
1/5

January 4, 2023

Unpacking RedLine Stealer
dr4k0nia.github.io/posts/Unpacking-RedLine-Stealer/

Posted Jan 4, 2023
By dr4k0nia
7 min read

In this post, we are going to take a look at Redline Stealer, a well-known .NET based credential
stealer. I will focus on unpacking the managed payload and extracting it’s config, for a more
detailed analysis of the payload you can check out this post by c3rb3ru5d3d53c.

Dealing with the native dropper

Many of the in-the-wild samples of Redline are plain .NET applications with pretty basic custom
obfuscation. Considering that many commonly used obfuscators lead to false positive AV
detections this is very likely intentional. Although primarily using .NET, many samples come
packed in a native x86 wrapper that will load the managed payload at runtime. Unpacking this
native dropper is quite simple, it uses process hollowing on a legitimate process. We can use this
to our advantage; since the injection requires the process to be started in suspended mode we
can simply use a debugger to pause the execution before the process is unsuspended and dump
it. The injection target might vary between versions. In my case, they inject into AppLaunch.exe
which is a utility binary of .NET Framework 4.0+, that is part of the standard Windows 10 install.

The dropper dynamically resolves the functions required for process hollowing. So we will not find
them in the imports but there are some artifacts from gcc’s error handling which give a hint as to
which functions are used. Strings like “VirtualProtect failed…” make it easy to guess what is going
on even if the actual functions are dynamically resolved. The following functions are used:

https://dr4k0nia.github.io/posts/Unpacking-RedLine-Stealer/
https://twitter.com/dr4k0nia
https://c3rb3ru5d3d53c.github.io/malware-blog/redline-stealer/

2/5

CreateProcessW
ReadProcessMemo
ry
VirtualProtect
NtWriteVirtualM
emory
NtSetContextThr
ead
NtResumeThread
NtUnmapViewOfSe
ction

It then performs simple process hollowing. Which we can simply dump. For this, I use x32Dbg,
and set a breakpoint on NtResumeThread then continue execuction. Once the breakpoint hits I
dump the AppLaunch.exe process, that was spawned by the dropper, using ExtremeDumper to
get a perfectly working managed image from the process. Make sure to run ExtremeDumper as
Admin to find the AppLaunch process. Once we have the dumped image we can simply terminate
AppLaunch.exe and our debuggee.

Dealing with the managed part

Most of Redline’s obfuscation is focused on the strings. Not all strings are obfuscated but most of
the characteristic ones are, especially strings that can be used to detect the malware. These
obfuscated strings are constructed at runtime from a char array and in some cases, they have
random text inserted that will be removed from the string before it’s used.

Since this was quite annoying to get rid of manually for the whole binary I decided to write a
custom tool. The tool is pretty simple, it consists of two clean-up stages. The first one is to
remove the array to string assignments And the second one is to clean the inserted text and
replace operations. I also added a stage for config extraction which will be discussed later. As per
usual I came up with a fun name for this tool: It’s called Greenline.

Deobfuscating the strings

https://github.com/wwh1004/ExtremeDumper

3/5

We begin by searching for all string constructors that take a char array as it’s parameter and are
preceded by a call instruction. The constructor is called using a newobj instruction, with the
constructor as it’s operand. The constructor requires a char array to be pushed on the stack
before its executed. Lets look at what the code we are dealing with looks in CIL:

IL_0000: nop
IL_0001: ldc.i4.5
IL_0002: newarr System.Char
IL_0007: dup
IL_0008: ldtoken
<PrivateImplementationDetails>::DC0F42A41F058686A364AF5B6BD49175C5B2CF3C4D5AE95417448BE351
7B4008
IL_000d: call
System.Runtime.CompilerServices.RuntimeHelpers::InitializeArray(System.Array,
System.RuntimeFieldHandle)
IL_0012: newobj System.String::.ctor(char[])

The first thing that happens is the array initialization. At IL_0001 the size of the array is pushed
on to the stack as an integer, next a new array of type char is initialized. For the next part I need
to explain how arrays in .NET are actually stored.

