
1/15

Reversing a NSIS dropper using quick and dirty
shellcode emulation

malcat.fr/blog/reversing-a-nsis-dropper-using-quick-and-dirty-shellcode-emulation/

Sample:

e850f3849ea82980cf23844ad3caadf73856b2d5b0c4179847d82ce4016e80ee (Bazaar, VT)

Infection chain:

Excel stylesheet -> Office equation -> Shellcode (downloader) -> NSIS installer -> Shellcode
(stage 1) -> Shellcode (stage 2) -> Lokibot

Tools used:

Malcat, Speakeasy emulator

Difficulty:

Easy

The Excel document

The sample we are about to dissect today is an OpenXML Excel document which came as
email attachment. The malicious document is very similar to the one we did analyze in our
previous blog post: an encrypted OpenXML Excel document embedding an Equation object
exploiting CVE-2018-0798. The same author is most likely behind this document as well,
they just updated the bait picture:

https://malcat.fr/blog/reversing-a-nsis-dropper-using-quick-and-dirty-shellcode-emulation/
https://bazaar.abuse.ch/sample/e850f3849ea82980cf23844ad3caadf73856b2d5b0c4179847d82ce4016e80ee/
https://www.virustotal.com/gui/file/e850f3849ea82980cf23844ad3caadf73856b2d5b0c4179847d82ce4016e80ee
https://malcat.fr/
https://github.com/mandiant/speakeasy
https://malcat.fr/blog/exploit-steganography-and-delphi-unpacking-dbatloader/

2/15

Figure 1: Excel sheet baiting the user to deactivate safe mode
We won't go through the exploit shellcode extraction and decryption process again since the
procedure is exactly the same (see here, shellcode offset is also 0x50). The exploit is again
a downloader, downloading from the following url:

hxxp://103.153.79.104/windows10/csrss.exe

At the time of the analysis, the file is still online. But this time, we don't get a DBatLoader
instance, but a NSIS installer instead. So let us fetch the file and have a look at the installer.

NSIS installer

The file csrss.exe is a 418KB PE file of sha256
291df8186e62df74b8fcf2c361c6913b9b73e3e864dde58eb63d5c3159a4c32d (Bazaar,

VT). A NSIS installer is nothing more than a NSIS archive appended to the NSIS PE installer.
The file format of the archive, while not very documented, is relatively simple as we will see.

NSIS archive

A NSIS archive is composed of a small NSIS header followed by the archive content. The
header does not contain a lot of information:

https://malcat.fr/blog/exploit-steganography-and-delphi-unpacking-dbatloader/#exploiting-cve-2018-0798
https://bazaar.abuse.ch/sample/291df8186e62df74b8fcf2c361c6913b9b73e3e864dde58eb63d5c3159a4c32d/
https://www.virustotal.com/gui/file/291df8186e62df74b8fcf2c361c6913b9b73e3e864dde58eb63d5c3159a4c32d

3/15

FirstHeader:
 Flags: // some installation
flags
 Signature: 0xdeadbeef // NSIS archive start
magic
 Magic: "NullsoftInst" // also magic
 InstallerSize: 0x6244 // unpacked size of
the setup script
 ArchiveSize: 0x5e12e // size of the
archive

Like you can see, it does not tell us a lot. Directly following the headers come the "files". I
say "files" because they don't really have names, it is more like a list of data bytes or buffers.
The files are compressed, and can be stored using two modes:

the solid mode: archive content is a single compressed stream. The unpacked stream
is a sequence of N buffers, where each buffer is prefixed by a DWORD telling the size
of the buffer.
the non-solid mode: archive content is a sequence of N compressed streams, one for
each file. Each compressed stream is prefixed by a DWORD telling the size of the
stream.

