
1/10

October 12, 2022

Dissecting the new shellcode-based variant of GuLoader
(CloudEyE)

spamhaus.com/resource-center/dissecting-the-new-shellcode-based-variant-of-guloader-cloudeye/

One of the Spamhaus Project's malware specialists has been dissecting GuLoader,
attempting to analyze this tricky malware. They have taken time out from reverse
engineering and sandbox detonations to share their findings…

What is GuLoader?

GuLoader, or as it is also known, CloudEye, is a small VB5/6 downloader malware. Typically,
it downloads Remote Access Tools (RATs) and Stealers, such as Agent Tesla, Arkei/Vidar,
Formbook, Lokibot, Netwire, and Remcos, often (but not always), from Google Drive.

What’s so special about GuLoader?

GuLoader is notorious for its anti-virtual machine (anti-VM) tactics, i.e., thwarting any
attempts for researchers to analyze it. In fact, it was so successful at evading analysis that,
at one point, not even one of the most famous online sandboxes could detonate the malware
successfully.

Utilizing a packer to swerve detection

https://www.spamhaus.com/resource-center/dissecting-the-new-shellcode-based-variant-of-guloader-cloudeye/


2/10

GuLoader utilizes the Nullsoft Scriptable Install System (NSIS) packer to compress and
encrypt its payload. The NSIS packer is a free, open-source tool commonly used to create
Windows installers. However, it can also pack other types of files, such as executables. It is
GuLoader’s use of the NSIS packer that makes it harder for antivirus programs to detect and
remove the malware.

When GuLoader packs its payload, it first compresses the file using the NSIS packer, then
encrypts the compressed file with a custom encryption algorithm. The encrypted file is then
embedded into the GuLoader executable. When GuLoader is run, it decrypts and unpacks
the payload, then executes it.

GuLoader employs a multitude of “anti” strategies

We all know that virtualization is a common way to improve infrastructure efficiency and
reduce costs across the IT industry. However, attackers can abuse it to evade detection and
launch attacks. Here are some of the ways GuLoader evades detection:

1. Checking for common VM tools: GuLoader checks for the presence of common VM
tools such as VMware, VirtualBox, and QEMU. If any of these tools are detected,
GuLoader will not execute.

2. Checking for debuggers: GuLoader checks for the presence of debuggers such as
OllyDbg and WinDbg. If a debugger is detected, GuLoader will not execute.

3. Checking for sandboxes: GuLoader checks for the presence of sandboxes such as
Cuckoo Sandbox and Anubis. If a sandbox is detected, GuLoader will not execute.

We’ve covered the basic overview; now brace yourselves as we get down and dirty looking
under the hood of GuLoader.

How does Guloader resolve an API?

GuLoader uses a hashed technique to resolve an API call; it’s a modified version of djb2 –
see the example below:



3/10

Binary code obfuscation techniques

GuLoader uses these to make code more difficult to understand and reverse engineer. They
work by making the code appear random or meaningless, making it harder for humans to
understand what it does.

One of the most common obfuscation techniques is “opaque predicates“, which are Boolean
expressions that always return true or false values. However, the value is not known
beforehand, making it difficult to understand what it does. Opaque predicates are often used
with other obfuscation techniques, such as code permutation, to make the code even more
difficult to understand.

GuLoader uses vectored exceptional handler to change code flow

https://en.wikipedia.org/wiki/Opaque_predicate


4/10

One interesting feature of GuLoader is how it manages to change the code flow during
runtime. This is done using vectored exceptional handler (VEH), a software exception
handling mechanism. A VEH can be used to intercept and handle exceptions generated by
the operating system or running programs.

The operating system or program will generate an exception code when an exception
occurs. The VEH then looks up the address of the exception handler associated with that
exception code and calls it. GuLoader uses VEH to modify the extended instruction pointer
(EIP) at an exception to point to the next legitimate instruction. Here’s the VEH setup:

Initially, as the exception happens, _CONTEXTRECORD structure is checked for the
presence of hardware registers, i.e., the x86 debug registers:



5/10

The EIP, where the exception happened, is compared against byte 0xcc, i.e., the software
break point. This is a necessary condition for the exception to proceed and to generate the
next EIP.

The EIP is calculated relative to the place where the exception occurred:



6/10

The byte after the exception EIP is XORed with 0xcb, and the result is added to the current
EIP to get the next location for execution. The instruction in between the exception EIP and
the calculated EIP is filled with junk instructions to confuse the disassembler, as illustrated
below:

How to automate the extraction of indicators of compromise (IOCs) from
GuLoader



7/10

The manual dissection of GuLoader payloads becomes a cumbersome and tedious process
due to the presence of all the various hardcore anti-VM, anti-analysis, and anti-debug
mechanisms. Therefore, it is imperative to automate this extraction. To make the process
successful, we must first automate the dumping and then write a script to extract the
parameters necessary to get the URL out of GuLoader.

But GuLoader presents us with a big hurdle, i.e., the anti-dumping protection. This is a
technique used to prevent reverse engineering and analysis of the code. It works by
encrypting or obfuscating the code, making it exceptionally difficult to read and understand.

GuLoader encrypts the main binary code at any point in the calling of any system API, which
invariably makes the dumped code useless. The following two images depict “XORing the
code before the call” and “deXORing after the API call”, respectively.

  

A weakness you can exploit is the initial API call made by GuLoader, which is not wrapped in
the subroutine that does all the aforementioned “anti “checks.



8/10

To exploit this weakness, you can set up a DLL hook after OEP is reached, as shown in the
code below:



9/10

Once the dump is successful, we have to locate the key. This process is reasonably
straightforward, as GuLoader encrypts the botnet command and controller (C&C) with the
same subroutine as the strings. Here’s the string decoding subroutine:

The interesting pattern to observe is how the parameters are supplied to the subroutine;
being a subroutine with __stdcall calling conventions, the stack is cleaned by the called
function, but only three parameters are pushed onto the stack.

Tracking back, we can observe that the key parameter is pushed using a direct call opcode.
That’s precisely the location of the XOR key to be used.



10/10

Once you have extracted the key, you can easily brute force for the presence of URLs in the
memory dump using the following code:

The output will be:

python Gu2Extract.py MemDump

GuLoader c2 = b’http://192.3.245.147/2022.bin

Easy as that 😊!

As is evident from what we’ve discussed, GuLoader is challenging to detect and remove and
can pose a severe threat to both individual users and organizations. There are several ways
to protect against GuLoader, most of them are IT basics – but sadly, the basics often get
missed:

Keep your software up to date
Using a reliable antivirus solution
Train users to be careful when opening email attachments.

Further malware information

To see what malware families our researchers are currently observing in our botnet
command and controller (C&C) report, visit our Botnet Quarterly Update.

https://info.spamhaus.com/botnet-threat-updates

