The Mystery of Metador | Unpicking Mafalda’s Anti-
Analysis Techniques

||||| sentinelone.com/labs/the-mystery-of-metador-unpicking-mafaldas-anti-analysis-techniques/

Aleksandar Milenkoski

Overview

At the inaugural LabsCon, we unveiled Metador, a previously unreported threat actor that
targets telecommunications, internet service providers, and universities in the Middle East
and Africa. We observed Metador using two versions of a feature-rich backdoor, dubbed
‘Mafalda’, one of which features anti-analysis techniques to make analysis challenging.

In this article, we provide a deep dive into the anti-analysis techniques that Mafalda
implements. This article complements our previous report on Metador and offers a deeper
understanding of how Mafalda tries to hinder analysis and make detection and attribution
more challenging for analysts.

The implementation of Mafalda suggests that the malware is maintained and developed by a
dedicated team. Mafalda includes comprehensive backdoor command documentation with
comments for a separate group of operators. In addition, Mafalda implements an execution
log that the malware maintains when it runs on an infected system. The log provides detailed
information about the execution of the malware on the system and therefore is a rich
resource to analysts. Our previous report discusses the functionalities of Mafalda in greater
detail.

Throughout our analysis, we retrieved and analyzed two variants of Mafalda, which we refer
to as ‘Mafalda clear build 144’ (compiled with a timestamp of April 2021) and its successor,
‘obfuscated Mafalda variant’ (compiled with a timestamp of December 2021). The newer,
obfuscated Mafalda variant extends the backdoor functionalities that the older variant
provides and implements the anti-analysis techniques that we cover in this article.

String Obfuscation

Mafalda uses obfuscated strings for different purposes, for example, to dynamically resolve
library function addresses through library and library export names, or to store content in the
execution log that Mafalda maintains. Mafalda obfuscates strings by:

o Splitting the strings into multiple portions, with a maximum portion length of 9
characters.

1/12

https://www.sentinelone.com/labs/the-mystery-of-metador-unpicking-mafaldas-anti-analysis-techniques/
https://www.labscon.io/
https://www.sentinelone.com/labs/the-mystery-of-metador-an-unattributed-threat-hiding-in-telcos-isps-and-universities/
https://assets.sentinelone.com/sentinellabs22/metador
https://assets.sentinelone.com/sentinellabs22/metador

e Encrypting and encoding each string portion. Mafalda encodes a portion of an
obfuscated string using the bitmask 0x7F and XOR-encrypts the portion using a
portion-specific XOR key of one byte.

Therefore, to restore an obfuscated string into a valid string, Mafalda first decodes and
decrypts each of the string’s portions, and then concatenates the string portions together.

The figure below depicts a snippet of the function that Mafalda executes to decode and
decrypt a portion of an obfuscated string (a2 is a portion of an obfuscated string, v2 is an
XOR key).

B

fop (1= @;'-:54;++i)

¥

L
vG = az & Bx7F;
if ((a2 & Bx7F) =8

Vg ,ﬁ= - ! :' Mafalda’s function for decoding and decrypting string

vB[1i] = v5;
a2 »»= 7;

-l.

F

[---]

portions

String Encryption

In addition to the string obfuscation approach, Mafalda works with encrypted versions of
strings that may represent an information source to malware analysts. Such strings include
segments of the execution log and debugger messages that Mafalda generates.

We noted that Mafalda prints encrypted debugger messages if the name of the computer
where it executes is WIN-K4C3EKBSMMI, possibly indicating the name of the computer used by
the developers.

0:808> g

DbG: ?vhhoBG~IcUdkQXD$M- }CA4! sES{ %k (HwwLRB+ ! HRwvLXi>41m~T$0B2;5n{,16:9 e woLY#gxd?&]z?|
odLoad: a C:\Windows'\System32\kernel.appcore.dil

DbG: ?<U_aS]RZ4Rv1h$B, " FM~A\w{"

6%]5d?1994768 2 muM&] : TH(wecHt " kw:wS6GT?0DbG: 2?~!KP<Dq OZI""h?E@B4197EBBIEEAABBBI7CIFADAZFIATEDDG: ?<U_aS]RZARV1hGB, " FM~\w{"
+msi~7FLb/?Mozilla/5.8 (compatible; MSIE 9.8; Windows NT 6.1; WOW64; Trident/5.0; KTXN)