There is sadly no flag in the header telling us which mode is used, this information is
hardcoded inside the NSIS installer executable. The only solution there is trial and error: if
the start of the archive starts with a DWORD which could be a size, then it's most likely the
non-solid mode. If it looks like a compression header, then it's most likely the solid mode.
And regarding compression, NSIS supports three compression algorithms:

LZMA (without headers)
Zlib
A custom bzip2 compression algorithm

Malcat supports NSIS files using both solid and non-solid mode for the Zlib and LZMA
compression methods, but lacks support for bzip2, since the compression algorithm is
custom. But since it's also the least used one, it's not really a big deal. The NSIS archive we
are looking at is a solid LZMA archive, so unpacking it is no issue. Like for most archive
formats, Malcat lists found files in the upper left corner of the screen, under the Virtual File
System tree. Double-clicking on a file opens it inside Malcat.

 Figure 2: Content of the archive

4/15

The first file is always the installer setup script, followed by user-provided files and/or installer
plugins. As you can see, Malcat did give name to some of the files (all but the last one) which
somehow contradicts what I said before. But these names have been recovered by reversing
the SETUP script, and there is no guarantee that it is the real name for these files. Even
worse, a buffer in the archive can be extracted under different names on the local filesystem,
so don't trust these names 100%.

The SETUP script

The first thing to look at when reversing a NSIS installer is the setup script. NSIS scripts are
a bunch of sections and assembly code written for the NSIS virtual machine. The NSIS VM
architecture is relatively simple:

Every instruction is encoded on 7 DWORDs: first DWORD is for the opcode (about 70
different opcodes) and the other 6 DWORD encode arguments
Depending on the opcode, arguments can be either:

a register (up to 31 registers): $0 .. $9 , $R0 .. $R9 or one of 11 specific
registers like $EXEPATH or $CMDLINE (some are read-only, so more like
constants)
a global variable: $var0 .. $varN
an integer, signed or unsigned. It can also be an offset into the code section for
jump-like opcodes
a string, more precisely an index into the Strings section of the setup script

Strings themselves can be somewhat complex to parse/interpret:
there are 3 NSIS versions: ansi, park (a mix between ansi and unicode) and
unicode. Each version encodes strings differently. There is sadly no flag telling
you which version is used.
strings can contains any of 4 special opcodes: skip , shell , var or lang
strings can include reference to system paths, variables or other strings, e.g.
"open {$INSTDIR}\rampage\goodie\noticeably.tif"

Luckily for us, the full edition of Malcat features a NSIS disassembler / decompiler, so let us
jump directly to the entry point of the script (Ctrl+E) and have a look at the OnInit method:

5/15

Figure 3: NSIS setup script entry point
We can see that the script does the following:

extract the first buffer (offset header+0 in archive) to a file named d54hdan9c9ebsx
extract the second buffer (offset header+0x34f0f in archive) to a file named lognp
extract the third buffer (offset header+0x36390 in archive) to
${PLUGINDIR}\dwksh.dll , wherever that could be

call dwksh.dll's exported method sdvffryp without any argument

The rest of the method seems like junk code, judging by the strings which are either random
letters or picked out of dictionary. Quickly inspecting the first two files tells us that both are
encrypted and/or compressed, so no quick-win there. We have to dig into the dll.

Stage 1: dwksh.dll

dwksh.dll is a 294KB 32-bits DLL of sha256
be00a655cdf4e4706bf1bbf3659d698f967cad66acdf7cda0d12f16dc0cfda3e (VT). It

contains several obfuscated methods. But we reversed the setup script and know what to
look for: the method sdvffryp . This methods starts by reading a local file named lognp :

https://www.virustotal.com/gui/file/be00a655cdf4e4706bf1bbf3659d698f967cad66acdf7cda0d12f16dc0cfda3e/detection

6/15

Figure 4: lognp file is accessed
It then seems to decrypt it in memory into an executable buffer before jumping at the
beginning of the buffer (see the call eax below?). The file lognp is relatively small
(5KB), it definitely looks like a shellcode.

