
1/27

June 30, 2022

Toll fraud malware: How an Android application can drain
your wallet

microsoft.com/security/blog/2022/06/30/toll-fraud-malware-how-an-android-application-can-drain-your-wallet/

Toll fraud malware, a subcategory of billing fraud in which malicious applications subscribe
users to premium services without their knowledge or consent, is one of the most prevalent
types of Android malware – and it continues to evolve.

Compared to other subcategories of billing fraud, which include SMS fraud and call fraud, toll
fraud has unique behaviors. Whereas SMS fraud or call fraud use a simple attack flow to
send messages or calls to a premium number, toll fraud has a complex multi-step attack flow
that malware developers continue to improve.

For example, we saw new capabilities related to how this threat targets users of specific
network operators. It performs its routines only if the device is subscribed to any of its target
network operators. It also, by default, uses cellular connection for its activities and forces
devices to connect to the mobile network even if a Wi-Fi connection is available. Once the
connection to a target network is confirmed, it stealthily initiates a fraudulent subscription and
confirms it without the user’s consent, in some cases even intercepting the one-time

https://www.microsoft.com/security/blog/2022/06/30/toll-fraud-malware-how-an-android-application-can-drain-your-wallet/

2/27

password (OTP) to do so. It then suppresses SMS notifications related to the subscription to
prevent the user from becoming aware of the fraudulent transaction and unsubscribing from
the service.

Another unique behavior of toll fraud malware is its use of dynamic code loading, which
makes it difficult for mobile security solutions to detect threats through static analysis, since
parts of the code are downloaded onto the device in certain parts of the attack flow. Despite
this evasion technique, we’ve identified characteristics that can be used to filter and detect
this threat. We also see adjustments in Android API restrictions and Google Play Store
publishing policy that can help mitigate this threat.

Toll fraud has drawn media attention since Joker, its first major malware family, found its way
to the Google Play Store back in 2017. Despite this attention, there’s not a lot of published
material about how this type of malware carries out its fraudulent activities. Our goal for this
blog post is to share an in-depth analysis on how this malware operates, how analysts can
better identify such threats, and how Android security can be improved to mitigate toll fraud.
This blog covers the following topics:

The WAP billing mechanism: An overview

To understand toll fraud malware, we need to know more about the billing mechanism that
attackers use. The commonly used type of billing in toll fraud is Wireless Application Protocol
(WAP). WAP billing is a payment mechanism that enables consumers to subscribe to paid
content from sites that support this protocol and get charged directly through their mobile
phone bill. The subscription process starts with the customer initiating a session with the
service provider over a cellular network and navigating to the website that provides the paid
service. As a second step, the user must click a subscription button, and, in some cases,
receive a one-time password (OTP) that has to be sent back to the service provider to verify
the subscription. The overall process is depicted below:

3/27

Figure

1. The WAP billing process in a nutshell
It should be noted that the process depends on the service provider, thus not all steps are
always present. For example, some providers do not require an OTP, which means that the
mobile user can subscribe to a service by simply clicking the subscription button while the
device is connected to a cellular network.

Fraudulent subscriptions via toll fraud

We classify a subscription as fraudulent when it takes place without a user’s consent. In the
case of toll fraud, the malware performs the subscription on behalf of the user in a way that
the overall process isn’t perceivable through the following steps:

1. Disable the Wi-Fi connection or wait for the user to switch to a mobile network
2. Silently navigate to the subscription page
3. Auto-click the subscription button
4. Intercept the OTP (if applicable)
5. Send the OTP to the service provider (if applicable)
6. Cancel the SMS notifications (if applicable)

4/27

One significant and permissionless inspection that the malware does before performing these
steps is to identify the subscriber’s country and mobile network through the mobile country
codes (MCC) and mobile network codes (MNC). This inspection is done to target users within
a specific country or region. Both codes can be fetched by using either the
TelephonyManageror the SystemPropertiesclass. The TelephonyManager.getSimOperator()
API call returns the MCC and MNCcodes as a concatenated string, while other functions of
the same class can be used to retrieve various information about the mobile network that the
device is currently subscribed to. As the network and SIM operator may differ (e.g., in
roaming), the getSimOperatorfunction is usually preferred by malware developers.

