Weaponization of Excel Add-Ins Part 2: Dridex Infection
Chain Case Studies

{7 unit42.paloaltonetworks.com/excel-add-ins-dridex-infection-chain

Saqib Khanzada May 19, 2022

By Sagib Khanzada

May 19, 2022 at 12:00 PM
Category: Malware

Tags: AgentTesla, Dridex, Macros, Microsoft Excel, next-generation firewall, WildFire

fFUNIT A2

This post is also available in: HZ<:E (Japanese)

Executive Summary

In Part 1 of this two-part blog series, we discussed briefly how XLL files are exploited to
deploy Agent Tesla. During December 2021, we continued to observe Dridex and Agent
Tesla exploiting XLL in different ways for initial payload delivery. A more in-depth look at the
Dridex infection chain follows.

Threat actors behind Dridex have been using various delivery mechanisms over the years. In
early 2017, we observed plain VBScript and JavaScript were being used. In later years, we
observed many variations, including Microsoft Office files (DOC, XLS) compressed in zip. In
2020, we found the malware using Discord and other legitimate services to download the

1/14

https://unit42.paloaltonetworks.com/excel-add-ins-dridex-infection-chain
https://unit42.paloaltonetworks.com/author/saqib-khanzada/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/agenttesla/
https://unit42.paloaltonetworks.com/tag/dridex/
https://unit42.paloaltonetworks.com/tag/macros/
https://unit42.paloaltonetworks.com/tag/microsoft-excel/
https://unit42.paloaltonetworks.com/tag/next-generation-firewall/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/excel-add-ins-dridex-infection-chain/
https://unit42.paloaltonetworks.com/excel-add-ins-malicious-xll-files-agent-tesla/

final payload. More recently, during December 2021, we received various Dridex samples,
which were exploiting XLL and XLM 4.0 in combination with Discord and OneDrive to
download the final payload.

In our previous blog focused on XLL files and Agent Tesla, we saw the abuse of the
legitimate Excel-DNA framework. In this blog post, we will look into other infection chains.
We will discuss different stages of the XLL and Excel 4 (XLM) droppers that deliver Dridex
samples. We will also briefly look at the Dridex Loader.

Palo Alto Networks customers receive protections against the attacks discussed here
through Cortex XDR or the WildFire cloud-delivered security subscription for the Next-
Generation Firewall.

Types of Attacks Covered Malware, Dridex

Related Unit 42 Topics Agent Tesla, Macros

Table of Contents

XLM Dropper

XLL Dropper

Active Directory Check
Discord URLs

Brief Loader Analysis
Unpacking Stages
First Stage

Second Stage

Final Dridex Loader
Micro VM

AP Hashing
Conclusion

Indicators of Compromise

XLM Dropper

While XLM 4.0 is not new, there has been a lot of evolution in how malware has abused it
since early 2020 Threat actors have gone from using simple, non-obfuscated macro formulas
to creating complex hidden variants which finally utilize native services such as rundll32 to
run a payload.

As the malicious usage of XLM 4.0 macros is quite new, vendors are striving hard to provide
coverage in such cases.

2/14

https://unit42.paloaltonetworks.com/excel-add-ins-malicious-xll-files-agent-tesla/
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/dridex/
https://unit42.paloaltonetworks.com/tag/agenttesla/
https://unit42.paloaltonetworks.com/tag/macros/

The XLM document in this case comprises two spreadsheets — one contains formulae and
the other simply contains some random data. See Figures 1-2 below.

*Advanced 4.8
" kBN EE # 6| A suns |

34263

8% | € Analyss ([outo] seffost]
Relation A Oxtex kol Fiestats | [spreadshet
K

Embedded
Embedded
Embedded
Embedded

Embedded
Embedded

Embedded

Embedded
Embedded

Embedded

[Macro1] (nacrosheet) [Sheet] (worksheet)
Defined names Formuas
Name

D575+ C2480

=AT252+ A1917

=Ad395+C55T2

RROKJEOR

Figure 1. The red “1” in the right side of the screenshot shows the macro 4.0 responsible for

dumping an HTML application file (HTA). The red “2” at the top shows the output of

highlighted formulae.

8 x4 anclyss [fauto] seffds]
..... A| Oxrex il Fiestats | spreadsheet

a]
bedded
bedded .
bedded
bedded
bedded 1
bedded
bedded
bedded 163
bedded
bedded
bedded e
bedded
155
bedded
bedded
5
bedded
bedded
bedded 163
bedded
bedded
5
& x
1
m
m
< I

[Macro] (macrosheet)] [sheet] (workshee)

Defined names _ Fofuas

Name.
RhOKEOR

Figure 2. The red box indicated by the number 1 shows an HTA script stored in ASCII values.