Figure 5: decryption loop in method sdvffryp

7/15

The decryption is pretty straightforward according to the sleigh decompiler. Every byte seem
to be decrypted using the following formula:

 byte[i] = ((((byte[i] - 3) ^ 0xf2) + 0x11) ^ 0x28) - 1

Decrypting the lognp file should be a piece of cake. Just open the file inside Malcat, select
every byte (Ctrl+A) and open the transform dialog (Ctrl+T). There you can chose the
custom arithmetic transform which allows you to transform sequence of

bytes/words/dwords using a custom python expression. Just paste the equation above,
replacing byte[i] by value and voila, you've just decrypted the second stage.

Figure 6: decrypting the shellcode
For the lazy readers, you can download the decrypted lognp file here (password: infected).

Stage2: obfuscated shellcode

Analyzing the shellcode

The lognp file, once decrypted, does not appear to be in any known file format. But the first
byte is E9 , which is a jump in the x86 architecture and is very typical for shellcode prologs.
So before starting the analysis, we will have to tell Malcat two things:

https://malcat.fr/blog/reversing-a-nsis-dropper-using-quick-and-dirty-shellcode-emulation/shellcode.zip

8/15

the architecture used: x86 in our case. This can be set using the dropdown menu in the
status bar
the entry point of the shellcode, which is at address 0 in our case. We just have to
define a new function start at this address using the context menu in disassembly
mode (F3)

After this, Malcat is smart enough to recover most of the shellcode's CFG using its usual set
of analyses. Following the control flow, we quickly arrive in the function sub_7dd which
contains interesting patterns:

the string d54hdan9c9ebsx (one of the NSIS archive's file names) is pushed on the
stack at address 0x8eb
something like a CreateFileA API call is performed at address 0x989 (the constant
0x80000000 is most likely for GENERIC_READ). If we wanted to be sure, we would

have to emulate the API lookup function at address 0x776 , but it looks like safe
assumption.
soon after, the function sub_a01 gets called. Decompiling this functions reveals
something similar to a decryption loop

The whole process can be retraced in the animated GIF below:

9/15

Figure 7: locating the decryption function inside the shellcode
The code of the decryption function is given below. It is obviously obfuscated, and sadly it
would not be immediate to reimplement it in python in Malcat. So we will have to find an
alternative. Since the decryption function prototype is very simple (it just needs a pointer to
the buffer and the buffer size) and is without side effects, why not give emulation a go?

10/15

BYTE* sub_a01(BYTE* buffer, uint4 size) {
 uint1 uVar1;
 char cVar2;
 uint1 uVar3;
 uint4 i;

 i = sub_0;
 while (i < size) {
 uVar3 = i;
 uVar1 = -uVar3 - ((*(buffer + i) >> 1 | buffer[i] << 7) - 0x40 ^ 0xf2);
 uVar1 = -uVar3 - (uVar1 >> 7 | uVar1 * '\x02');
 uVar1 = -uVar3 - (((uVar1 >> 3 | uVar1 * ' ') ^ uVar3) - uVar3 ^ 0x9c) ^
0xd6;
 cVar2 = ~((uVar1 >> 7 | uVar1 << 1) + 0x34 ^ 0x87) - 0x10;
 uVar1 = ~(((-cVar2 >> sub_5 | cVar2 * -8) ^ 0x1d) + 0xac) ^ 0x5e;
 uVar1 = ~-(((0x99 - ((uVar1 >> 2 | uVar1 << 6) + 0x49) ^ 0xa0) + 0x30 ^ 0x34)
+ uVar3);
 uVar1 = (-uVar1 >> 6 | uVar1 * -4) - uVar3 ^ uVar3;
 uVar1 = (-uVar1 >> 2 | uVar1 * -0x40) + 0x93;
 uVar1 = (-((((uVar1 >> sub_5 | uVar1 * '\b') - 0x2e ^ 7) + 0xd ^ 0x96) +
0x31) ^ 0x73) + uVar3;
 uVar1 = -uVar3 - ((uVar1 >> 2 | uVar1 * '@') + 0x61) ^ uVar3;
 uVar1 = ~((uVar1 >> 3 | uVar1 << sub_5) ^ uVar3);
 uVar1 = (uVar1 >> 7 | uVar1 << 1) + uVar3 ^ 0x2e;
 uVar1 = ~(~((uVar3 - (~(~(-(0xbc - ((uVar1 >> 6 | uVar1 << 2) - uVar3) ^
0x1e) ^ 0xc5) ^ 0x46) ^ 0xc1) ^ 0x4c) +
 uVar3) ^ 0x4d) + 0x4c ^ uVar3;
 uVar3 = 0x2d - (-((uVar1 >> 3 | uVar1 << sub_5) + uVar3) ^ 0x43);
 buffer[i] = (uVar3 >> 7 | uVar3 * '\x02') + 0x15;
 i = i + 1;
 }
 return buffer;
}