The same type of information can be fetched by using the SystemProperties.get(String key)
function where the key parameter may be one or several (using multiple calls) of the following
strings: gsm.operator.numeric, gsm.sim.operator.numeric, gsm.operator.iso-country,
gsm.sim.operator.iso-country, gsm.operator.alpha, gsm.sim.operator.alpha

The difference with the first call is that the android.os.SystemProperties class is marked as
@SystemApi, therefore an application has to use Java reflection to invoke the function. The
MNC and MCC codes are also used to evade detection, as the malicious activity won’t be
performed unless the SIM operator belongs to the ones targeted:

Figure 2. Joker malware running its payload, targeting South African mobile operators
The following sections present an analysis of the fraudulent subscription steps in the context
of the Android operating system. This analysis can help identify the API calls and the
permissions needed for the implementation of a toll fraud scheme.

Forcing cellular communication

Variants of toll fraud malware targeting Android API level 28 (Android 9.0) or lower disable
the Wi-Fi by invoking the setWifiEnabled method of the WifiManager class. The permissions
needed for this call are ACCESS_WIFI_STATE and CHANGE_WIFI_STATE. Since the
protection level for both permissions is set to normal, they are automatically approved by the
system.

Meanwhile, malware targeting a higher API level uses the requestNetwork function of the
ConnectivityManagerclass. The Android developers page describes the requestNetwork
method as:

https://developer.android.com/reference/android/net/ConnectivityManager#requestNetwork(android.net.NetworkRequest,%20android.net.ConnectivityManager.NetworkCallback)

5/27

This method will attempt to find the best network that matches the given NetworkRequest,
and to bring up one that does if none currently satisfies the criteria. The platform will evaluate
which network is the best at its own discretion. Throughput, latency, cost per byte, policy,
user preference and other considerations may be factored in the decision of what is
considered the best network.

The required permission for this call is either CHANGE_NETWORK_STATE (protection level:
normal) or WRITE_SETTINGS(protection level: signature|preinstalled|appop|pre23), but
since the latter is protected, the former is usually preferred by malware developers. In the
code snippet depicted below from a malware sample that can perform toll fraud, the function
vgy7is requesting a TRANSPORT_CELLULAR transport type (Constant Value: 0x00000000)
with NET_CAPABILITY_INTERNET (Constant Value: 0x0000000c):

Figure 3. Code from a Joker malware sample requesting a TRANSPORT_CELLULAR
transport type
Figure 3. Code from a Joker malware sample requesting a TRANSPORT_CELLULAR
transport type

The NetworkCallbackis used to monitor the network status and retrieve a networktype
variable that can be used to bind the process to a particular network via the
ConnectivityManager.bindProcessToNetworkfunction. This allows the malware to use the
mobile network even when there is an existing Wi-Fi connection. The proof-of-concept code
depicted below uses the techniques described above to request a TRANSPORT_CELLULAR
transport type. If the transport type is available, it binds the process to the mobile network to
load the host at example.com in the application’s WebView:

6/27

Figure 4. Proof-of-concept code to request a TRANSPORT_CELLULAR transport type
While it is expected that the Wi-Fi connection is preferred even when mobile connection is
also available, the process exclusively uses the cellular network to communicate with the
server:

7/27

Figure 5. The mobile browser loads example.com when TRANSPORT_CELLULAR transport
type is available and loads a blank page when only Wi-Fi is available
In fact, the user must manually disable mobile data to prevent the malware from using the
cellular network. Even though the setWifiEnabledhas been deprecated, it can still be used by
malware targeting API level 28 or lower.

Fetching premium service offers and initiating subscriptions

Assuming that the SIM operator is on the target list and the device is using a
TRANSPORT_CELLULARtype network, the next step is to fetch a list of websites offering
premium services and attempt to automatically subscribe to them.

The malware will communicate with a C2 server to retrieve a list of offered services. An offer
contains, between else, a URL which will lead to a redirection chain that will end up to a web
page, known as landing page.