3/14

It can be seen that one of the formulae in the spreadsheet shown in Figure 1 tries to run with
Mshta, so we can assume it is not really an RTF. Upon further analysis, we found that indeed
itis an HTA. XLM 4.0 code in Sheet1 is responsible for reading ASCII values from Sheet2
(Figure 2) and generating the HTA file that downloads Dridex from Discord.

(116) & Chr(101) & Chr(32) & Chr(34) & "ru” & "nd" & "11" & Chr(51) & Chr(50) & CAr(46) & "ex” & "" & Chr(101) & " & * C" & "* & Chr(58) & "\" & "Pro" §
g g 60"

“text/vbscript” LANGUAGE="VBScript" >

& Chr(105+1-1) & 41-1) & O "t Chr(79+1-1) & "bje" &
& Chn(97+1-1) & "ta chr a 1) & "pa") Then

Figure 4. Encoded Discord URL in HTA file.

It is difficult to say anything about the XLS itself until it finally downloads a malicious payload.
Furthermore, the HTA is being dropped as RTF. This might confuse some security products
because they could analyze the HTA as an RTF file and might lose detection. Additionally,
the usage of Discord URLs makes the samples more evasive. (Though the examples given
here involve Discord URLs, we have also observed similar usage of OneDrive URLs. See
the GitHub link in the Indicators of Compromise section for specific examples of OneDrive
URLs.)

XLL Dropper

In comparison to the malicious XLL files that we discussed in Part 1 of this blog series, this
dropper is rather simple. An XLL file is just a DLL, but it must be executed using Excel. The
proper detonation is important for detection.

a/14

https://unit42.paloaltonetworks.com/excel-add-ins-malicious-xll-files-agent-tesla/

v 5
sub_18884380(

5
sub_10884380(

Figure 5. Discord URLs found i

DownlosdToFileldle. w2@ "
RLL loadloriickie, vee, L L2

memset(vs5@, @, sizeof(vS@));
sub_188a3CEe(

ogramData

sub_1888123@(42, ;
if { v1B5 + w164 <= 1

v31l = lpWideCharStr

goto LABEL_53;

pExecInfo.cbSize = 6@;
ExecInfo.fMask = 64;
cInfo.hwnd = 8;

@
E]

cInfo.lpverb

cInfo.lpFile = L"rundll32.exe";
cInfo.lpParameters
ExecInfo.lpDirectory
pExecInfo.nShow = 5;

memset (&pExecInfo.hInstApp, @, 28);

Active Directory Check

We think that both the XLL and VBScript downloaders are associated with the same actor
because, as we can see, both perform a check to see whether the LOGONSERVER and
USERDOMAIN environment variables are set. This would mean a system is on Active

Directory.

("“LISE RDOMATN™)
"XLOGONSERV! CHR({92+1-1+1-1}), "")

="text/vbscript” LANGUAGE="VBScript" :

Flgure 7. HA ropper checklng for the enwronmet rlables LOGONSERVER and _
USERDOMAIN.

vl, strlen(vl));

7
7
B
B
7
-
H-
7
7
H-
H-
B
H -
7
B
H-
H-
7
-
B
7
7
-
B
H-
7
7
B
H-
7
-

Figure 8. XLL dropper checklng for the environment variables LOGONSERVER and
USERDOMAIN.

Discord URLs

We extracted around 1,400 URLs (see Indicators of Compromise section at the end of this
post) from XLM and XLL files, however, at the time of analysis, only a few of them were still
up and were found downloading only Dridex. An interesting thing to note is that DLL files are
being downloaded as MKV. We saw that at the start of the infection chain that HTA was
being dropped as RTF.

Brief Loader Analysis

As can be seen in Figure 6, the downloaded payload is being run with the command

rundll32.exe * DirSyncScheduleDialog. However, as we opened the file for further analysis,
the method DirSyncScheduleDialog is not found in the export directory. It is interesting to
note that that function name belongs to a legitimate Windows DLL.

