
1/13

Getting Rusty and Stringy with Luna Ransomware
nikhilh-20.github.io/blog/luna_ransomware/

Metadata

SHA256: 1cbbf108f44c8f4babde546d26425ca5340dccf878d306b90eb0fbec2f83ab51
VT download link

Table of Contents

Family Introduction

The Luna ransomware appeared in July 2022. Unlike its competitors, this threat targeted
VMware ESXi instances from the day it started operating.

Rust Strings

In my experience as a malware analyst, I’ve been used to seeing ASCII and null-terminated
strings in binaries. I was content writing IDAPython scripts where I created strings by
searching for ASCII and null characters. And one fine day, I had a Rust binary on my plate
which broke my scripts. I interviewed the Rust God about strings. Here’s how it went:

https://nikhilh-20.github.io/blog/luna_ransomware/
https://www.virustotal.com/gui/file/1cbbf108f44c8f4babde546d26425ca5340dccf878d306b90eb0fbec2f83ab51

2/13

Fig. 1: Rust Strings

String Slice: &str

3/13

String slice is the term for &str type of strings. These kinds of strings may exist in the binary
or on the stack or heap. They always reference UTF-8 characters and are immutable. Let’s
consider this simple Rust program:

fn main() {
 let str1: &str = "Hello World!\n";
}

Fig. 2 shows a snap of the disassembly as seen in IDA Home 7.7:

Fig. 2: String Slice

String slices are essentially a data structure containing the address of the slice and its
length. Such structures are also called fat pointers because they contain extra data besides
just the memory address. Consider the following Rust program which prints the size (in
bytes) of the &str type:

use std::mem::size_of;

fn main() {
 println!("A &str size in bytes: {}", size_of::<&str>());
}

On execution, it prints:

A &str size in bytes: 16

My system architecture is x64, so the size of &str, a fat pointer, is 16 bytes. The first 8 bytes
is the memory address of the actual string literal and the next 8 bytes represents the length
of that string literal. The following structure represents a string slice:

4/13

struct string_slice
{
 _QWORD val;
 _QWORD len;
};

IDA detects the above structure as core::fmt::ArgumentV1 and is defined as:

struct core::fmt::ArgumentV1
{
 core::fmt::_extern_0}::Opaque *value;
 core::result::Result<(),core::fmt::Error> (*formatter)
(core::fmt::_extern_0}::Opaque *, core::fmt::Formatter *);
};

Although IDA’s structure is of the correct size (16 bytes), it is not particularly readable. So, I
replaced it with my structure definition for better readability. Fig. 3 shows it in action.

Fig. 3: String Slice IDA Structure

String

The next string type in Rust is String. These kinds of strings are allocated only on the heap
and they are mutable.

String is also a data structure. It contains the address of the slice, its length on the heap
and also the capacity of the heap region. Consider the following Rust program which prints
the size (in bytes) of the String type:

5/13

use std::mem::size_of;

fn main() {
 println!("A String size in bytes: {}", size_of::<String>());
}

On execution, it prints:

A String size in bytes: 24

My system architecture is x64, so the size of String is 24 bytes. The first 8 bytes is the
memory address of the string slice; the next 8 bytes represents the length of that string literal
and the last 8 bytes is the capacity of the memory region in the heap. The capacity signifies
the maximum number of bytes that the string can hold. If a longer string is required, then
reallocation occurs on the heap. The following structure represents a String:

struct String
{
 _QWORD val;
 _QWORD len;
 _QWORD cap;
};

For example, a String may be allocated on the heap having the following structure field
values:

val = "Hello!"
len = 6
cap = 10

IDA detects the above structure as alloc::string::String and is defined as:

struct alloc::string::String
{
 alloc::vec::Vec<u8,alloc::alloc::Global> vec;
};

Let’s consider this simple Rust program:

fn main() {
 let str1: String = String::from("Hello World! 🙏\n");
}

Fig. 4 shows a snap of the disassembly as seen in IDA Home 7.7. Here, v1 is the String
variable.

