
1/6

Malware sandbox evasion in x64 assembly by checking
ram size - Part 2

accidentalrebel.com/malware-sandbox-evasion-in-x64-assembly-by-checking-ram-size-part-2.html

AccidentalRebel.com

Karlo is a programmer for 10+ years who switched to cyber security. He is currently working
as a L2 SOC Analyst and is focusing on malware reverse engineering and development.

In the previous post, I explored a sandbox evasion technique that uses
GetPhysicallyInstalledSystemMemory to check the size of the RAM of the machine.

The idea behind this technique (MBC Technique ID: B0009.014) is that any value that is
lower than 4GB may probably be a sandbox (to reduce costs). This information can then be
used with other sandbox evasion techniques to confirm.

For part 2 of this series, I'll be talking about an alternative Windows API function called
GlobalMemoryStatusEx . This function is as straightforward as the first one, but requires

the passing of a pointer to a C struct. This is significant because I'll be converting a working
C code to x64 assembly so we can fully understand how it works under the hood.

Using GlobalMemoryStatusEx

Here is an example of an implementation of GlobalMemoryStatusEx in C that we'll later
be converting to x64 assembly.

https://www.accidentalrebel.com/malware-sandbox-evasion-in-x64-assembly-by-checking-ram-size-part-2.html
https://www.accidentalrebel.com/
https://www.accidentalrebel.com/malware-sandbox-evasion-in-x64-assembly-by-checking-ram-size-part-2.html
https://github.com/MBCProject/mbc-markdown/blob/master/anti-behavioral-analysis/virtual-machine-detection.md

2/6

#include <stdio.h>

#include <windows.h>

int main(void)

{

 MEMORYSTATUSEX statex;

 statex.dwLength = sizeof (statex);

 GlobalMemoryStatusEx (&statex);

 printf ("Memory size: %*I64d", 7, statex.ullTotalPhys/1024);

}

You will see that the first parameter for GlobalMemoryStatusEx is expecting a pointer to a
MEMORYSTATUSEX object. We need to declare the memory location statex by putting it

onto the stack. Before we can do that, however, we first need to know beforehand how
much we would need to reserve.

Getting the size of the struct

Finding out the size of a structure in C is easy with the sizeof function. However, we
can't really use this in assembly, so we have to determine it manually by adding up the
sizes of each member of the struct.

Consider the example struct definition below:

struct TestStruct {

 char member1;

 int member2;

 float member3;

};

If we would look at this table containing the fundamental types and their sizes, we could
determine the sizes of each member:

member1 is of type char which has a size of 1 byte
member2 is of type int which is 4 bytes
member3 is of type float which also is 4 bytes

Adding all of these sizes results in TestStruct having a total size of 9 bytes.

Now to apply the same computation to our MEMORYSTATUSEX struct. Here is the definition
of the struct according to MSDN:

https://docs.microsoft.com/en-us/cpp/cpp/fundamental-types-cpp?view=msvc-170#sizes-of-built-in-types
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-sysinfoapi-memorystatusex

3/6

typedef struct _MEMORYSTATUSEX {

 DWORD dwLength;

 DWORD dwMemoryLoad;

 DWORDLONG ullTotalPhys;

 DWORDLONG ullAvailPhys;

 DWORDLONG ullTotalPageFile;

 DWORDLONG ullAvailPageFile;

 DWORDLONG ullTotalVirtual;

 DWORDLONG ullAvailVirtual;

 DWORDLONG ullAvailExtendedVirtual;

} MEMORYSTATUSEX, *LPMEMORYSTATUSEX;

The types that we have are DWORD and DWORDLONG (which is just Window's own version
of unsigned long and unsigned int64):

DWORD or unsigned long has a size of 4 bytes
DWORDLONG or unsigned int64 has a size of 8 bytes

So adding the two DWORD s and seven DWORDLONG s results in MEMORYSTATUSEX having a
total size of 64 bytes.

