
1/9

May 9, 2022

From the Front Lines | Unsigned macOS oRAT Malware
Gambles For The Win

sentinelone.com/blog/from-the-front-lines-unsigned-macos-orat-malware-gambles-for-the-win/

By Dinesh Devadoss and Phil Stokes

Researchers looking into a new APT group targeting gambling sites with a variety of cross-
platform malware recently identified a version of oRAT malware targeting macOS users and
written in Go. While neither RATs nor Go malware are uncommon on any platform, including
the Mac, the development of such a tool by a previously unknown APT is an interesting turn,
signifying the increasing need for threat actors to address the rising occurrence of Macs
among their intended targets and victims. In this post, we dig deeper into the technical
details of this novel RAT to understand better how it works and how security teams can
detect it in their environments.

https://www.sentinelone.com/blog/from-the-front-lines-unsigned-macos-orat-malware-gambles-for-the-win/
https://www.trendmicro.com/en_us/research/22/d/new-apt-group-earth-berberoka-targets-gambling-websites-with-old.html


2/9

oRAT Distribution

The oRAT malware is distributed via a Disk Image masquerading as a collection of Bitget
Apps. The disk image contains a package with the name Bitget Apps.pkg and the distribution
identifier com.adobe.pkg.Bitget .

https://mothersruin.com/software/SuspiciousPackage/


3/9

The disk image and installer package are notable for two reasons: neither has a valid
developer signature, and the latter doesn’t actually install any files and only contains a
preinstall script, a succinct bash shell script whose purpose is to deliver a payload to the
/tmp  directory, give the payload executable permissions, and then launch it.

Precisely what kind of lure the threat actors use to convince targets to download and launch
the dropper is unknown at this time, but given that the target would need to override default
security warnings from Gatekeeper, it is likely either that the users are sourcing the malware
from an environment where this is typical (e.g., a 3rd-party software distribution site that
regularly delivers unsigned software) or users have been pre-groomed to bypass
Gatekeeper during a social engineering engagement of some kind.

In either case, the fact that there’s no deliverable from the user’s perspective is a risky
gamble on the part of the threat actors. After running the installer and finding that it did not
provide whatever they were expecting, users are likely to become suspicious. This might
suggest the campaign was broadly targeted and that the threat actors were playing a
numbers game, happy to sweep up opportunistic infections as they occurred.

The oRAT Payload

https://www.sentinelone.com/blog/the-complete-guide-to-understanding-apple-mac-security-for-enterprise-read-the-free-ebook/
https://www.sentinelone.com/blog/scripting-macs-with-malice-how-shlayer-and-other-malware-installers-infect-macos/


4/9

Things get more interesting when we examine the darwinx64  payload dropped in the
/tmp  folder. The binary doesn’t define any Symbols, and outputting the list of Sections tells

us that the file has been packed with UPX.

Packed files like this are opaque to static analysis, but fortunately standard UPX is very easy
to unpack thanks to the UPX utility itself. Dumping the strings tells us that it was packed with
UPX 3.96, the most recently released version available.

The packed binary is around 3MB in size, but after unpacking we are presented with a
massive ~10MB file. Such large file sizes are typical of cross-platform malware, particularly
when binaries are compiled in Go, since they contain the entire run-time for the language
along with a number of supporting libraries.

Fortunately, from a reverse engineering perspective, we can easily ignore most of the
standard code that is common to all Go bins and focus on what is unique to the sample at
hand. For IDA Pro users, see here; for r2 users, we can start by printing out a list of the
functions flagged with sym._main .

https://upx.github.io/
https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-two/
https://www.sentinelone.com/labs/alphagolang-a-step-by-step-go-malware-reversing-methodology-for-ida-pro/
https://www.sentinelone.com/labs/6-pro-tricks-for-rapid-macos-malware-triage-with-radare2/


5/9

In Go binaries, the program code entrypoint is at main.main, and we can work our way
through there to see what other functions, packages and modules are called. Below, we see
that the main.main function calls out to another custom package, orat_utils .

The orat_utils  package contains several interesting functions and gives us an entry into
understanding how the RAT works.

Of particular interest is the LoadConfig  function. This is used to parse a blob of data
appended to the binary which turns out to be an encrypted malware configuration. The
encrypted data at the end of the unpacked binary occupies 166 bytes and consists of the
data, an AES key, and two bytes representing the entire blob size.



6/9

Once decrypted, the blob turns out to contain configuration data for the malware C2.

After the malware decodes the config, it calls into sym._orat_cmd_agent.app  and begins
a number of loops through sys._orat_protocal.Dial . Depending on the config, it will call
one of orat_protocol.DialTCP , orat_protocol.DialSTCP  or
orat_protocol.DialSUDP  to establish a connection. The TCP protocols leverage smux

while the SUDP protocol leverages QUIC. The malware loops with a sleep cycle of 5
seconds as it waits for a response.

The sym._orat_cmd_agent.app  contains the primary RAT functionality of the malware and
defines the following functions.

https://github.com/xtaci/smux
https://github.com/lucas-clemente/quic-go


7/9

orat/cmd/agent/app.(*App).DownloadFile 
orat/cmd/agent/app.(*App).Info 
orat/cmd/agent/app.(*App).Join 
orat/cmd/agent/app.(*App).KillSelf 
orat/cmd/agent/app.(*App).NewNetConn 
orat/cmd/agent/app.(*App).NewProxyConn 
orat/cmd/agent/app.(*App).NewShellConn 
orat/cmd/agent/app.(*App).Ping 
orat/cmd/agent/app.(*App).PortScan 
orat/cmd/agent/app.(*App).registerRouters 
orat/cmd/agent/app.(*App).run 
orat/cmd/agent/app.(*App).Screenshot 
orat/cmd/agent/app.(*App).Serve 
orat/cmd/agent/app.(*App).Unzip 
orat/cmd/agent/app.(*App).UploadFile 
orat/cmd/agent/app.(*App).Zip 

Detecting oRAT in the Enterprise

The SentinelOne agent detects the oRAT payload as malicious when it is written to disk,
protecting SentinelOne customers from this threat.

The SentinelOne agent also detects the malware on execution.



8/9

For those not protected by the SentinelOne platform, security teams are advised to hunt for
artifacts as listed in the Indicators of Compromise section at the end of this post.

Conclusion

The oRAT malware targets macOS users using a combination of custom-written code and
public Golang repos. The developers are clearly familiar with using sophisticated features of
Go for networking and communications, but due to the simplistic way the malware dropper
was packaged, unsigned and with no observable install to distract the victim, it would seem
they are less experienced with the challenges of infecting Mac users. Unfortunately, other
threat actors have provided plenty of examples from which this new player can learn, and
security teams should expect to see any future campaigns from this actor using more
sophisticated droppers.

Indicators of Compromise

Filename SHA1

bitget-0.0.7 (1).dmg 3f08dfafbf04a062e6231344f18a60d95e8bd010

Bitget Apps.pkg 9779aac8867c4c5ff5ce7b40180d939572a4ff55

preinstall 911895ed27ee290bea47bca3e208f1b302e98648

darwinx64  (packed) 26ccf50a6c120cd7ad6b0d810aca509948c8cd78

darwinx64  (unpacked) 9b4717505d8d165b0b12c6e2b9cc4f58ee8095a6



9/9

Paths

/tmp/ darwinx64


