
1/9

Bad VIB(E)s Part Two: Detection and Hardening within
ESXi Hypervisors

mandiant.com/resources/blog/esxi-hypervisors-detection-hardening

In part one, we covered attackers’ usage of malicious vSphere Installation Bundles (“VIBs”)
to install multiple backdoors across ESXi hypervisors, focusing on the malware present
within the VIB payloads. In this installment, we will continue to elaborate further on other
attacker actions such as timestomping, describe ESXi detection methodologies to dump
process memory and perform YARA scans, and discuss how to further harden hypervisors to
minimize the attack surface of ESXi hosts. For more details, VMware has released additional
information on protecting vSphere.

ESXI Logging

Both VIRTUALPITA and VIRTUALPIE stop the vmsyslogd process from recording activity
on startup, but multiple logging processes exist across the hypervisor which can still be used
to track attacker activity.

Malicious VIB Installation

https://www.mandiant.com/resources/blog/esxi-hypervisors-detection-hardening
http://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence
https://blogs.vmware.com/vsphere/2011/09/whats-in-a-vib.html
https://core.vmware.com/vsphere-esxi-mandiant-malware-persistence

2/9

It was previously established in part one that ESXi systems do not allow for a falsified VIB file
below the minimal set acceptance level, even when the acceptance level was modified in the
Descriptor XML. To circumvent this, the attacker abused the --force flag to install
malicious CommunitySupported VIBs. This flag adds a VIB or image profile with a lower
acceptance level than required by the host.

Evidence of the --force flags usage to install a VIB was found across multiple locations
on the ESXi hypervisor. The ESXi profile XML file records all VIBs that have been installed
on the system, specifying the date, time, and flags used to install each VIB. This file is found
under the path /var/db/esximg/profile . Figure 1contains an example of the attacker’s
--force flag usage logged in the profile XML file.

Figure 1: ESXI Profile XML file with the presence of a --force installation
The log file /var/log/ esxupdate.log also recorded the usage of the --force flag
when a VIB is installed. Figure 2 contains an event that logged a malicious VIB being
installed with a forced installation.

Figure 2: VIB Installation with force flag in esxupdate.log

Timestomping

http://www.mandiant.com/resources/blog/esxi-hypervisors-malware-persistence
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.install.doc/GUID-6A3AD878-5DE9-4C38-AC86-78CAEED0F710.html#:~:text=are%20case%2Dsensitive.-,Note,-%3A
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.upgrade.doc/GUID-98CAEBD8-424E-4502-B4B4-500E24A0F461.html

3/9

Mandiant observed that logs surrounding VIB installations with the --force flag were
recorded as early as October 9, 2013, which did not align with the attack timeline. The log file
/var/log/vmkwarning.log provided further evidence of the system time being

manipulated. Figure 3 contains two (2) events that logged the system clock being modified
right before and after attacker actions occurred. This behavior suggests timestomping was
being performed to cover up the true time the attacker initially installed the VIBs on the
machine.

Figure 3: vmkwarning.log recording system time modification

Creation of sysclog

Analyzing the VIRTUALPITA sample rhttpproxy-io
(2c28ec2d541f555b2838099ca849f965), it was found that the sample listened over the VMCI
port number 18098. Once the listener is setup, the malware fetches the system's CID
(context ID) by issuing IOCTL request code 1977. The PID of the backdoor, CID and
listening port are then logged to /var/log/sysclog in the following format
[<date/timestamp>]\n\r[!]<<PID>>:<CID>:<port>\n\n as seen in Figure 4.

Figure 4: Sample of sysclog

Guest Machine Interaction

Further interactions between hypervisors and their respective guest machines were
discovered within multiple logs named vmware.log . These logs, located at the following
path /vmfs/volumes/…/<virtual machine hostname>/vmware.log , record basic
operations between the host and hypervisor that were not logged on the endpoint. Actions
recorded by this log include guest machine logins, file/directory creation and deletion,

https://attack.mitre.org/techniques/T1070/006/

4/9

command execution, and file transfer between guest machine and hypervisor. To focus on
interactions between the hypervisor and its guest machines in the vmware.log , filter for
lines containing GuestOps.