ModlLoad: 00087ff8 clbaBBod 0O8E7ff8" c2081008 C:\Windows\SYSTEM32\wininet.DLL

ModLoad: @0@87ff8 c6a30000 POBO7ffE™ c6cd3008 C:\Windows\SYSTEM3Z2\iertutil.dll

ModLoad: B8687ff8 cb6a8808 88878 cb877068 C:\Windows\SYSTEM32\urlmon.dll
bbG: [-] ?Fx;aBco}G3v,ZA6H|BH? Error: 12829 DbG: ?0z$yJltD?Dme?N2DbG: [-] ?Fx;aBco}G3v,ZABH|BH? Error: 120829 DbG: 20z$yltD2Dae?N?

Encrypted debugger messages

In contrast to the Mafalda clear build 144, the obfuscated Mafalda variant writes encrypted
strings to its execution log. Given that this log provides extensive information about the
operation of the malware, encrypting the execution log serves to hinder analysis.

2/12

g:2088> db eBERB261" ad72ftbbad LBx3G8

B8ee00261" ad72fbbé @1 60 76 60 68 80 68 Ce-6T 00 30 60 47 86 7e €0 | ..v.
gee0e261” ad72fbced 49 60 63 88 55 60 64 B@-6b 60 51 66 58 86 44 86 | I.c
ge800261" ad72tbdé 24 66 4d 88 2d 6o 7d 6e-43 68 34 60 34 86 21 86 | 5.M.
ge800261" ad72fbed 73 60 45 88 24 B8 7b Be-25 68 6b 60 28 88 48 86 | s.E.
Beee826l1" ad72fbte 77 68 76 86 4c 88 52 82-38 68 2b 86 21 86 48 88 | w.v.L
Be8eB261" ad72fc88 52 88 77 868 75 B9 4c B8e-53 88 6% 66 3e 86 34 86 | R.w.v.
Beee8261 ad72fcled 31 66 6d 868 7e B8 54 B82-24 68 of 66 42 88 32 88 | L.m.~.
Bee6e261" ad72fc28 3b 86 53 286 52 82 7b G2-2c 66 31 66 356 286 3a 88 | ;.S.

=i

hsl
Fen T B - - RN ST T

i S ~ -) |
=2

WM OB O O X OO
CI S T s e

PO F RO ®

3
oh B W
. H .

-

[-] VirtualFree 1 failed Error: 487 Attempt to access invalid address.
[-]1 VirtualFree 2 ftailed Error: 87 The parameter is incorrect.
Obfuscated thread creation disabled (todo!)

added vectored exception handler

Obfuscated thread creation disabled (todol)

load bin file C:\Windows\system32intdll.dl1

ntdll hash: E884197EBR9EEAABBOCST7COFADAZFOACE

load bin file C:\Windows\system32msvl 6.d11

msvl @.dll hash: ED2D@37C3@7D2BESCS526EBDF4A8209FCD

http connect to cZ(5.2.77.52)

[-] HttpSendRequest: Error: 12829

GET failed, retrying <- Failed C2 connection

Encrypted

(top) and plain text (bottom) Mafalda execution log

We did not discover evidence of functionality within Mafalda for decrypting the strings it
encrypts. This suggests that string decryption takes place at Metador’s command-and-
control servers — a simple yet effective technique for hindering analysis.

Function Parameter Obfuscation

Mafalda often obfuscates numerical function parameters by calculating parameter values
prior to function execution using arithmetics and bitwise operations. It may also first calculate
a value using arithmetics and bitwise operations. If the computed value does or does not
match a predefined value, Mafalda assigns the correct values to the obfuscated parameters.
The alternative branch assigns wrong values to the obfuscated parameters.

Mafalda applies this obfuscation approach when it executes the function that the implant
uses to decode and decrypt portions of obfuscated strings (labeled
j_str_resolve sub_18014FE4D in the figure below).

