
1/10

July 6, 2022

OrBit: New Undetected Linux Threat Uses Unique Hijack
of Execution Flow

intezer.com/blog/incident-response/orbit-new-undetected-linux-threat/

Written by Nicole Fishbein - 6 July 2022

Get Free Account

Join Now

Linux is a popular operating system for servers and cloud infrastructures, and as such it’s
not a surprise that it attracts threat actors’ interest and we see a continued growth and
innovation of malware that targets Linux, such as the recent Symbiote malware that was
discovered by our research team.

In this blog we will provide a deep technical analysis of a new and fully undetected
Linux threat we named OrBit, because this is one of the filenames that is being used by
the malware to temporarily store the output of executed commands. It can be installed

https://www.intezer.com/blog/incident-response/orbit-new-undetected-linux-threat/
https://analyze.intezer.com/
https://www.ibm.com/downloads/cas/ADLMYLAZ
https://www.intezer.com/blog/research/new-linux-threat-symbiote/

2/10

either with persistence capabilities or as a volatile implant. The malware implements
advanced evasion techniques and gains persistence on the machine by hooking key
functions, provides the threat actors with remote access capabilities over SSH, harvests
credentials, and logs TTY commands. Once the malware is installed it will infect all of the
running processes, including new processes, that are running on the machine.

Unlike other threats that hijack shared libraries by modifying the environment variable
LD_PRELOAD, this malware uses 2 different ways to load the malicious library. The first
way is by adding the shared object to the configuration file that is used by the loader. The
second way is by patching the binary of the loader itself so it will load the malicious shared
object.

Technical Analysis

The OrBit Dropper

The dropper sample on VT 67048a69a007c37f8be5d01a95f6a026
The dropper installs the payload and prepares the environment for the malware execution.
The malware can be installed as a volatile module or with persistence capabilities. It
receives command line arguments and based on them it extracts the payload to one of the
locations. Using the command line arguments the installation path can be swapped and the
content of the payload can be updated or entirely uninstalled. From here on in the report,
we will simply use “MALWARE_FOLDER” as referring to the location where the malware
has been installed.

To install the payload and add it to the shared libraries that are being loaded by the dynamic
linker, the dropper calls a function called patch_ld. First, it reads the symbolic link of the
dynamic linker /lib64/ld-linux-x86-64.so.2 and checks if the malicious payload is
already loaded by searching for the path used by the malware. If it is found the function can
swap it with the other location. Otherwise, it looks for /etc/ld.so.preload and replaces
it with a symbolic link to the location of malicious library: /lib/libntpVnQE6mk/.l or

3/10

/dev/shm/ldx/.l (depending on the on the argument passed to the dropper). Lastly, it
will append /etc/ld.so.preload to the end of the temp file to make sure that the malicious
library will be loaded first.

Before it loads the malicious library to the dynamic linker, the dropper makes sure to save a
copy of the legitimate dynamic linker into MALWARE_FOLDER/.backup_ld.so so it if
needed it can restore the environment and to use the legitimate data to hide the malware
(more about in the next section).

The preparation of the environment is achieved by setting a unique group ID (GID) to the
path that is used by the malware. In the sample we analyzed the value is 0xE0B2E, the
same GID will be used by the payload. In addition, the dropper copies python (from
/usr/bin/python) to the

MALWARE_FOLDER and creates 4 additional files that will be used by the malware:

 /lib/libntpVnQE6mk/.logpam

 /lib/libntpVnQE6mk/sshpass.txt

 /lib/libntpVnQE6mk/sshpass2.txt

 /lib/libntpVnQE6mk/.ports

And the dropper writes the following 2 files, to grant the threat actors remote access.

The payload below is saved in MALWARE_FOLDER/bin/escalator

import os

os.setreuid(0,0)

os.execv("/bin/bash", ("/bin/bash", "-i"))

The payload below is saved in MALWARE_FOLDER/.profile

#!/bin/bash

if ["$(id -u)" -ne 0] ; then

 echo "Welcome to $(hostname). You are GID $(id -g), UID $(id -u) and about to be
escalated to UID 0."

 exec ~/bin/python ~/bin/escalator

fi

The OrBit Payload

4/10

The payload sample on VT ac89d638cb6912b58de47ac2a274b2fb
The payload is a shared object (.SO file) that can be placed either in persistent storage, for
example /lib/libntpVnQE6mk/ , or in shim-memory under /dev/shm/ldx/ . If it’s
placed in the first path the malware will be persistent, otherwise it is volatile.

The shared object hooks functions from 3 libraries: libc, libcap and Pluggable Authentication
Module (PAM). Existing processes that use these functions will essentially use the modified
functions, and new processes will be hooked with the malicious library as well, allowing the
malware to infect the whole machine and harvest credentials, evade detection, gain
persistence and provide remote access to the attackers.

