
1/54

A technical analysis of Pegasus for Android – Part 1
cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1

Summary

Pegasus is a spyware developed by the NSO group that was repeatedly analyzed by
Amnesty International and CitizenLab. In this article, we dissect the Android version that was
initially analyzed by Lookout in this paper, and we recommend reading it along with this post.
During our research about Pegasus for Android, we’ve found out that vendors wrongly
attributed some undocumented APK files to Pegasus, as highlighted by a researcher here.
We’ve splitted the analysis into 3 parts because of the code’s complexity and length. We’ve
also tried to keep the sections name proposed by Lookout whenever it was possible so that
anybody could follow the two approaches more easily. In this part, we’re presenting the
initialization of the application (including its configuration), the targeted applications, the
commands related to the core functionality, and the methods that Pegasus could use to
remove itself from a device. Our contributions consist of dissecting the application deeper
than before and explaining additional functionalities that were identified.

Technical analysis

SHA256: ade8bef0ac29fa363fc9afd958af0074478aef650adeb0318517b48bd996d5d5

We’ve performed the analysis using JD-GUI Java Decompiler and Android Studio.

https://cybergeeks.tech/a-technical-analysis-of-pegasus-for-android-part-1
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.pdf
https://twitter.com/maldr0id/status/1492520053702602755


2/54

Initial Launch and Configuration

The application must obtain an initial configuration from an URL found in the Browser history
or from a file called “/data/myappinfo” or “/system/ttg”. As we’ll see during the entire analysis,
the malware is pretty noisy and logs messages using the Log.i method. Interestingly, the
author mentions the JigglyPuff character from Pokemon in the logging function:

Figure 1

Figure 2

Firstly, the application tries to parse a config file called “/data/myappinfo” or “/system/ttg” if
the first one doesn’t exist:



3/54

Figure 3

Figure 4
The malware deletes a file called “/data/cksnb.dat” using a binary called “/system/csk”.
According to Lookout, this file is present on devices that were previously rooted. The
purpose of this binary is to run a command passed as a parameter (such as “rm”) with root
privileges:



4/54

Figure 5
Whether the process finds one of the configuration files mentioned above, it reads an URL
that will be deleted from the Browser history. Some of the settings are Base64-encoded and
will be decoded using an implementation of the Base64 algorithm:



5/54

Figure 6
The application reads a token and an “installation” value from the configuration file:



6/54

Figure 7
Furthermore, the process reads a configuration value called “local” and another one called
“userNetwork”, which represents the mobile country code of the victim’s phone:



7/54

Figure 8
The malware reads a configuration value that specifies whether it should communicate with
the C2 server while the phone is roaming. The configuration file also contains commands to
be executed by Pegasus:



8/54

Figure 9
The version of the installed agent (“packageVersion”) and a value called
“vulnarbilityIndicator” are also read from the configuration file. The last value is set when
requesting an update package, and it would create an mp3 file that exploits the Media Player
on the phone, according to our analysis:



9/54

Figure 10
The agent copies a file called “/data/cksnb.dat” to
“/data/data/com.network.android/output.mp3”. As also highlighted below, the mp3 file would
exploit a “vulnarbility” [sic] in Media Player:



10/54

Figure 11

Figure 12
A config value called “url address” will be removed from the browser history. The application
extracts a table containing both bookmarks and history items from
Browser.BOOKMARKS_URI:



11/54

Figure 13
As we mentioned before, the application could retrieve the configuration from an URL
containing “rU8IPXbn” found in the Browser history, as highlighted in figure 14.