3/12

L]
if (((HIDWORD(qword_1882DE238) + dword 1862DE158) ~ dword 1862DEeD4 ~ dword 1882DE1ES)

+ (dword 1862DE134 ~ dword_ 1B882DE224)
+ dword 1882DE154
+ dword 1882DE244 == @x1BCBA)

{

w5l = v47 | 8xBe;

vwhl = w3 + J52;

|U53 = BxZ2DFO9BI1CF7oAEAZFZind;
i
1

Vil = vaA7 | ex48;
vh2 = w3 + 784;
vhl = Bib4,;

V54 = |j_str_resolve_sub_18814FE4D|(v52, |E|;

ol
Function parameter obfuscation; v63 is a portion of an obfuscated string
This obfuscation technique may direct emulation tools to wrong execution branches and
function parameter values — analysts may use emulation to automate the decryption and
decoding of portions of obfuscated strings across the whole implementation of Mafalda. For
example, the iterateAllPaths feature of the flare-emu tool attempts to emulate all
execution paths to a given function and the function itself. For automated deobfuscation,
malware analysts typically use this feature to emulate functions that deobfuscate strings at
runtime. When we used the iterateAllPaths function to emulate
j_str_resolve_sub_18014FE4D, Mafalda often directed the tool to the wrong values of the
function’s obfuscated parameters. This resulted in incorrect string decoding and decryption.
In the figure below, rn and 9 are incorrectly decoded and decrypted strings.

4/12

https://github.com/mandiant/flare-emu

Iciicy
vt = gqw
*{_DWOR
if (w5
I 3

L

F(

e

Vi
vy
va

else

v
w7
va

.
+

ord_1802DF6FE == 104510434;
D *){vl - 95 + 111) = @;
)

dword_1882DE2228 »>= (unsigned int)dword 1882DEBEZ)

25
= vl - 184;
= 228887i64;

=1_;‘
=N3 ¥+ 233

= @x6DF1E38CEiR4; ,
Incorrect string

|;.r9=

j_str_resolve_sub 18@14FE4D(v7, v8); // rn

if (
{
vll
via
vl2

4

else
{
vie
vil
w12

.
L

dword_1882DEBSC == 58472)

= v6 | 8;
=wv3 - 73;

= 30i64;

=v3 - 41;
o | 4
(unsigned int)dword 1802DE1ES ~ Bx62C37EGDBCTABCiGS;

j_str_resolve sub 18814FE4D{vi18, vi2);// 9|

|,}13=
L)

decoding and decryption

However, when we used the flare-emu emulaterRange functionality for emulating only specific
implementation regions in which Mafalda invokes j str_resolve sub_ 18014FE4D, the tool
was more accurate in assigning correct function parameter values. This resulted in correct
string decoding and decryption. In the figure below, Sleep and kernel32 are correctly
decoded and decrypted strings — Mafalda uses these strings to invoke the Sleep function

that is implemented in the kernel32.d11 library file.

5/12

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep

o
v5 = gword 1882DF6F8 == 194519434;
*(_DWORD *)(vl - 95 + 111) = @;
if [ve)
_I'
L
if (dword 1882DE228 >= (unsigned int)dword 1882DEBES)

veio=wv3i + 23;

v8 = BxADF1E38CEiG4; .
Correct string

w8 = (QWORD *)j str resolve sub 18814FE4D{v7, v8);// Sleep
if (HIDWORD(gword 18@2DE@O8) == 58472)

vil = ve | 8:
vie = v3 - 73;
vi2 = 309i64;

vig =v3i - 41;
vil = v6 | 4;
viz (unsigned int)dword 1862DE1E8 ~ @x62C3TESDBCTABCiGS;

|v13 = j str_resolve sub 18814FE4D(v18, w12);// kernel32
[aes]

decoding and decryption

Execution Flow Obfuscation

Mafalda is obfuscated at implementation-level such that the compiled code of the implant
consists mainly of obfuscated and non-obfuscated code segments. The majority of the non-
obfuscated code segments are functions that implement Mafalda functionalities. The
obfuscated code segments contain heavily obfuscated code that serves no purpose but to
confuse analysis tools and increase cognitive load.

In most cases, Mafalda directs execution to the obfuscated code segments through thunk
functions — functions that implement only a single JMP (jump) instruction that directs
execution to a destination location. An obfuscated code segment ultimately returns execution
to a location that is in the relative vicinity of the appropriate thunk function. This location is

6/12

the beginning of a non-obfuscated code segment — often the prologue of a function that
implements Mafalda functionalities. In summary, the obfuscated code segments effectively
obfuscate the invocation of non-obfuscated functions.