VIB Verification at Scale

The previous blog post touched on using the command esxcli software vib signature
verify to identify any VIBs that do not pass the signature verification check made by the
ESXi hypervisor. Alternative VIB configurations exist that would be able to circumvent the
signature verification check. Mandiant confirmed that when a VIB is installed as
CommunitySupported , the Signature Verification field will label it as Succeeded if

the payload is not tampered with after installation. This means a VIB could be created
without any validation from VMWare or its partners and still be labelled as validated.

To account for properly signed CommunitySupported VIBs and other anomalous
configurations which could indicate malicious activity, all VIBs in the environment can be
compared with a list of known good VIBs. A matrix created by VMware Front Experience
breaks down the names and builds of each VIB expected to be present by default in the
respective ESXi build. Each time a VIB is changed across ESXi builds the matrix links to the
official VMware patch release notes which state the adding, modification, or removal of that
VIB. A sample of this matrix can be seen in Figure 5.

Figure 5: Sample of Known Good VIB Matrix

https://esxi-patches.v-front.de/vm-6.7.0.html

5/9

ESXI Detection Methodologies

While ESXi shares many similarities to Linux (commands, directory structure, etc.), it is
entirely its own operating system known as VMkernel, meaning popular methods to scan the
filesystem and dump process memory do not work. Mandiant has formulated alternative
detections methods to attempt to provide investigators with better visibility into ESXi
hypervisors during future incidents.

Remote ESXi YARA Scanning with SSHFS

Multiple YARA rules were generated for the detection of VIRTUALPITA and VIRTUALPIE
across Linux and ESXi environments and can be found in the first part of this blog post.
These detections have two caveats to them based on the storage and execution of the
malware. If the attacker is launching either malware family from a VIB on ESXi, the sample
within the VIB will not be detected due to being compressed in the .vgz format. Secondly, if
the binary is running in memory but deleted from disk, the binary will not be detected by
YARA’s file system scan.

Since YARA does not run directly on ESXi hosts, Mandiant utilized sshfs to perform
remote YARA scanning of ESXi hypervisors.

Prerequisites

Note: All behaviors of ESXi and the methodology to dump memory have been confirmed
for ESXi 6.7, no other versions at this time have been tested.

Before scanning the ESXi machine a few prerequisites must be met. For the ESXi machine
which the memory is being dumped, you must have both:

Root Access to the machine
SSH Enabled on the ESXi Server

Once the ESXi machine is correctly configured, a Linux machine must be setup to be able to
communicate over SSH with the ESXi machine. This Linux machine must also install:

sshfs
yara

Performing the YARA Scan

https://phoenixnap.com/kb/esxi-enable-ssh
https://linux.die.net/man/1/sshfs

6/9

Note: Since YARA will naturally recursively scan directories and sshfs pulls files back as
they are accessed, scanning the entire ESXi file system can take a long time depending
on network bandwidth. This method of scanning is only suggested if a strong and stable
network connection is present.

Linux Commands

Description Commands

Create a directory to mount the ESXi
machine on

> mkdir /mnt/yara

Mount the ESXi root directory to the
Linux machine mount point using
sshfs

> sshfs -o
allow_other,default_permissions
root@<Insert ESXi IP Address>:/ /mnt/yara

Scan the mount point which the
ESXi system is attached to

> yara -r <Provided YARA Rule> <scope of
scan>

Dumping ESXi Process Memory

When attempting to dump the process memory from a ESXi hypervisor like you would a
Linux machine, it will quickly become apparent that the /proc/ directory will be either empty or
containing a single PID of the commands used to attempt to dump the memory. To recover
process memory from ESXi (and potentially the full binary itself), a mixture of the native tool
gdbserver and a github tool called core2ELF64 can be utilized.

Prerequisites

Note: All behaviors of ESXi and the methodology to dump memory have been confirmed
for ESXi 6.7, no other versions at this time have been tested.

Before dumping the process memory a few prerequisites must be met. For the ESXi machine
which, you must have both:

Root Access to the machine
SSH Enabled on the ESXi Server

Once the ESXi machine is correctly configured, a Linux machine must be setup to be able to
communicate over SSH with the ESXi machine. This Linux machine must also install:

https://linux.die.net/man/1/gdbserver
https://github.com/enbarberis/core2ELF64
https://phoenixnap.com/kb/esxi-enable-ssh

7/9

gdb
core2ELF64

Dumping Memory

Note: The ports to listen and port forward through are arbitrary (Rule of Thumb: Keep
between 1024-25565 to avoid commonly used ports), for this walkthrough the listening
port will be 6000 and the forwarding port will be 7000.