12/54

Figure 14
The agent parses the target URL and extracts a token (“t=” parameter), a Base64-encoded
command and signature (“&c”), the “installation” value (“&b”), the “userNetwork” configuration
option (“&d”), and the “windowYuliyus” value (“&r”):



13/54

Figure 15
The malware expects a valid token and a valid target URL; otherwise, it calls the Log.e
method with the “getSettingsFromBH no valid settings on getSettingsFromHistory” message:



14/54

Figure 16
The agent calls a function that validates the MCC (mobile country code) extracted from the
configuration:

Figure 17
The getSubscriberId function is utilized to extract the unique subscriber ID. The first 3 digits
represent the mobile country code (MCC), which is compared with the value extracted from
the configuration:



15/54

Figure 18
The application verifies whether the “did_we_restart_after_upgrade_already” value, which
indicates that the device was rebooted after the installation of Pegasus, is true or false. In the
case of no reboot, the application restarts the phone using the “reboot” command:

Figure 19
Figure 20 reveals how the “/system/csk” binary is used to run commands with root privileges:



16/54

Figure 20
The agent uses a regex to parse the target URL and to extract the IP address and the token,
as highlighted below:



17/54

Figure 21



18/54

Figure 22
The process calls a function that deletes the target URL from the Browser history based on
the IP address extracted above:

Figure 23
The malware starts logging some messages before performing the deletion operation:



19/54

Figure 24
The application retrieves the bookmarks and history items from
“Browser.BOOKMARKS_URI” and “Browser.HISTORY_PROJECTION”:



20/54

Figure 25
The URL containing “rU8IPXbn” is deleted from the Browser history by calling the
Browser.deleteFromHistory function:



21/54

Figure 26

Figure 27
The configuration data is saved in a preference file called “NetworkPreferences” that can be
accessed using the Android SharedPreferences APIs.

Targeted Applications



22/54

1. Facebook

The database files storing the Facebook messages are made accessible to everyone by
running the following commands:

chmod 0777 /data/data/com.facebook.katana
chmod 0777 /data/data/com.facebook.katana/databases
chmod 0777 /data/data/com.facebook.katana/databases/threads_db2
chmod 0777 /data/data/com.facebook.katana/databases/threads_db2-journal

The following SQL query is executed:

SELECT messages.msg_id, messages.thread_id, messages.timestamp_ms,
messages.text, messages.sender, threads.participants from messages INNER JOIN
threads ON messages.thread_id=threads.thread_id

Figure 28
2. Kakao

The database files storing the KakaoTalk chat logs are made accessible to everyone by
running the following commands:

chmod 0777 /data/data/com.kakao.talk
chmod 0777 /data/data/com.kakao.talk/databases
chmod 0777 /data/data/com.kakao.talk/databases/KakaoTalk.db
chmod 0777 /data/data/com.kakao.talk/databases/KakaoTalk.db-journal

The following SQL query is executed:

SELECT chat_logs.id, chat_logs.chat_id, chat_logs.created_at, chat_logs.message,
chat_logs.user_id, chat_logs.type, c.members FROM chat_logs JOIN chat_rooms c
ON chat_logs.chat_id=c.id



23/54

Figure 29
3. Skype

The database files storing the Skype chat messages are made accessible to everyone by
running the following commands:

chmod 0777 /data/data/com.skype.raider/files/<Directories>
chmod 0777 /data/data/com.skype.raider/files/main.db
chmod 0777 /data/data/com.skype.raider/files/main.db-journal

The following SQL query is executed:

SELECT Messages.id as msg_id, messages.convo_id, from_dispname,
messages.author, messages.timestamp, messages.body_xml,
conversations.displayname, Messages.dialog_partner FROM Messages LEFT JOIN
Conversations ON messages.convo_id = conversations.id

Figure 30
4. Twitter



24/54

The database files storing the Twitter messages are made accessible to everyone by running
the following commands:

chmod 0777 /data/data/com.twitter.android
chmod 0777 /data/data/com.twitter.android/databases/*.db

The following SQL query is executed:

SELECT messages._id, messages.type, messages.msg_id, messages.content,
messages.created, messages.sender_id, messages.recipient_id, messages.thread,
s.name, s.username, r.name, r.username FROM messages JOIN users s ON
messages.sender_id = s.user_id JOIN users r ON messages.recipient_id = r.user_id

Figure 31
5. Viber

The database files storing the Viber messages are made accessible to everyone by running
the following commands:

chmod 0777 /data/data/com.viber.voip/
chmod 0777 /data/data/com.viber.voip/databases/viber_messages
chmod 0777 /data/data/com.viber.voip/databases/viber_messages-journal

The agent executes the SQL query displayed in the figure below.