The figure below depicts an instance of execution flow obfuscation through thunk functions.
The thunk function entryRoutine directs execution to the location entryRoutine_0, which
marks the beginning of an obfuscated code segment. This code segment ultimately returns
the execution to a non-obfuscated code segment — the prologue of the function
sub_17808D17767.

debugel0:
debug@19:
debuge1a:
debug@10:
debug@19:
debug@19:
debug@l9:
debug@l9:
debug@19:
debugal0:
debug@l9:
debug@19:
debug@ld:
debug@l0:
debug@19:
debuge19:
debuge10:
debug@19:
debuge1a:
debug@10:
debug@19:
debug@19:
debug@l9:
debug@l9:
debug@19:
debugal0:
debug@l9:
debug@19:
debug@ld:
debug@l0:
debug@19:
debuge19:
debuge10:
debug@19:
debuge1a:
debug@10:
debug@19:
debug@19:
debug@l9:
debug@l9:

G8Bea17888D17758
@88ea178838D17758
808e817808D17758
BeBea178838D017758
280ea17883017758
80808178088D17758
6000817808D17758
@00eal17803D017758
@geea1788801775D
608e817888D1775D
B888017888D1775E
Be0eal17883017762
80ea8178088D17764
B0880178838D17764
B80ea17883D17766
608e017808D17767
G8B8ea17888D17767
G888817883D17767
80ee817808D17767
BeBea178838017767
B08ea17808D17767
8e8e8178088D17767
80008178088D17767
GB8ea178838D017767
20eea178838017767
60e8e817888D17767
G8880178838D17767
Be0ea17883017767
808a817888D17767
B08ea178838D17767
B80ea17883D017767
608e017808D17767
G8Bea17888D17767
G888817883017767
808e817808D17768
BeBea178838D1776A
B08ea178838D1776C
8080817808D1776E
8080817808D17770
GB88a178838D17777

e6e E9 DE 5E 10 @8

B85

t4 17 D3

D&
63

Fy

W
oo

aD
21

AB 38 FD FF FF
EC A2 83 eo ee

; Attributes: thunk

; void entryRoutine()

public entryRoutine
entryRoutine proc near
Jjmp entryRoutine_@
entryRoutine endp

wait

test [rdi+rdx-2Dh], edx

cmp esi, edx

add al, 63h ; 'c'

g S T e s e s e e e s s
db 53h ; 5

; =============== SUBROUTINE ======= e

; __inte4 _ fastcall sub 17888D17767(__int64, _ intéd, _ intéd)

sub_17868D17767 proc near

-3A8h
-398h
-398h
-388h
-378h
-37eh
-368h

var_ 3A8=
var_398=
var_398=
var_388=
var_378=
var_378=
var_368=
var 358= qword ptr -3G8h
var_350= gqword ptr -356h
var_28= byte ptr -28h

quord
quord
quord
quord
quord
quord
quord

ptr
ptr
ptr
ptr
ptr
ptr
ptr

push rbp

push ri2

push ri3

push ri4

push ri5

lea rbp, [rax-2C8h]
sub rsp, 3A8h

=50

712

[e]

debug@??s:
debug@?2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@?2s:
debug@?2s:
debug@?2s:
debug@2s:
debug@?2s:
debug@2s:
debug@?2s:
debug@2s:
debug@?2s:
debug@2s:
debug@2s:
debug@2s:
debug@?2?s:

[=0c]

Execution flow obfuscation through a thunk function

e0eaa17308E1D638
Gaeaa17888E1D63B
e0eaa17388E1D63D
8006017888E1D641
e0eanl7303E1De43
e08aa17383E1D646
eneanl7a83E1D648
e086a17388E1D644

800801 73808E1D64C &

e8eaa17368E1D64D
8008617368E1D64D
888861 7388E1D64D
e068a17388E1D64D
e0eaa17382E1064D
8008617308 E1D64F
e0eaa17388E1D650
e00aa17808E1D651
e0eaa17388E1D651
e0eaa17388E1D651
808a017308E1D651
e86aa17388E1D653

66 ¢

48
&6
48
74
74
7B

EB

aD
E3

|

oun

o]

c1
a3
8B
ac
@3
el

a2

Ct aa

c4

entryRoutina 8:

xchg ax, bx

rol rsi, B

xchg ax, bx

mov rax, rsp

jz short loc_178@8E1DB54
ip short loc_178@8E1DE4D
jnp short loc_1788B8E1DH4D
pop rex

loc_17888E1D64D:

jmp short loc 178@8E1DSE51

3

loc_178BBE1DG51:
jnz short loc_17888E1DBE56
xchg eax, ebp

Next, we discuss some of the obfuscation techniques that the developers of Mafalda have

applied to the obfuscated code segments.

