. The Locale using

Then, the same function will start to set the user-agent to send the data to the C2 which is
the decrypted config we saw.

Collect information about the machine
Set the User-Agent
To communicate, the loader dynamically resolves multiple functions such as socket,
WSAIotcl, and CreateCompletionPort to use the IOCP socket model.

Network activity
The loader uses WSAIoctl to invoke a handler for LPFN_CONNECTEX to use the
ConnectEx function.

Getting ConnectEx
Eventually, the loader communicates with the APIs WSARecv & WSASend.

Send & Recieve data
If we want to observe dynamically the data that is sent to the C2, do the following:

1. Set a breakpoint at the address where is being executed
2. Follow in dump the address of the second parameter aka
3. This buffer is a structure, and its second parameter is a pointer to the actual buffer that

is sent to the C2.
4. To see it, just follow in dump

Observing data send to the C2
Observing data send to the C2

Loader’s goal

After performing its various capabilities and tricks, the loader will execute its main goal.



13/17

1. The loader will download a DLL from the C2
2. Write it to the disk with the name of
3. Spawn to execute the DLL with the export function “” which is a name of a legitimate

export function of the printui.dll.

Loader goal

NSIS Module: The Rhadamanthys stealer

The Nsis module consists of two parts:

1. A loader (the Nsis module before unpacking)
2. The actual stealer

NSIS Loader

The loader is executed via a very long command that changed in every iteration

Nsis module command
The interesting thing about the NSIS loader is that there are many loaders out there, but their
detection rate is very low!

Nsis loader low detection rate
For the loader behavior, the NSIS loader just allocates data using LocalAlloc and copies it to
mapped memory using MapViewOfFile and memmove. Eventually, it will jump to the
shellcode address.

Loader main goal
Due to time constraints, I will not display this shellcode, however, it is just a small shellcode
that unpacks and inject into the memory the Rhadamanthys stealer itself.

Rhadamanthys stealer capabilities

Finally, we arrived at the stealer himself!!!

Disclaimer: because of not abling to dynamically analyze the sample when the C2 was on, I
only got the stealer from the following tria.ge sandbox link[11].

Also, for this part, I will only focus on the stealing capabilities and its targets.

Stealing KeePass passwords

The malware appears to be able to use the DLL KeePassHax[12], an open-source tool used
to decrypt the password database.



14/17

Keepass

Usage of SQLite

The malware can collect and extract data using SQLite

Sqlite

Target multiple browsers

The malware target the following browsers in their info-stealing activity:

1. Coc CoC
2. Pale Moon
3. Sleipnir5
4. Opera
5. Chrome
6. Twinkstar
7. Firefox
8. Edge

Browsers

Target OpenVPN

The malware appears to get the profile, username, and password of OpenVPN.

OpenVPN

Target steam accounts

The malware appears to aim at Steam’s config\loginusers.vdf which contains information
about Steam’s users.

Valve

Target FileZilla passwords

The malware search for FileZila’s specific files:

1. recentservers.xml
2. sitemanager.xml

These two files contain the passwords and other data of the FTP accounts.



15/17

FileZilla

Target CoreFTP

CoreFTP

Target Discord

The malware collects information from the discord directories, possibly to extract further
data.

Discord

Collecting Telegram data

The malware targets Telegram desktop data which is located in encrypted files (such as
D877F783D5D3EF8) in the “tdata” directory.

Telegram

Collecting information from various email

The malware target the following email clients:

1. Foxmail
2. Outlook
3. The BAT

Emails

Extracting web credentials using Vaultcli functions

Vault activity

Target WinSCP

The malware target sensitive registry keys of the WinSCP in order to collect information.

WinSCP

Target CryptoCurrency entities

The malware target the following cryptocurrencies entities and wallets:

1. Dogecoin



16/17

2. Litecoin
3. Monero
4. Qtum
5. Armory
6. Bytecoin
7. Binance
8. Electron
9. Solar waller

10. Zap
11. WalletWasabi
12. Zcash
13. Ronin
14. Avana
15. OKX

Crypto
Querying registry keys for digital coming entities from Joe[

Resolving APIs dynamically

The stealer is resolving dynamically his APIs using the GetModuleHandle and
GetProcAddress API calls.

Dynamic resolving

Evasion technique: Modify and possibly manipulate AVAST modules

The stealer uses the same code that was used in the loader to verify and unhook functions
and the same function appears to aim for the AVAST-related modules aswhook.dll &
aswAMSI.dll.

Check AVAST’s AMSI-related DLLs
More amsi-related functions and DLLs that are being targeted by the stealer are:

1. avamsicli.dll
2. amsi.dll
3. AmsiScanString
4. AmsiScanBuffer
5. EtwEventWrite

At this stage, I decided to stop my analysis

For everyone's convenience, I also uploaded all the files from my analysis including the
shellcodes to VirusTotal.



17/17

Rhadamanthys files

https://www.virustotal.com/gui/file/8384322d609d7f26c6dc243422ecec3d40b30f29421210e7
fba448e375a134f6

References

[1] https://threatmon.io/rhadamanthys-stealer-analysis-threatmon/

[2] https://mobile.twitter.com/JAMESWT_MHT/status/1610620178441568261

[3] https://mobile.twitter.com/1ZRR4H/status/1610590795278712832

[4] https://en.wikipedia.org/wiki/Address_space_layout_randomization

[5] https://github.com/OALabs/BlobRunner

[6] https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/

[7] https://github.com/LordNoteworthy/al-khaser

[8] https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-
trickbot-connection-686379311056

[9] https://learn.microsoft.com/en-us/cpp/cpp/structured-exception-handling-c-cpp?
view=msvc-170

[10] https://www.hexacorn.com/blog/2018/12/25/enter-sandbox-part-22-ctf-capturing-the-
false-positive-artifacts/

[11] https://tria.ge/221227-vprhbsae8t/behavioral2#report

[12] https://github.com/HoLLy-HaCKeR/KeePassHax

[13] https://twitter.com/1ZRR4H/status/1614728368334716932

[14] https://www.joesandbox.com/analysis/783578/0/html#

[15] https://blog.cyble.com/2023/01/12/rhadamanthys-new-stealer-spreading-through-google-
ads/

https://www.virustotal.com/gui/file/8384322d609d7f26c6dc243422ecec3d40b30f29421210e7fba448e375a134f6
https://threatmon.io/rhadamanthys-stealer-analysis-threatmon/
https://mobile.twitter.com/JAMESWT_MHT/status/1610620178441568261
https://mobile.twitter.com/1ZRR4H/status/1610590795278712832
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/OALabs/BlobRunner
https://hex-rays.com/blog/igors-tip-of-the-week-49-navigation-band/
https://github.com/LordNoteworthy/al-khaser
https://elis531989.medium.com/the-chronicles-of-bumblebee-the-hook-the-bee-and-the-trickbot-connection-686379311056
https://learn.microsoft.com/en-us/cpp/cpp/structured-exception-handling-c-cpp?view=msvc-170
https://www.hexacorn.com/blog/2018/12/25/enter-sandbox-part-22-ctf-capturing-the-false-positive-artifacts/
https://tria.ge/221227-vprhbsae8t/behavioral2#report
https://github.com/HoLLy-HaCKeR/KeePassHax
https://twitter.com/1ZRR4H/status/1614728368334716932
https://www.joesandbox.com/analysis/783578/0/html#
https://blog.cyble.com/2023/01/12/rhadamanthys-new-stealer-spreading-through-google-ads/