6/14

@ CFF Explorer VIl - [Oe5dech38260¢122df7233a5cebaec6aTbbf1f1F5ba10a305f274fe64d 17c293.ll] — O % | = cFFExplorerVill - [loghours.di] - o x
F Settings ? File Settings 7
N H _ OeSdecb38263c1a2df7233a5cebae x @ H " loghours.dil x
—~ —
— | Member Offset Size Value ~ Member Offset Size Value
File: OeSdech38269c 1a2df 7233 %] File: loghours dil
3 o IS st 00DABAT1 Dword 22000000 8 fe Characteristics 00010080 Dword 00000000
[|— (= Dos Header
T4fe64d 176293 dIl TimeDateStamp 000ABAIS | Dword 0061921 =] TimeDateStamp 00010084 Dword 8320261F
{— [Dos Header P der
3 1t MajorVersion 000ABAT | Word 0000 e MajorVersion 00010088 Word 0000
3 File Header MinorVersion 000ABATB | Word 4200 () Data Drectories] MinotVersion 000100BA | Word 0000
(5 Optional Header {— (5 Section Headers [x]
(5 Data Diectories] e LD || Baes 01000484 |— © Expor Drectory Ordinal Function RVA | Name Ordinal |NameRVA | Name
{— (5 Section Headers [x] Base 000ABA21 Dword 01000000 — I Import Directory
— 3 Export Directory = — () Resource Directory
[oot Doy NumberOfFunctions 000ABAZS | Dword 01000000 I=tisareind (oFunctions) | Dword T o— o
— gﬂemume Directory NumberOfNames 0DDABA29 Dword 38000000 — Eﬁe‘mﬂm Directory 00000001 00002850 0000 000119D1 LogonScheduleDialog
[— 3 Relocation Directory - |— (2 Debug Directory
[{53 Debug Directory e tion A RAIDNN Dwodd 3C000ABA [3 Addrass Converter 00000002 00007370 0001 00011949 ConnectionScheduleDialog
— % Address Converter Ordinal Function RVA | Name Ordinal | Name RVA Name [— “} Dependency Walker 00000003 00002040 0002 0001197D DialinHoursDialog
—), Dependency Walker —), Hex Editor - -
[%) Hex Editor [— % identiier 00000004 00003150 0003 00011943 DirSyncScheduleDialog
— % Identifier (nFunctions) | Dword Word Dword szhnsi [— b import Adder 00000005 00002860 0004 000119ES LogonScheduleDialogEx
— % import Adder I—), Quick Disassembler
t— %), Quick Disassembler [%\ Rebuilder 00000006 00002050 0005 0001198F
(— % Rebuilder L— 9, Resource Editor 00000007 00007630 0006 00011978
[i Resource Editor 00000008 00007640 0007 00D11A15
L— 4 uPx Unifity
00000009 00007380 0008 00011962
00011989

Figure 9. The missing method(left) is shown, compared to the legitimate Windows
loghours.dll with exported function DirSyncScheduleDialog (right).

Unpacking Stages

1. Decrypt and Load second-stage DLL from rdata section.
2. Second DLL further unpacks the final Dridex Loader.
3. Jumps to DirSyncScheduleDialog.

First Stage

The first stage is fairly simple in terms of functionality; its only job is to decrypt a small DLL
from the rdata section and move it to allocated memory and run it.

However, there are a few anti-analysis tricks.

1. Usage of junk code.

2. A Large Loop with INT3 instructions.

3. Usage of undocumented functions such as Idrgetprocedureaddress and LdrLoadDII to
avoid common hooks.

While junk code might hinder manual analysis, large loops containing INT3 breakpoints
might delay the execution in some cases.

The first stage has a handful of functions. We renamed them to reflect trivial loader behavior.

7/14

EnumPrintProc
CryptCATOpen

with Hex

Fure 10. Renamed functions (left); jump to allocated memory (center); anti-VM function,
CC bytes replaced with NOP (right).

Second Stage

Once the first stage passes control to the in-memory DLL (Figure 8), it further unpacks the
final payload and transfers control to it. The second stage is also trivial. However, the stage
does include a few interesting anti-analysis tricks to note.

1. Calls Disablethreadlibrarycalls to increase invisibility of final DLL.
2. Checks LdrLoadDll for hooks.

FEEEEEL

@

Fun
H
H
/]
/]
/]
/]
H
/]
/]
/]
/]
/]
/]
/]
/]
/]
/]
/]
/]

FEEFEEEEEEEE
fEegoeggaeeg

Figure 11. Renamed functions (left), check for LdrLoadDIl hook (center),
disableThreadLibraryCalls in imports (right).

Final Dridex Loader

Finally, we are able to see a call to DirSyncScheduleDialog. It is interesting to note that
Dridex Loader is not performing DLL side loading. However, the final payload is loaded as
loghours.dll, a legitimate windows DLL.