Purposeless Instruction(s)

The obfuscated code segments in Mafalda contain instructions that serve no purpose in the
execution of the code. These instructions exist only to increase the cognitive load when an
analyst analyzes the instruction stream. In Mafalda, purposeless instructions are placed

sequentially or are intertwined with other instructions.

The table below lists the majority of the purposeless instructions that we encountered in
Mafalda’s obfuscated code segments (p denotes an instruction parameter).

Instructions Description

rol p,0 / ror Rotates p left or right by 0 bits.
p.0

xchg p1,p2 Swaps p1 and p2 two times.
xchg p1, p2

xchg p, p Swaps p with itself.

8/12

pause Provides a spin-wait loop hint to the processor. The Mafalda developers
have placed this instruction very often in the obfuscated code segments to

increase cognitive load.

bswap p Reverses the byte order of p twice.

bswap p

push p First preserves p on the stack and then restores p from the stack without
pop p modifying p between these actions.

pushfq First preserves the RFLAGS register on the stack and then restores

popfq RFLAGS from the stack without modifying RFLAGS between these actions.
s]

debug@25:888680178088E1DG3E &6 93 xchg ax, bx
debug@25:8000817808E1D63D 43 C1 (6 @0 rol rsi, 8| An
debug@25:80080817383E10641 66 93 xchg ax, bx

[-..]

example of some purposeless instructions in Mafalda

Opaque Predicates

The obfuscated code segments in Mafalda implement simple opaque predicates. They
involve first issuing the cmp instruction for comparing a value against itself, which always
evaluates to TRUE, and then evaluating the zF, PF, or the SF flag to direct the execution to a

given execution branch.

The table below lists the maijority of the opaque predicates that we encountered in Mafalda’s
obfuscated code segments. p denotes an instruction parameter and addr a memory address
mapped to Mafalda: a virtual address or a parameter to a conditional or unconditional jump

instruction.
Instructions Description
cmpp, p The branch at address [addr1] is never taken, the branch at address
JNP/UNZ/UNE/JS [addr2] is always taken.
[addr1]
[addr2]: [...]
cmpp, p The branch at address [addr1] is always taken, the branch at address

JP/JZ/JEIINS [addr2] is never taken.
[addr1]
[addr2]: [.. .]

cmp p, p The branch at address [addr1] is never taken, the branch at address
JNP/UNZ/JNE/JS [addr2] is always taken, the branch at address [addr3] is never taken.
[addr1]

JMP [addr2]

[addr3]:[. . .]

The execution branches that are always or never taken may contain any instructions, such
as the purposeless instructions mentioned above.

]

debug@?25: a808817388E1D662

38 FF cmp bh, bh
debug825:@6800178088E1D6B4A 75 14 jnz short loc_ 17888BEID&CA
debug825:6660017808E1D6B6 EB &2 jmp short near ptr loc_178BBE1DGE9+1

End
An opaque predicate

Unconditional Jump (JMP) Obfuscations

The obfuscated code segments in Mafalda contain instructions that obfuscate unconditional
jumps to locations in the memory mapped to Mafalda. This involves:

o Conditional execution based on a flag value in the RFLAGS register, for example, the zF
or the PF flag, such that any of the possible flag values (0 or 1) result in the execution
of the code at a given destination location; or

o Use of multiple, instead of one, unconditional jumps (trampolines) to direct execution
to a given destination location.

The table below lists the majority of the unconditional jump obfuscations sets that we
encountered in Mafalda’s obfuscated code segments (addr denotes a memory address
mapped to Mafalda: a virtual address or a parameter to a conditional or unconditional jump

instruction).

Instructions Description

JP [addr1] The branch at address [addr1] is always taken, the branch at address
JNP [addr1] [addr2] is never taken.