25/54

Figure 32
6. WhatsApp

The database files storing the WhatsApp messages are made accessible to everyone by
running the following commands:

chmod 0777 /data/data/com.whatsapp
chmod 0777 /data/data/com.whatsapp/databases
chmod 0777 /data/data/com.whatsapp/shared_prefs
chmod 0777 /data/data/com.whatsapp/shared_prefs/com.whatsapp_preferences.xml
chmod 0777 /data/data/com.whatsapp/databases/msgstore.db
chmod 0777 /data/data/com.whatsapp/databases/wa.db

The following SQL queries are executed:

select * from messages
select timestamp from messages order by _id desc limit 1



26/54

Figure 33



27/54

Figure 34
7. Gmail

The following SQL queries are executed
(“/data/data/com.google.android.gm/databases/EmailProvider.db” database):

select * from messages
select * from Message
select _id from messages order by _id desc limit 1
select _id from Message order by _id desc limit 1



28/54

Figure 35



29/54

Figure 36
8. Android Native Email

The database file storing the Android Native emails and attachments is made accessible to
everyone by running the following commands:

chmod 0777 /data/data/com.android.email
chmod 0777 /data/data/com.android.email/databases/EmailProvider.db

The following SQL queries are executed:

select * from Message where _id = <Id>
select * from Attachment where _id = <Id>



30/54

Figure 37



31/54

Figure 38
9. Android Native Browser

The database file storing the user name and password entered in the WebView is made
accessible to everyone by running the following commands:

chmod 0777 /data/data/com.android.browser
chmod 0777 /data/data/com.android.browser/databases
chmod 0777 /data/data/com.android.browser/databases/webview.db

The following SQL query is executed:

select * from password

The agent also extracts the bookmarks and history items from Browser.BOOKMARKS_URI
and Browser.HISTORY_PROJECTION.



32/54

Figure 39



33/54

Figure 40

Figure 41
10. Default Calendar

The agent extracts the Android version string from the “Build.VERSION.RELEASE” property:



34/54

Figure 42
Depending on the Android version, the calendar’s events can be found at
“content://com.android.calendar/events” or “content://calendar/events”, as shown in figure
43:

Figure 43

The application extracts the events title, summary, description, and other properties (see
figure 44). The calendar entries are added to an XmlSerializer object that has multiple
attributes:

Figure 44
Suicide Functionality

1st method

The agent will kill itself if it finds a file called “/sdcard/MemosForNotes” on the device:

Figure 45

The malware starts the removal operation by logging the “removeAppalication start”
message, as shown in the figure below:



35/54

Figure 46
The application removes all files that are located in the “/data/local/tmp/ktmu” directory:

Figure 47

The SharedPreferences.Editor.clear function is utilized to remove the following preference
files containing configuration data: “NetworkPreferences”, “NetworkWindowAddresess”, and
“NetworkDataList” (see figure 48).

Figure 48

The following commands are run by the malware:

export LD_LIBRARY_PATH=/vendor/lib:/system/lib – set the LD_LIBRARY_PATH
environment variable



36/54

mount -o remount,rw /dev/null /system – remount the system directory

force-stop com.network.android – stop the malicious application

disable com.network.android – disable the malicious application

rm /system/app/com.media.sync.apk – remove this file

pm uninstall com.network.android – uninstall the malicious application

rm /system/ttg – remove the configuration file

chmod 0777 /system/csk; rm /system/csk – delete the binary used to run commands
with root privileges (“superuser binary”)



37/54

Figure 49
2nd method

The malware will also remove itself if it didn’t communicate with the C2 server in the last 60
days:



38/54

Figure 50
3rd method

The suicide functionality is also used when no subscriber ID is identified (see figure 18).