8/27

What happens next depends on the way that the subscription process is initiated, thus the
malware usually includes code that can handle various subscription flows. In a typical case
scenario, the user has to click an HTML element similar to the one depicted below (JOIN
NOW), and as a second step, send a verification code back to the server:

Figure 6. A

subscription page that’s loaded in the background without the user’s knowledge.
For the malware to do this automatically, it observes the page loading progress and injects
JavaScript code designed to click HTML elements that initiate the subscription. As the user
can only subscribe once to one service, the code also marks the HTML page using a cookie
to avoid duplicate subscriptions. The following is an example of such a code:

9/27

Figure 7. JavaScript injected code scraping related HTML elements
On line 76, getElementsByTagNamereturns a collection of all the Document Object Model
(DOM) elements tagged as input. The loop on line 78 goes through every element and
checks its typeas well as its name, value, and altproperties. When an element is found to
contain keywords, such as “confirm”, “click”, and “continue”, it is sent to the cfunction, as
depicted below:

Figure 8. JavaScript function simulating clicks on

selected HTML elements
The if statement on line 36 checks if the element has already been clicked by calling the jdh
function, displayed below in Figure 12. Finally, the c function invokes the click() or submit()
function by the time the branch on line 37 (see figure 11) is followed:

10/27

Figure 9.

JavaScript code checking if the page has already been visited
The HTML page loading process is tracked using an onPageFinishedcallback of the
WebViewClientattached to the WebView. Subsequently, a handler that listens for relative
message types acts depending on the next steps that are required for the subscription to take
place. In the code snippet below, the URL loaded in the WebView and a signalwith id “128”is
sent to handler2to evaluate the service and initiate the subscription process:

11/27

Figure 10. Malware

evaluating the steps required to initiate the subscription process
Multi-step or target subscription processes may require additional verification steps. The
handler depicted below checks the page URL loaded in the WebView. If the URL matches
doi[.]mtndep.co.za/service/, then the handler runs the JavaScript code assigned to the
Properties.call_jbridge_dump variable:

Figure 11. Malware running code depending on certain conditions

12/27

A signal with id “107” triggers some additional steps that require communication with the
command and control (C2) server. This case is demonstrated in the following figures:

Figure 12. Malware

running code depending on the specific signal id
Upon receiving the signal, the handler invokes the v1.bhu8 function:

Figure 13. Malware attacking anti-fraud protection
After checking for the web-zdm[.]secure-d[.]io/api/v1/activatein the server’s reply, the
malware invokes the tpack[.]l2.bhu8[.]vgy7 function. This function sends the current URL
loaded in the application’s WebView as well as some extra information like country code, and
HTML code:

13/27

Figure 14. Malware sending information to the C2 server

Figure 15. A solver-type service offered by the C2 server

Intercepting OTPs

In most cases, the service provider sends an OTP that must be sent back to the server to
complete the subscription process. As the OTP can be sent by using either the HTTP or
USSD protocol or SMS, the malware must be capable of intercepting these types of

14/27

communication. For the HTTP protocol, the server’s reply must be parsed to extract the
token. For the USSD protocol, on the other hand, the only way to intercept is by using the
accessibility service.

One method of intercepting an SMS message, requiring android.permission.RECEIVE_SMS
permission, is to instantiate a BroadcastReceiver that listens for the SMS_RECEIVED action.

The following code snippet creates a BroadcastReceiverand overrides the onReceivecallback
of the superclass to filter out messages that start with “rch”:

Figure 16. Code that filters out SMS messages that start with “rch”
Subsequently, it creates an IntentFilter, which renders the receiver capable of listening for an
SMS_RECEIVED action, and finally the receiver is registered dynamically:

Figure 17.

The IntentFilter enabling the receiver to listen for an SMS_RECEIVED action
To handle OTP messages that are sent using the HTTP protocol, the malware parses the
HTML code to search for keywords indicating the verification token. The following code
contains a flow where the extracted token is sent to the server using the sendTextMessage
API call:

15/27

Figure 18. Extracted token is sent to the C2 server using the sendTextMessage API call
The additional permission that is required to enable this flow is SEND_SMS.