To dump the ESXi process memory, gdbserver will be utilized to hook into the currently
running process, specified by PID, and listen on an arbitrary port.

ESXi Commands

Description Commands

A preemptive check used to make sure that the PID you will be
collecting in the next command is the intended one. Please
make sure that the output of this statement only shows the
process you intend to dump the memory for.

> ps -Tcjstv
| grep -e “<Binary
to Dump>”

Attaches gdbserver to the PID specified in the list processes
command, listening on port 6000 for gdb to connect to.

> gdbserver –attach
127.0.0.1:6000 `ps -
Tcjstv |

 grep -e “<Binary
to
Dump>” | awk ‘{print
$1}’ | head -n 1`

Once listening, the Linux machine will create an SSH tunnel (Port Forward) to the listening
port on the ESXi server, where gdb will be used to create a core dump of the process
specified.

Linux Commands

Description Commands

Set up an SSH tunnel from the Linux machine to the listening
port of the ESXi Server gdbserver process.

> ssh -L
1336:127.0.0.1:6000
-f -N <acct on
ESX>@<IP of ESX>

https://linux.die.net/man/1/gdb

8/9

Description Commands

Launch gdb > gdb

Within the gdb shell, connect to the gdbserver instance. If at any
point you have successfully ran this command and leave the gdb
shell, you will need to exit and relaunch the gdbserver process
on ESXi to reconnect.

(gdb) > target
remote
localhost:1336

Create a core dump file of the attach processes' memory in the
working directory. The output file should be the following syntax
"core.[0-9]{7}".

?? () > gcore

Process Extraction

Once a core file is created, the Github project core2ELF64 can be used to reconstruct the
program.

Linux Commands

Description Commands

Set up an SSH tunnel from the Linux machine to the listening
port of the ESXi Server gdbserver process.

In the event of the program not being able to recover the first
segment, choose the next available segment possible
(Smallest Number)

> core2ELF64 <core
file> <Desired Output
Name>

Sources

Hooking into ESXi processes with gdbserver

Hardening ESXi

Network Isolation

When configuring networking on the ESXi hosts, only enable VMkernel network adapters on
the isolated management network. VMkernel network adapters provide network connectivity
for the ESXi hosts and handle necessary system traffic for functionality such as vSphere
vMotion, vSAN and vSphere replication. Ensure that all dependent technologies such as

https://straightblast.medium.com/my-poc-walkthrough-for-cve-2021-21974-a266bcad14b9

9/9

vSANs and backup systems that the virtualization infrastructure will use are available on this
isolated network. If possible, use dedicated management systems exclusively connected to
this isolated network to conduct all management tasks of the virtualization infrastructure.

Identity and Access Management

Consider decoupling ESXi and vCenter Servers from Active Directory and use vCenter
Single Sign-On. Removing ESXi and vCenter from Active Directory will prevent any
compromised Active Directory accounts from being able to be used to authenticate directly to
the virtualization infrastructure. Ensure administrators use separate and dedicated accounts
for managing and accessing the virtualized infrastructure. Enforce multi-factor authentication
(MFA) for all management access to vCenter Server instances and store all administrative
credentials in a Privileged Access Management (PAM) system.

Services Management

To further restrict services and management of ESXi hosts, implement lockdown mode. This
ensures that ESXi hosts can only be accessed through a vCenter Server, disables some
services, and restricts some services to certain defined users. Configure the built-in ESXi
host firewall to restrict management access only from specific IP addresses or subnets that
correlate to management systems on the isolated network. Determine the appropriate risk
acceptance level for vSphere Installable Bundles (VIBs) and enforce acceptance levels in the
Security Profiles for ESXi hosts. This protects the integrity of the hosts and ensures unsigned
VIBs cannot be installed.

Log Management

Centralized logging of ESXi environments is critical, both to proactively detect potential
malicious behavior and investigate an actual incident. Ensure all ESXi host and vCenter
Server logs are being forwarded to the organization’s SIEM solution. This provides visibility
into security events beyond that of normal administrative activity.

Acknowledgements

Special thanks to Brad Slaybaugh, Joshua Kim, Zachary Smith, Jeremy Koppen, and
Charles Carmakal for their assistance with the investigation, technical review, and creating
detections/investigative methodologies for the malware families discussed in this blog post.
In addition, we would also like to thank VMware their collaboration on this research.