4th method



39/54

The Pegasus’ C2 server can issue a command to the agent in order to remove itself.

Pegasus implements 4 main commands that can be executed: dumpCmd, upgradeCmd,
camCmd, and emailAttCmd (figure 51).

Figure 51

dumpCmd command

The agent can activate/deactivate some actions depending on the dumpSms,
dumpWhatsApp, dumpEmails, dumpContacts, dumpCalander [sic], dumpCall boolean
values:



40/54

Figure 52
The agent extracts the SMS messages sent and received from “content://sms/sent” and
“content://sms/inbox”. Every SMS is stored in a new XmlSerializer object, as highlighted
below:

Figure 53



41/54

Figure 54
The malware extracts the Phone call logs from “CallLog.Calls.CONTENT_URI”. Each log is
stored in a new XmlSerializer object that contains attributes such as “recordId”, “timestamp”,
“type”, “number”, “duration”, “isStart”, and “direction”:

Figure 55

Figure 56



42/54

The application retrieves the phone contacts from the
“ContactsContract.Contacts.CONTENT_VCARD_URI” entry. Every contact is stored in an
XmlSerializer object:

Figure 57

Figure 58

Figure 59
The agent obtains a list of application processes running on the device via a call to
getRunningAppProcesses:

Figure 60



43/54

This command is also responsible for retrieving the information already described in the
“Targeted applications” section.

upgradeCmd command

The process creates a file called “/data/data/com.network.android/upgrade/uglmt.dat” that
will store the upgraded application that is downloaded from the C2 server. It computes the
MD5 hash of the file and then compares the result with a value that comes with the package:

Figure 61



44/54

Figure 62
The agent loads uglmt.dat as a dex file using DexClassLoader and then calls the
“com.media.provapp.DrivenObjClass.perfU” method with the
“/data/data/com.network.android/upgrade/intro.mp3” argument:

Figure 63

Figure 64



45/54

After successfully upgrading the agent, the following files are deleted by calling the
File.delete function:

/data/data/com.network.android/upgrade/uglmt.dat

/data/data/com.network.android/upgrade/cuvmnr.dat

/data/data/com.network.android/upgrade/zero.mp3

/data/data/com.network.android/upgrade/*com.media.sync*

Figure 65
camCmd command

Firstly, the process relies on a binary that should exist on Android called
“/system/bin/screencap” in order to take a screenshot of the screen. The result is saved as a
PNG image at “/data/data/com.network.android/bqul4.dat”:



46/54

Figure 66
Secondly, if the above binary doesn’t exist then the malware will use a resource (found in
res/raw/ folder) called “take_screen_shot” that will handle the operation. The result is stored
at “/data/data/com.network.android/tss64.dat”:



47/54

Figure 67
In any case, the screenshots’ information will be stored in an XmlSerializer object described
below:



48/54

Figure 68
As we can see in the assembly code of take_screen_shot, the binary captures the Android
screen content by reading the “/dev/graphics/fb0” framebuffer that is processed and stored
as a PNG image:



49/54

Figure 69

Figure 70
The captured PNG images are compressed to JPG and saved as “ScreenShot-res<Integer>-
<Current Time in seconds>.jpg”:



50/54

Figure 71
The process can take photos with the front/back camera. It calls the getParameters function
in order to obtain the current settings for the Camera service and then calls
getPreviewFormat:



51/54

Figure 72
Depending on the front/back camera, the taken photo is saved as “Front-res<Integer>-
<Current Time in seconds>.jpg” or “Back-res<Integer>-<Current Time in seconds>.jpg”



52/54

Figure 73
emailAttCmd command

The application creates a database containing a table called “NetworkData” that stores the
email attachments’ name and path, as displayed in figure 74.

Figure 74
The command’s purpose is to extract a specific email attachment mentioned by the C2
server:



53/54

Figure 75



54/54

Figure 76
We were surprised to find out that during the initialization routine, the threat actor mentioned
the “Pegasus” string in a log message:

Figure 77