6/13

Fig. 4: String IDA Structure

Fig 5. shows a snap of the UTF-8 encoding of the string literal:

Fig. 5: String UTF-8 Encoding

Rust Strings Print

It can be seen in Fig. 4 that there is no null character after the Hello World! 🙏\n string.
This can make reading strings in IDA decompilation difficult as seen in Fig. 2 where the next
string has polluted the decompilation. I wrote an IDAPython script which prints Unicode
strings found in a Rust-based binary. I’ve been unable to find an IDAPython function which
can create UTF-8 strings.

Luna Strings

Using the IDAPython script, I found interesting strings.

https://nikhilh-20.github.io/blog/luna_ransomware/scripts/rust_strings_print_ida.py

7/13

Fig. 6: String UTF-8 Encoding

8/13

Luna
.ini
.exe
.dll
.lnk
Error while writing encrypted data to:
Error while writing public key to:
Error while writing extension to:
Error while renaming file:
W1dIQVQgSEFQUEVORUQ/XQ0KDQpBbGwgeW91ciBmaWxlcyB3ZXJlIG1vdmVkIHRvIHNlY3VyZSBzdG9yYWdlL
g0KTm9ib2R5IGNhbiBoZWxwIHlvdSwgZXhjZXB0IHVzLg0KV2UgaGF2ZSBwcml2YXRlIGtleSwgd2UgaGF2ZS
B5b3VyIGJsYWNrIHNoaXQuDQpXZSBhcmUgc3Ryb25nbHkgYWR2aWNlIHlvdSB0byBiZSBpbnRlcmVzdGVkIGl
uIHNhZmV0eSBvZiB5b3VyIGZpbGVzLCBhcyB3ZSBjYW4gc2hvdyB5b3VyIHJlYWwgZmFjZS4NCg0KW1dIQVQg
RE8gV0UgTkVFRD9dDQoNCkFkbWlzc2lvbiwgcmVzcGVjdCBhbmQgbW9uZXkuDQpZb3VyIGluZm9ybWF0aW9uI
GNvc3RzIG1vbmV5Lg0KDQpbV0hPIEFSRSBXRT9dDQpBIGxpdHRsZSB0ZWFtIG9mIHBlb3BsZSB3aG8gY2FuIH
Nob3cgeW91ciBwcm9ibGVtcy4NCg0KW0hPVyBUTyBSRUFDSCBBTiBBR1JFRU1FTlQgV0lUSCBZT1U/XQ0KDQp
TZW5kIHVzIGEgbWVzc2FnZSB3aXRoIHRob3NlIGUtbWFpbHM6DQoJZ2l2ZWZpc2h0b2FtYW42NjZAcHJvdG9u
bWFpbC5jb20NCglnaXZlaG9va3RvYW1hbjY2NkBwcm90b25tYWlsLmNvbQ0KDQogICA
Error while writing note
AES-NI not supported on this architecture. If you are using the MSVC toolchain, this
is because the AES-NI method's have not been ported, yet
Invalid AES key size.
host unreachable
connection reset
/proc/self/exe
openserver
windows
program files
recycle.bin
programdata
appdata
all users
Encrypting file:
How to use:
-file /home/user/Desktop/file.txt (Encrypts file.txt in /home/user/Desktop
directory)
-dir /home/user/Desktop/ (Encrypts /home/user/Desktop/ directory)

The base64-encoded string decodes to the ransom note:

9/13

[WHAT HAPPENED?]

All your files were moved to secure storage.
Nobody can help you, except us.
We have private key, we have your black shit.
We are strongly advice you to be interested in safety of your files, as we can show
your real face.

[WHAT DO WE NEED?]

Admission, respect and money.
Your information costs money.

[WHO ARE WE?]
A little team of people who can show your problems.

[HOW TO REACH AN AGREEMENT WITH YOU?]

Send us a message with those e-mails:
givefishtoaman666@protonmail.com
givehooktoaman666@protonmail.com

IDA Land

When analyzing Rust binaries, there are some notes to keep in mind:

Unlike C or C++-based binaries, it is not easy to navigate Rust-based binaries in a top-
down approach, i.e. start at the top and analyze your way down. This is because Rust
adds a bunch of runtime code (error handling, memory-safe management, etc.) that
pollutes the disassembly.
Within the same Rust binary, there can exist multiple calling conventions.
IDA (atleast Home 7.7) may not have the capability to identify Rust library functions, so
they are all marked as regular functions. You might end up analyzing code for 2 hours
that ends up being runtime or library code.