8/14

2 W

9% ™

] 4] File: dridex_payload dil
f— (= Dos Header
Mt Headers

File Header

Optional Header

(2] Data Directories [x]
f— (3 Section Headers [x]

{— 3 Export Directory

—) Import Directory

—) Resource Directory

{— (D Relocation Directory

{— (2 Debug Directory

t— @, Address Converter
t— 4, Dependency Walker
—), Hex Editor

%, Resource Editor
L— 4}, uPX wility

dridex_payload il Member Offset Size Value ~

Member Offset Size Value ~ g w:)] ﬁle[;::ge::rs‘dl Characteristics 0000BOED Dword 00000000

Characteristics 0001C3A0 | Dword 00000000 Nt Headers TimeDateStamp 0000BOE4 Dword AGOTBEAT

TimeDateStamp 0001C9A4 Dword FFFFFFFF g;::;d; er MajorVersion 0DDDBOES Word 0000

MajorVersion 0001CoAE | Word 0000 (2 Data Directories] MinotVersion O0D0BOEA | Word 0000

MinorVersion 0001C9AA |Word 0000 [ég:;::”m’t;iz‘ K Name ODDOBOEC Dword 0000BD6C

Name 0001C9AC Dword 0001CA2C — (D Import Directory Base (000BOFO Dword 00000001

Base 0001C9B0 | Dword 00000001 — 3 ;:::;:ﬂ”[‘::;:w NumberOffunctions 0000BOF4 Dword 00000004

NumberOfFunctions 0001C9B4 Dword 00000006 — |2 Debug Directory NumberOfNames 0000BOF8 Dword 0000000A

Number0fNames 0001C%B8 | Dword 00000006 AddressOfFunctions 0000BOFC Dword 00008008 .

AddressOfFunctions 0001C9BC Dword 0001C9C8 v Ordinal FunctionRVA | Name Ordinal | Name RVA R

Ordinal Function RVA | Name Ordinal | NameRVA | Name
(nFunctions) | Dword Word Dword szhnsi

(nFunctions) Dweord Word Dword szAnsi 3} Resource Editor 00000001 00004990 0000 O000BEO1 LogonScheduleDialog

00000001 00005527 0000 0001CA33 ConnectionScheduleDialog | — “ UPX Usility 00000002 00008340 0001 0000BD79 ConnectionScheduleDialog

00000002 00001315 0001 0001CAS2 DialinHoursDialeg 00000003 00004860 0002 0000BDAD DilinHoursDialog

00000003 o00021cs 0002 0001CAB4 DiSyncScheduleDialog 00000004 00004ED0 0003 0000BDD3 DirSyncScheduleDialog

00000004 00017829 0003 O001CATA | LogonScheduleDislog 00000005 00004980 0004 O0D0BETS LogonscheduleDialogEx

00000005 0000759E 0004 O001CABE ReplicationScheduleDislog 00000006 00004880 0005 O000BDBF DilinHoursDislogEx

00000006 00017832 0005 0001CAAE ReplicationScheduleDislogEx 00000007 00008570 0006 0000BE2E ReplicationScheduleDialog
00000008 00008590 0007 000OBE45 ReplicationScheduleDialogEx
00000009 00008360 0008 0000BD32 ConnectionScheduleDialogEx
0000000A 000D4EFD 0009 0000BDES DirSyncScheduleDialogEx

Figure 12. A side-by-side comparison of the Export table from the Dridex Loader (left) and

the legitimate loghours.dll (right).

endp

Figure 13. Dridex Loader EP; anti-VM loop can be noticed in start.

Micro VM

Dridex implements a micro VM, which adds an exception handler using
AddVectoredExceptionHandler to emulate the call eax instruction.

sub_741ADD28

Stext: 74145803 get proc ddress by hash
eax, eax
short loc_741A5811
dword ptr [esp +var_18]
; Trap to Debugger
; Trap to Debugger

loc_741A5811: ; CODE XREF: sub_741AS7DC+2ET]

uh 741B223C

¥

al l..l

[
o X
|

w oMok

loc_741A5823: ; CODE XREF: sub_741AS57DC+584

[
7 e

oc_741AS838

.l::ll

1
di

-3
(1]

M M v m M
(= =
.

b
-

h:’- loc_741A5823
short lcc_?41A5?_9

loc_741A5838: ; CODE XREF: sub_741AS7DCHAET]

short loc_72A434CC
eax, eax

short loc_72A434FA

loc_72A434B1: ; CODE XREF: exception_handler function+ETj
; exception_handler_ function+15T1j ...

mov a

mov dx

push X

push ax

exception_handler_function

.