When implementing the hooking of libc functions it first calls syscall with the corresponding
system call number as can be seen in the screenshot below. Strings are obfuscated with
simple XOR with a hardcoded key.

5/10

Hooked stat function in the malware

SSH connection

One of the capabilities of the malware is to set up a remote connection on the machine, it
hooks 3 functions in the Pluggable Authentication Module library: pam_open_session,
pam_authenticate and pam_acct_mgmt. By hooking these functions the malware is
capable of stealing information from SSH connections and providing remote access to the
attackers and hiding the network activity.

When the hooked pam_authenticate is called it checks if the user name and the password
equal to hardcoded values, and if that’s the case it will log the port that is used for the
connection in /lib/libntpVnQE6mk/.ports and open the SSH connection. In other cases, it will
check if the file

/lib/libntpVnQE6mk/.logpam exists (in the sample we analyzed it was created by the
dropper) and if so it will log the credentials to a file /lib/libntpVnQE6mk/sshpass.txt.
Essentially the first file serves as a flag.

OrBit’s evasion techniques

To evade detection the malware hooks multiple functions to prevent them from outputting
information that might reveal the existence of the malicious shared library in the running
processes or the files that are being used by the malware. The malware uses a hardcoded
GID value (the one set by the dropper) to identify the files and processes that are related to

6/10

the malware and based on that it will manipulate the behavior of the hooked functions. For
example, readdir is hooked to check the GID of the calling process, if it doesn’t match the
hardcoded value, all of the directories with the predefined GID value will be omitted from the
function’s output.

Call getgid system call to check the GID of the process
The malware hooks functions that open files: fopen, open, open64, and openat and
checks if the file that was provided to the relevant open function is part of the proc file
system. One of the paths that is being checked is /proc/net/tcp as it can disclose the
network traffic generated by the backdoor. The way in which the malware handles the
output of this file is similar to other files that are being opened and resembles the
implementation in Symbiote. The hooked function reads the content of the file and
compares the content, one line at a time to the content of MALWARE_FOLDER/.ports
which holds the information about port and addresses used by the malware. The malware
creates a temp file and writes only the lines that don’t expose the malware. Once the file
has proceeded, the malware returns the file descriptor to the temp file to the caller.

The following file paths show the currently mapped memory regions and their access
permissions:

/proc/%PID%/maps
/proc/%PID%/smaps
/proc/%PID%/numa_maps

When a process accesses one of these files it may disclose the shared library, therefore the
hooked open functions verify that the output doesn’t contain a path to the directory used by
the malware, in a similar way as described above.

Another file in the proc filesystem that is being checked is /proc/loadavg. This file is used by
utilities such as uptime, it provides information about the CPU usage and the status of
currently running processes. The malware will process the information from this file in a
similar way as the previous files.

https://man7.org/linux/man-pages/man5/proc.5.html#:~:text=where%20it%20resides.-,%2Fproc%2F%5Bpid%5D%2Fmaps,-A%20file%20containing

7/10

The malware hooks execve to evade detection of certain utilities, control the behavior of
processes and to maintain its persistence by infecting new processes. The hooking logic
checks the process name and path and compares it to different usulites in /bin, /usr and
/sbin.

The hooked execve function is used by the malware to hide the network activity, the
malware checks if the new process is ip or iptables utility (it checks both the /usr/sbin and
/sbin) it will first execute the command and pipe the output to a local buffer where it will
inspect the records and check if there is a match between the records and the information
stored in MALWARE_FOLDER/.net or MALWARE_FOLDER/.fw – the record will be omitted
from the command’s output.

When execve is called with dmesg the malware omits records that are equal to the records
in MALWARE_FOLDER/.sys/.dmesg, and records that contain one of the following
keywords: zapping, tcpdump, promiscuous, libntpVnQE6mk, libdl.so.

execve checks if the function was called with the environment variable
LD_TRACE_LOADED_OBJECTS, when this variable is set causes the program to list its

dynamic dependencies. The malware saves the original (unpatched) dynamic linker in a
backup file, so when execve is called with this variable the output that will be presented is
as if the legitimate dynamic linker was called and it will not list the malicious library.
Essentially the following command is being executed:

MALWARE_FOLDER/.backup_ld --list %s

Strace is another utility that is being examined by the hooked execve. Because the output
of strace can reveal the malicious library as one of the libraries that is being loaded by a
traced process. Strace can be executed with the -o flag that specifies a file path to which
the output will be piped, if it’s not set in the command the malware will write the output of
strace to /tmp/.orbit. Similar to other utilities, the malware executes the command and gets
the result from the output file. Next it omits records that contain the symlink one of the
following: the malicious library (MALWARE_FOLDER/.l), the GID which is used by the
malware (920366) and its folder path.

https://man7.org/linux/man-pages/man8/ld.so.8.html

8/10

Achieving Persistence

The malware uses two methods to achieve persistence. The reason the malware uses both
of the methods is to make it hard removing the malware from an infected machine while it’s
running. The first method adds the path to the malware into the /etc/ld.so.preload
configuration file. This instructs the loader that the malware should be loaded first and for all
new processes. In the case this method is prevented by, for example removing the
configuration file on the infected machine, the malware has its second method which is
achieved by patching the loader binary.