The previous IDAPython script comes in handy to identify points from where you can start
analysis. I could navigate to the string location in the .rodata segment, cross-reference to
the source which loads that string and then analyze that piece of code rather than starting at
the top. I started my analysis with the code that references the base64-encoded string of the
ransom note. I hoped this would position me in the neighborhood of the code that does the
encryption.

Writing Ransom Note

As mentioned before, the binary contains the base64-encoded form of the ransom note. It
decodes it and then writes it into a file named readme-Luna.txt.

10/13

Fig. 7: Luna Ransom Note

Skips Files and Directories

Luna doesn’t encrypt files which have:

substring Luna in their filenames
one of the following extensions:

.dll

.exe

.lnk

.ini

Luna doesn’t encrypt files under directories which contain one of the following substrings:

openserver

windows

program files

recycle.bin

programdata

appdata

all users

Encryption Scheme

Luna employs an encryption scheme that is commonly found in the ransomware world. It
leverages both asymmetric and symmetric cryptography, i.e., the key for the symmetric
cryptography is derived is from asymmetric cryptography. It uses curve25519-dalek package
for Elliptic-Curve Cryptography (ECC) and crypto::aes module for AES-256 CTR-mode
cryptography.

https://github.com/dalek-cryptography/curve25519-dalek
https://docs.rs/rust-crypto/latest/crypto/aes/index.html

11/13

Luna’s encryption scheme can be summarized as follows:

It generates a public and private key on Curve25519.
The binary also contains the threat actor’s Curve25519 public key. Using the generated
private key and the threat actor’s public key, the sample derives the 32-byte shared
secret.
The shared secret is used as the key for AES-256 CTR-mode. The IV is a string slice
(a 16-byte fat pointer) pointing to a string literal, Luna.

Both the shared secret and the generated public key are zero’d in memory to prevent data
leak. As I was writing this, I remembered Javier Yuste’s Avaddon ransomware decryption tool
which relied on key information being available in memory. Perhaps, zero’ing key information
in memory is Luna’s safeguard against such decryption tools.

File Encryption

Luna encrypts 50,000 bytes of plaintext file contents at a time. Since AES is in CTR mode,
i.e., a stream cipher, the output ciphertext size is equal to the input plaintext size.

For the threat actor’s decryption tool to work, the ransomware binary has to store encryption-
related information in the encrypted file. In this case, the threat actor would need two points
of information per encrypted file:

Curve25519 32-byte public key generated by the binary to calculate the shared secret
used to encrypt the file.
The IV value used by AES-256 CTR-mode encryption. To this end, the Luna binary
stores the previously generated Curve25519 32-byte public key and the IV string literal,
Luna to the end of the encrypted file.

Each encrypted file is given the extension, .Luna.

Peculiarities

Capability Peculiarities

When I hear of ransomware targeting VMware ESXi, I usually come across capability in the
binary to shut down running VMs. This helps in clean encryption of files. However, Luna
doesn’t seem to contain any such capability which may result in encrypted files being
corrupted and incapable of being recovered.

Execution Peculiarities

I was wrapping up this article when I noticed a few peculiarities in Luna’s execution.

https://github.com/JavierYuste/AvaddonDecryptor

12/13

Fig. 8: Execution Peculiarities

Summary

In this article, we looked at a sample of Luna ransomware.

13/13

It used an encryption scheme of Curve25519 (asymmetric cryptography) and AES-256
CTR-mode (symmetric cryptography).
Unlike popular ransomware families like BlackBasta and BlackCat, Luna doesn’t use
intermittent encryption strategies and encrypts the entire file.
Curve25519 public key and AES-256 IV values are stored at the end of the encrypted
file.
Like most ransomware families, certain files and directories are not encrypted.
I also introduced you to strings in Rust. I presented an IDAPython script that prints
UTF-8 strings found in the .rodata segment of a Rust-based binary. These results
gave a start point for our analysis.
Finally, we looked at a few peculiarities (or bugs) in Luna’s code which makes for
buggy directory traversal.

In summary, Luna is the typical ransomware but with bugs and no optimizations.

References