Initializing statex

Now that we know the total size, we can now reserve this amount of space on the stack.

 sub rsp, 0x40 ; Reserve space for struct on stack

 ; MEMORYSTATUSEX's is 64 bytes (0x40) in size

Before we can call GlobalMemoryStatusEx , however, MSDN states that the dwLength
member should be first set. And this can be done by assigning 64 bytes to the
corresponding memory location on the stack.

 mov rax, 0x40

 mov [rsp], rax ; Assign 0x40 to dwLength

 lea rcx, [rsp] ; Load the memory location of struct

With this we can finally call our function:

 sub rsp, 32 ; Reserve shadow space

 call GlobalMemoryStatusEx

 add rsp, 32 ; Release shadow space

Using the result

If successful, the function GlobalMemoryStatusEx populates the memory location we
passed to it, as shown below:

https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-sysinfoapi-memorystatusex

4/6

The struct member ullTotalPhys now has the memory size that we need. And because
our stack pointer still points to the beginning of the struct, we can get this value by adding
an offset to rsp .

 mov rax, [rsp+0x8] ; Retrive value of ullTotalPhys from stack

We offset by 0x8 because the first 8 bytes is assigned to dwLength and dwMemoryLoad
(both at 4 bytes each).

Displaying the result

As seen above, the value returned by GlobalMemoryStatusEx is in bytes. To be
consistent with our example from the previous post, we need to convert this value to
kilobytes by dividing it by 1024 .

 mov rcx, 1024

 xor rdx, rdx ; Clear rdx; This is required before calling div

 div rcx ; Divide by 1024 to convert to KB

The result of the above operation is saved to rax which we can then move to rdx so we
can pass it as the second argument to printf .

 mov rdx, rax ; Argument 2; Result of ullTotalPhys / 1024

 lea rcx, [msg_memory_size] ; Argument 1; Format string

 sub rsp, 32 ; Reserve shadow space

 call printf

 add rsp, 32 ; Release shadow space

With this, we can now finally display the result on the console:

5/6

Here is the full source code for reference:

 bits 64

 default rel

segment .data

 msg_memory_size db "Memory size: %lld", 0xd, 0xa, 0

segment .text

 global main

 extern ExitProcess

 extern GlobalMemoryStatusEx

 extern printf

main:

 push rbp

 mov rbp, rsp

 sub rsp, 0x40 ; Reserve space for struct on stack

 ; MEMORYSTATUSEX's is 64 bytes (0x40) in size

 mov rax, 0x40

 mov [rsp], rax ; Assign 0x40 to dwLength

 lea rcx, [rsp] ; Load the memory location of struct

 sub rsp, 32 ; Reserve shadow space

 call GlobalMemoryStatusEx

 add rsp, 32 ; Release shadow space

 mov rax, [rsp+0x8] ; Retrive value of ullTotalPhys from stack

 mov rcx, 1024

 xor rdx, rdx ; Clear rdx; This is required before calling div

 div rcx ; Divide by 1024 to convert to KB

 mov rdx, rax ; Argument 2; Result of ullTotalPhys / 1024

 lea rcx, [msg_memory_size] ; Argument 1; Format string

 sub rsp, 32 ; Reserve shadow space

 call printf

 add rsp, 32 ; Release shadow space

 add rsp, 0x40 ; Release space of struct from stack

 xor rax, rax

 call ExitProcess

Conclusion

Over the past two blog posts, we've learned how to use GlobalMemoryStatusEx and
GetPhysicallyInstalledSystemMemory to determine the size of the RAM of a machine.

We've also learned about using the stack to pass arguments to functions using x64
assembly.

6/6

In future posts I plan to continue exploring malware behavior and techniques and at the
same time teach x64 assembly so that we can both improve when writing and reverse
engineering malware.

Until then, you can view the C and Assembly code along with the build scripts for this
evasion technique on this repository here.

Feel free to reach out to me on Twitter or LinkedIn for any questions or comments.

Comments

https://github.com/accidentalrebel/sandbox-evasion-by-checking-ram-size
https://twitter.com/accidentalrebel
https://www.linkedin.com/in/juan-karlo-licudine/