]
3

call near ptr get_proc_address

test eax, eax

jz short loc_72A434CC

push

push

int ; Trap to Debugger
.rdata:72A434C8 int ; Trap to Debugger

loc_72A434CC: ; CODE XREF: exception_handler_ function+231j
3 .rdata:72A434C41]
]

i+

EXT._Esp], ; ESP = ESP - 4
i+4]
x+
cx]

-
.
=1
<
=
e

] p
E|

m o

sl
L

o

CONTEXT._Esp] ; ECX CONTEXT.ESP
3 EAX = [ECX] = CONTEXT.ESP
] ; Exception Address

o on
)

om
)
) (e

T =
] a

.,.
o

)

3 PUSH RETURN ADDRESS ON STACK

mr—mmim

[=0 T B W]
ERE

CONTEXT._Eax]

; Set CONTEXT.EIP = C.EAX = API ADDRESS

mr— oo

Figure 15. Exception handler emulating call eax.

As can be seen in Figure 15, in the case of EXCEPTION_BREAKPOINT, the call eax
instruction is being emulated. For the sandbox, this should not be a problem; however, it can
hinder manual analysis. As can be seen, the exception handler only emulates one
instruction. Patching these two INT3 instructions with call eax should not be a big deal. A
simple IDA script to patch all CC CC instructions with FF DO should do the trick.

loc_741AS7ES:

loc_741A5811:
push
pop
call
mov
lea

call

Figure 16. Patched INT3 instruction with “call eax”.

APl Hashing

API Hashing is trivial, however, we observed a few obfuscations and variations in this Dridex
Loader.

1. Multiple hashing functions.
2. Masqueraded Prolog for hashing function.

We observed that, in order to hinder analysis further, this Dridex Loader is using multiple
hashing functions. We observed at least two hashing functions and one masqueraded Prolog
function, as can be seen below.

11/14

; ntdll NtMapViewOfSection

Mo

call 74 : 3 ntdll_NtUnmapV

push

push

mov X

call 7 ; ntdll Nt

push

push

mowv ¢

call sub_74 ; ntdll _NtFreeVirtualMemory
push

push

mov

call 74 ; mtdll MtProtectVirtual
push

push

mov c

call 74 ; ntdll NtWaitForSing
push

push

mov p ;

call sub_7¢ ; ntdll NtSetEw

; ntdl1_Nt

3 ntdll_mem

mow

call

; ntdll RtlExitUserThread

mov 3

call 74 ; ntdll RtlCreateHeap
push

push

Figure 17. APl hashing function sub_744102D4

12/14

ess_1 endp

sroc_address_1 mas proc near

push
push
mov
mov
Xor
inc
mov
call
test

Figure 18. Masqueraded Prolog function.

It can be seen that the Prolog of the get_proc_address_1 function is not normal. The
registers eax and edx are being used to pass module hash and API hash to the
get_proc_address_1_mas function. It is possible to call get_proc_address_1 to set eax and
edx. Alternatively, they can be set before calling get_proc_address_1_mas. If a researcher is
writing an automation for resolving APIs — such as using AppCall — it is important to watch
out for this trick.

We used the IDA AppCall feature to extract all APIs used in the loader. Based on extracted
APls, this Dridex Loader is not different from the Dridex Loader that was observed in early
2021.

Key functions of the Dridex Loader:

1. Check process privileges.

2. AdjustToken privileges.

3. GetSystemInfo

4. Uses the “Atomic Bombing” injection technique to load core payload downloaded from
command and control server.

The Dridex Loader has been extensively analyzed. Here, we focused mainly on small tricks
used across the infection chain to avoid detection and slow down analysis.

Conclusion

13/14

We observed a continued evolution of the infection chain. We saw how malware authors can
evade detection engines using legitimate services such as Discord and OneDrive. We
analyzed how malware authors continue to add more stages in the infection chain.

Lastly, we briefly looked into the Dridex payload. Although the final payload was similar to the
previous Dridex version in terms of behaviour, we noticed an additional unpacking stage and
a couple of new changes in the API hashing function. These simple yet powerful tricks that
can be challenging for malware analysts, helping the malware avoid detection and slow
down analysis.

Palo Alto Networks customers receive protections against the attacks discussed here
through Cortex XDR or the WildFire cloud-delivered security subscription for the Next-
Generation Firewall.

If you think you may have been compromised or have an urgent matter, get in touch with the
Unit 42 Incident Response team or call:

» North America Toll-Free: 866.486.4842 (866.4.UNIT42)
 EMEA: +31.20.299.3130

o APAC: +65.6983.8730

e Japan: +81.50.1790.0200

Indicators of Compromise

Indicators of compromise related to the malware discussed here can be found on GitHub.

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

14/14

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/network-security/next-generation-firewall
http://start.paloaltonetworks.com/contact-unit42.html
https://github.com/pan-unit42/iocs/blob/master/Dridex%20Infection%20Chain%20Case%20Studies
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