Another way of intercepting SMS messages is to extend the NotificationListenerService. This
service receives calls from the system when new notifications are posted or removed,
including the ones sent from the system’s default SMS application. The code snippet below
demonstrates this functionality:

16/27

Figure 19. Extending the NotificationListenerService service
We triggered a notification with the title “SMS_Received” and text “Pin:12345” during our
analysis, resulting in the following output in the application’s logcat:

Figure 20. Logcat

output after a notification is posted
Finally, besides the broadcast receiver and the notification listener techniques of intercepting
an SMS message, a ContentObserver can be used to receive callbacks for changes to
specific content. The onChange callback of the SmsObserver class (depicted below) is called
each time the system changes the SMS content provider state:

https://developer.android.com/reference/android/database/ContentObserver

17/27

Figure 21. The proof-of-concept code monitoring for incoming SMS messages through
SmsObserver

Suppressing notifications

Since API level 18, an application that extends the NotificationListenerService is authorized
to suppress notifications triggered from other applications. The relevant API calls are:

cancelAllNotifications() to inform the notification manager to dismiss all notifications
cancelNotification(String key) to inform the notification manager to dismiss a single
notification
cancelNotifications(String [] keys) to inform the notification manager to dismiss multiple
notifications at once.

18/27

This API subset is abused by malware developers to suppress service subscription
notification messages posted by the default SMS application. More specifically, upon
successful subscription, the service provider sends a message to the user to inform them
about the charges and offers the option to unsubscribe. By having access to the notification
listener service, the malware can call any of the functions mentioned above to remove the
notification.

Using dynamic code loading for cloaking

Cloaking refers to a set of techniques used to hide malicious behavior. For example, most toll
fraud malware won’t take any action if the mobile network is not among its targets. Another
example of a cloaking mechanism used by these threats is dynamic code loading. This
means that certain malware codes are only loaded when certain conditions are met, making it
difficult to detect by static analysis.

The following is a characteristic example of a multi-stage toll fraud malware with SHA-256:
2581aba12919ce6d9f89d86408d286a703c1e5037337d554259198c836a82d75 and package
name: com.cful.mmsto.sthemes.

Stage one

This malware’s entry point is found to be the com.android.messaging.BugleApplication, a
subclass of the Application class. The malicious flow leads to the function below:

Figure 22. The function where the entry point of the malware leads to

19/27

The call on line 21 fills the filesarray with the filenames fetched from the assets directory. The
for loop enters theif branch at line 32 if the name of the asset file ends with “355”. Querying
the asset files of the app for such a filename yields the following result:

Figure 23. Query result when searching for “355”
The PhoneNumberAlternateFormatsProto_355 is the source file which, in conjunction with a
destination file and the string “xh7FEC2clYuoNQ$ToT99ue0BINhw^Bzy”, is given as
parameters to the ns.j function:

Figure 24. The ns.j function
The SecretKeySpec on line 68 is constructed from the first 16 bytes of the SHA-1 digest of
the password string. This key is used to decrypt the file fetched from the assets using
Advanced Encryption Standard (AES) in electronic codebook (ECB) mode. The decryption
result is an ELF file that is saved in the application’s cache directory and loaded using the
System.load function.

20/27

Stage two

The loaded library fetches the PhoneNumberAlternateFormatsProto_300file from the assets
folder using the AAssetManager_fromJava function and writes it to a temporary file with the
name b in the /data/data/<package_name>/ directory, as seen on line 93 below:

Figure 25. Fetching the second payload from the assets directory.
The file b is then decrypted using an XOR operation with the key
“xh7FEC2clYuoNQ$ToT99ue0BINhw^Bzy”, which is given from the Java side (see following
figures). The decrypted payload is saved with the name l in the application’s data directory:

21/27

Figure 26. Decrypting asset

Figure 27. The native handleTask called from the Java code

The same function loads the decrypted payload l and invokes the com.AdsView.pulgn using
the DexClassLoader class loader (variable names have been changed for clarity):

Figure 28. Dynamically loading the decrypted asset using the DexClassLoader
Decrypting the second payload manually yields the following APK file:

22/27

Figure 29. The decrypted APK file
It must be mentioned that the DexClassLoadercan be used to load classes from .jar and .apk
files that contain a classes.dex entry.