The malware first makes a copy of the loader’s binary so it can patch it. It performs a simple
search in the binary for the string “/etc/ld.so.preload”. Once it’s found, it replaces the string
to a path to a file within the %MALWARE_FOLDER%. The content of this file has the path
to the malware library to act as a ld.so.preload configuration file. This means when the
patch loader is executed, it uses the file in the %MALWARE_FOLDER% instead under
“/etc”. The malware author has set up these two methods to act as catches in the case one
of them goes away. For example, if an administrator wants to stop the malware from being
loaded by removing the configuration file under “/etc” so the hidden files can be revealed,
the patched loader who doesn’t use this file, will just load the malware who will recreate the
configuration file. If the administrator instead overwrites the patched loader with a clean
version, the clean loader loads the malware from the “ld.so.preload” configuration file which
repatches the loader.

Information Stealing

9/10

The backdoor hooks the read and write functions to log data that is being written by the
executed processes on the machine. The backdoor checks the flag: sniff_ssh_session that
defines whether any call to write will be logged or only processes executed with sudo or ssh
sessions. Appears that the functionality of the flag doesn’t reflect the actual flow of the write
function – when the flag is set to false the hooked function checks if the process was
executed with sudo or if the calling process is ssh and logs the buffer that was passed to
the original write function, the data is stored at: MALWARE_FOLDER/sshpass2.txt.
Otherwise when the flag is set to true, the buffer is logged to MALWARE_FOLDER/sniff.txt
without verification of the calling process name. Once the hooked function is done it will
return the return value of the original function call.

Checking the flag sniff_ssh_session.
For bash and sh processes that call execve the hook will log the path argument that holds
the path to the file that will be executed as a new process, the hooked function will append
a timestamp and the full path and write the information into MALWARE_FOLDER/execlog.

Network Capabilities

The backdoor hooks function from the libpcap library to hide network activity. If hooks bind
and connect functions to log the ports that are being used by processes with the malwar’s
gid, the ports are being written to MALWARE_FOLDER/.ports. The content of this file is
used by the backdoor to manage the ports that are being used in sessions that were
opened by the activity of the backdoor. When a new SSH session is created the port and IP
address is being written to the file.

The malware hooks the pcap_loop function and pcap_packet_callback to filter out the
traffic of the backdoor. To accomplish this task the hooked pcap_packet_callback omits
ports that are in MALWARE_FOLDER/.ports as it contains all of the ports used by the
backdoor.

Comparing to other Linux threats

10/10

While it’s common for malware to hook functions, the usual technique is by loading a
shared library using LD_PRELOAD – that was the case for Symbiote, HiddenWasp and
other threats.

This malware uses XOR encrypted strings and steals passwords – similar to other Linux
backdoors reported by ESET. But unlike other threats, this malware steals information from
different commands and utilities and stores them in specific files on the machine. Besides,
there is an extensive usage of files for storing data, something that was not seen before.

What makes this malware especially interesting is the almost hermetic hooking of libraries
on the victim machine, that allows the malware to gain persistence and evade detection
while stealing information and setting SSH backdoor.

Conclusion

Threats that target Linux continue to evolve while successfully staying under the radar of
security tools, now OrBit is one more example of how evasive and persistent new malware
can be.

I want to thank Joakim Kennedy for his contribution to this research.

IoCs

Hash File

f1612924814ac73339f777b48b0de28b716d606e142d4d3f4308ec648e3f56c8 Dropper

40b5127c8cf9d6bec4dbeb61ba766a95c7b2d0cafafcb82ede5a3a679a3e3020 Payload

Nicole Fishbein
Nicole is a malware analyst and reverse engineer. Prior to Intezer she was an embedded
researcher in the Israel Defense Forces (IDF) Intelligence Corps.

https://www.intezer.com/blog/malware-analysis/hiddenwasp-malware-targeting-linux-systems/
https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
https://analyze.intezer.com/files/f1612924814ac73339f777b48b0de28b716d606e142d4d3f4308ec648e3f56c8
https://analyze.intezer.com/files/40b5127c8cf9d6bec4dbeb61ba766a95c7b2d0cafafcb82ede5a3a679a3e3020