[addr2]: [. ..

]

JS [addr1] The branch at address [addr1] is always taken, the branch at address
JNS [addr1] [addr2] is never taken.

[addr2]: [. ..

]

10/12

JB [addr1]
JNB [addr1]

The branch at address [addr1] is always taken, the branch at address
[addr2] is never taken.

[addr2]: [. ..

]

[addr]: call $ Executes the instructions placed at the offset [offset] from the address

+ [offset] [addr] where the call instruction resides. The instructions between [addr]
[...] and [addr+offset] are never executed.

[addr+offset]:

[..]

JMP [addr1]
[...]
[addr2]: JMP
[addr3]
[...]
[addr1]::
JMP [addr2]
[...]
[addrN]: JMP
[dest_addr]

[...]
[dest_addr]: [
.

]

Directs execution to multiple locations (addresses [addr1] to [addrN])
through trampolines until the final destination location at address
[dest_addr] is reached. The instructions between the trampolines are never
executed. We observed up to 17 trampolines as part of such an
unconditional jump obfuscation.

debug@25:6006017808E1DE48 74 &3 ip short loc_178@S8E1D6AD
debug@25:2880017808E10D544 7B 81 jnp short loc 17883E1D64D
debug82s: 88888 178BBE1DA4C 50 pop rCx
debug@2s:60060178088E1DE4D

debug@2s:60060178088EL1DE4D loc_178BBE1DS4D:

.

11/12

[zea]

debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@25:
debug@2s:
debug@2s:
debug@?2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@25s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debuge2s:
debug@2s:
debug@2s:
debug@2s:
debug@2s:
debug@25s:
debug@2s:
B

Unconditional jump obfuscations

200ea17385E1D781
200ea17305E1D781
gooeal173e8E1D7832
200ea17308E1D763
goBea17288E1D7B3
fB0aa17288E1D7B3
fBeaa17208E1D785
2BBaa172888E1D7B5
200ea17388E1D785
goeeel7388E1D785
gooeal73esE1D787
goeea17308E1D787
2o00eal17308E1D787
aooeail73esE1D787
aB0aa17388E1D7BS
2B0aa17288E1D7BS
880aa17388E1D7BS
200aa17288E1D78%
2008817 3e8E1D786
20o0eal17303E1D70E
2ooeal7308E1D7GEB
20oeal7308E1D7BE
gooeal7388E1D78D
2o0eal17288E1D7BD
fB0aa17388E1D7BD
8B0aa17288E1D78D
/R0aa17308E1DTOF
2008817 308E1D70F
200ea173053E1D7BF
200ea173e8E1DVOF
g00ea17308E1D711
200ea17308E1D711
200ea17385E1D711
2B0aa17288E1D711
2008817 388E1D713

Conclusion

EB

EB

EB

EB

EB

EB

EB

EB

EB

1a

a2

FC

F4

a2

F2

F2

loc_178868E1D781:
jmp short loc_178@8E1D713

loc_178BBE1D703:
jmp short loc_173@8E1D78B

loc 178BBE1D7ES5:
jmp short loc_178@8E1D789

loc_178BBE1D707:
jmp short loc_178@8E1D78F

loc 178BBE1D709:
jmp short loc 178@8E1D787

loc 17808E1D7BE:
jmp short loc_178@8E1D761

loc_178BBE1D70D:
jmp short loc 178@8E1D711

loc_1788BBE1D7BF:
jmp short loc_178@8E1D783

loc_1786BE1D711:
jmp short loc 173@8E1D785

Mafalda’s anti-analysis techniques make the analysis of the malware challenging, which
helps the Metador threat actor to delay effective defensive actions against its operations.
Metador takes a number of measures at infrastructure- and network-level to hide and protect
its operation from defenders. The techniques that this article discusses add to these
measures at an executable, malware-implementation level.

By complementing our previous publication on Metador, we hope that this post will
encourage collaboration towards further unveiling the mystery of this threat actor.

https://www.sentinelone.com/labs/the-mystery-of-metador-an-unattributed-threat-hiding-in-telcos-isps-and-universities/
https://www.sentinelone.com/labs/the-mystery-of-metador-an-unattributed-threat-hiding-in-telcos-isps-and-universities/