For value type arrays like char, byte etc. that are initialized inline and have more then three
elements the compiler will generate a ![](new type named <PrivateImplementationDetails>.
The type contains fields that point to chunks of bytes within a data section of the PE. These fields
are of a struct type with a hardcoded size, telling the runtime the size of the chunk. At runtime, the
System.Runtime.CompilerServices.RuntimeHelpers::InitializeArray method is called to
perform a memory copy of the data referenced by the field into the array’s memory location.

After the array has been initialized it is consumed by the System.String constructor at IL_0012.
Since this CIL pattern can in some cases be different or deliberately altered by an obfuscator I
decided to use Echo , a framework with data flow analysis capabilities for CIL. With Echo we can
reliably resolve the dependencies of the call to InitializeArray.

In this snippet we can see that the string constructor call is preceded by a call to
InitializeArray. This call depends on a couple more instructions. First an array object, which is
made up of the instructions from 0020 to 0022 the size of the array which is 19 then the type of
the array object char. The dup copies the top most stack item which is the array object and
pushes it on top of the stack again, which is later used by the string constructor. Next ldtoken
pushes the handle to the field in <PrivateImplementationDetails> onto the stack. So now we
have everything our call depends on. Echo can find these kind of dependeny relations
automatically, using a symbolic flow graph to obtain all instructions that are required by a
consumer like the call in the example.

1

4/5

Using the obtained dependencies we can manually construct the string and patch the old CIL with
just a string assignment, replacing all no longer needed instructions with NOP’s.

The second stage follows the same logic, but this time we search for all calls to the Replace
method using two string literals as arguments. We use Echo to obtain the dependencies and
patch all no longer needed instructions with NOP’s leaving us with the final deobfuscated string.

Extracting the config

This part is probably the most interesting for the more threat intel focussed readers :D. Identifying
the config of Redline is pretty simple when we have easy access to the managed types and their
members. I use an exclusion-based search, iterating through the types we abort processing for all
types that don’t match our criteria. A few identifiers that I use to find the correct class:

Is a public static class
Has a static constructor and 5 fields (the constructor is hidden in the C# view, it initializes
the fields with the values seen in the decompilation)
Has the custom attribute System.Reflection.ObfuscationAttribute
(Has a field named IP)

After we find the correct class we obtain all field values by parsing the static constructor of the
class, which initializes the fields. The C2 IP and the ID are XOR encrypted and Base64 encoded
so we need to decrypt and decode them for that, I simply copied and simplified the decryption
routine from Redline. After we decrypted the encrypted fields we have a fully readable config.

5/5

Conclusion

I hope you found this little post helpful and can put it to use analyzing Redline Stealer. The tool
described in this post and it’s source code are available on my GitHub, feel free to check it out. If
you’re interested in .NET deobfuscation in general make sure to check out the code as it’s basic
approach can be adapted for other obfuscation of this kind as well.

Samples

x86 compiled binary: modest-menu.exe,
SHA256:0d753431639b3d2b8ecb5fb1684018b2c216fec10cc43d0609123f6f48aa98b8

Unpacked child => .NET binary: Bahut.exe SHA256:
98d146faabd764f5ddd4a2088dfaf075dd382358026498344c91dcb46a7dff66

.NET binary: file,
SHA256:714AE901F55DB2580AC4AC9048C09EFDCD562F301640A6FD8343293F1EBB36FF
.NET binary: PEInjection.exe,
SHA256:465FBA168502ED66E373DB521F1C0DD93CE30E69D271528051390817977B4818

dotnet, reverse-engineering, malware

https://github.com/dr4k0nia/Greenline
https://dr4k0nia.github.io/categories/dotnet/
https://dr4k0nia.github.io/categories/reverse-engineering/
https://dr4k0nia.github.io/categories/malware/