Stage three

This decrypted APK consists of two main classes: the com.Helperand com.AdsView. The
com.AdsView.pulgnfunction is the first to be invoked by the native library described in the
previous section:

Figure 30. pulgn is the first function to be invoked when the payload is loaded
The runnable thread’s main functionality is to connect the host to xn3o[.]oss-
accelerate[.]aliyuncs[.]com and download a JAR file named xn30, which is saved to the
cache directory with name nvi and then loaded using the startSdk function, as shown on line
81 below:

23/27

Figure 31. Download and trigger the final payload
The file xn30 is the final payload of stage three and is the one that performs the toll fraud
activities previously described.

Mitigating the threat of toll fraud malware

Toll fraud is one of the most common malware categories with high financial loss as its main
impact. Due to its sophisticated cloaking techniques, prevention from the side of the user
plays a key role in keeping the device secure. A rule of thumb is to avoid installing Android
applications from untrusted sources (sideloading) and always follow up with device updates.
We also recommend end users take the following steps to protect themselves from toll fraud
malware:

Install applications only from the Google Play Store or other trusted sources.
Avoid granting SMS permissions, notification listener access, or accessibility access to
any applications without a strong understanding of why the application needs it. These
are powerful permissions that are not commonly needed.
Use a solution such as Microsoft Defender for Endpoint on Android to detect malicious
applications.
If a device is no longer receiving updates, strongly consider replacing it with a new
device.

Identifying potential malware

For security analysts, it is important to be aware that conventional mitigation techniques
based on static detection of malware code patterns can only offer limited remediation against
this malware. This is due to the extended use of reflection, encryption, compression,

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint-android

24/27

obfuscation, steganography, and dynamic code loading.

There are, however, characteristics that can be used to identify this type of malware. We can
classify these characteristics into three:

Primary characteristics – patterns in plaintext included in the application that can be
analyzed statically
Secondary characteristics – common API calls used to conduct toll fraud activities
Tertiary characteristics – patterns in Google Play Store metadata such as the
application’s category, the developer’s profile, and user reviews, among others

The tertiary characteristics are useful for initial filtering for potential malware. Patterns
observed in the apps’ metadata are related to malware developers’ attempts to infect as
many devices as possible in a short amount of time, while remaining published on the Google
Play Store for as long as they can. We’ve observed that attackers often follow these steps to
keep their apps in the Google Play Store:

1. Use open-source applications that belong to popular categories and can be trojanized
with minimal effort. The preferred application categories include personalization (like
wallpaper and lock screen apps), beauty, editor, communication (such as messaging
and chat apps), photography, and tools (like cleaner and fake antivirus apps).

2. Upload clean versions until the application gets a sufficient number of installs.
3. Update the application to dynamically load malicious code.
4. Separate the malicious flow from the uploaded application to remain undetected for as

long as possible.

These applications often share common characteristics:

Excessive use of permissions that are not suitable to the application’s usage (for
example, wallpaper, editor, and camera apps that bind the notification listener service or
ask for SMS permissions)
Consistent user interfaces, with similar icons, policy pages, and buttons
Similar package names
Suspicious developer profile (fake developer name and email address)
Numerous user complaints in the reviews

Once potential malware samples are identified based on these tertiary characteristics, the
primary characteristics can be used for further filtering and confirmation. Applications cannot
obfuscate their permission requests, use of the notification listener service, or use of
accessibility service. These requests must appear in the AndroidManifest.xml file within the
APK, where they can be easily detected using static analysis. The commonly requested
permissions by malware performing toll fraud may include: READ_SMS, RECEIVE_SMS,

https://support.google.com/googleplay/android-developer/answer/9859673

25/27

SEND_SMS, CHANGE_WIFI_STATE, ACCESS_WIFI_STATE,
CHANGE_NETWORK_STATE. Requests for notification listener and accessibility service
should be considered extremely suspicious.

Secondary characteristics also include suspicious API calls including: setWifiEnabled,
requestNetwork, setProccessDefaultnetwork, bindProcessToNetwork, getSimOperator and
cancelAllNotifications. However, since these calls may be obfuscated and may be hard to
identify during static analysis, a more in-depth analysis may be necessary for certainty.

Improving Android security and privacy

Google continuously improves Android security and privacy as the mobile threat landscape
evolves and new threats and adversary techniques are discovered. For example, in the
operating system, API calls that can reveal potentially sensitive information continue to be
removed or restricted, and in the Google Play Store, the publication policies guard against
use of certain high-risk permissions (for example, the ability to receive or send SMSs) by
requiring a Permission Declaration Form to be completed justifying their use. We anticipate
Android security will continue to evolve to address abuse.

As discussed, applications currently can identify the cellular network operator and can send
network traffic over the cellular network without any transparency to the user. Additionally,
applications can request access to read and dismiss notifications, a very powerful capability,
without needing to justify this behavior.

Conclusion

Toll fraud has been one of the most prevalent types of Android malware in Google Play Store
since 2017, when families like Joker and their variants made their first appearance. It
accounted for 34.8% of installed Potentially Harmful Application (PHA) from the Google Play
Store in the first quarter of 2022, ranking second only to spyware.

By subscribing users to premium services, this malware can lead to victims receiving
significant mobile bill charges. Affected devices also have increased risk because this threat
manages to evade detection and can achieve a high number of installations before a single
variant gets removed.

With this blog, we want to inform end users about the details of this threat and how they can
protect themselves from toll fraud. We also aim to provide security analysts with guidance on
how to identify other malicious applications that use these techniques.

Our in-depth analysis of this threat and its continuous evolution informs the protection we
provide through solutions like Microsoft Defender for Endpoint on Android.

https://support.google.com/googleplay/android-developer/answer/9214102
https://transparencyreport.google.com/android-security/store-app-safety

26/27

Learn how Microsoft Defender for Endpoint provides cross-platform security, including mobile
threat defense capabilities.

Dimitrios Valsamaras and Sang Shin Jung

Microsoft 365 Defender Research Team

Appendix

Samples (SHA-256)

Sample SHA-256

Initial APK
file

2581aba12919ce6d9f89d86408d286a703c1e5037337d554259198c836a82d75
(com.cful.mmsto.sthemes)

Payload of
stage two:
Elf File
(loader)

904169162209a93ac3769ae29c9b16d793d5d5e52b5bf198e59c6812d7d9eb14
(PhoneNumberAlternateFormatsProto_355, decrypted)

Payload of
stage three:
APK (hostile
downloader)

61130dfe436a77a65c04def94d3083ad3c6a18bf15bd59a320716a1f9b39d826
(PhoneNumberAlternateFormatsProto_300, decrypted)

Payload of
stage four:
DEX (billing
fraud)

4298952f8f254175410590e4ca2121959a0ba4fa90d61351e0ebb554e416500f

Common API calls and permissions

API Calls Permissions SDK

setWifiEnabled CHANGE_WIFI _STATE
ACCESS_WIFI_STATE

<29

requestNetwork CHANGE_NETWORK_STATE >28

setProcessDefaultNetwork <23

bindProcessToNetwork >22

getActiveNetworkInfo ACCESS_NETWORK_STATE

getSimOperator

get (SystemProperties)

https://www.microsoft.com/en-us/security/business/endpoint-security/microsoft-defender-endpoint

27/27

addJavascriptInterface

evaluateJavascript >18

onPageFinished

onPageStarted

onReceive for SMS BroadcastReceiver w/
android.provider.Telephony.SMS_RECEIVED

RECEIVE_SMS >19

createFromPdu RECEIVE_SMS

getMessageBody

onChange for SMS ContentObserver w/
android.provider.telephony.SmsProvider’s content
URI (“content://sms”)

READ_SMS

sendTextMessage

onNotificationPosted

References