Emulating the decryption function

To emulate shellcodes, Malcat comes bundled with a script named
speakeay_shellcode.py which emulates shellcodes using the Speakeasy emulator. Note

that Speakeasy is not bundled with Malcat, you will have to install the python package
yourself (and if you are running Malcat under Windows, be sure to check Use system
python interpreter in the options).

Patching lognp

Before emulating anything, we need to solve a problem: the data to decrypt
(d54hdan9c9ebsx) is not embedded in the lognp shellcode, it is read from the filesystem
using CreateFileA . So emulation is likely to fail. How are we going to solve this issue?

There is the clean way: we could hook the CreateFileA/ReadFile APIs in speakeasy and
intercept the call to give back the content of the file d54hdan9c9ebsx .

https://github.com/mandiant/speakeasy

11/15

But there is also the dirty way: we could patch the decrypted lognp shellcode in order to
embed the content of d54hdan9c9ebsx in the shellcode space and patch the shellcode
entry point to perform a call to the decryption function with the right parameters. Of course
we will chose the dirty way. It is not only way faster, it is also more fun.

Here is how to proceed:

1. First open a copy of the decrypted lognp shellcode in Malcat with extra space at the
end of the file (File > Open Copy of File). The file d54hdan9c9ebsx is 216843 bytes
big, we'll append 300KB just to be sure.

2. Copy the content of the file d54hdan9c9ebsx in the clipboard: in a second Malcat
instance, open d54hdan9c9ebsx and then hit Ctrl+A followed by Ctrl+C

3. Paste the copied data after the shellcode in the first Malcat instance, let's say at
address 0x2000 to make it easy to remember

4. Enter disassembly view (F3) and go to the shellcode's entry point at address 0

Malcat does not (yet) support assembling your own instruction, so we will need to manually
edit the machine code. Click on any hexa byte in disasm mode and enter edit mode (Insert
key). We need to assemble the following code:

1. Push the second parameter which is the size of the buffer to decrypt (216843 =
0x34F0B). push uint32 is assembled using 0x68 + LSB-encoded uint32 in x86:
68 0B 4F 03 00

2. Push the first parameter which is the address of the buffer to decrypt (0x2000): 68
00 20 00 00

3. Call to the decryption function. The call opcode is 0xE8 + signed displacement
starting from the end of the call opcode. The end of our call opcode is at address
0x000F , we want to jump to 0x0A01 , so 0x0A01 - 0x000F = 0x09f2 . We need

to assemble E8 F2 09 00 00 .

You can use Malcat's calculator to perform quick computation while analysing a binary,
just hit Ctrl+Space. Internally, it uses the python interpreter, so use python syntax.

At the end, the patched shellcode should look like in the picture below. For the lazy readers,
you can download the patched lognp file here (password: infected).

https://malcat.fr/blog/reversing-a-nsis-dropper-using-quick-and-dirty-shellcode-emulation/shellcode.patched.zip

12/15

Figure 8: patching the shellcode

Running speakeasy

Now the only thing we have to do is to let speakeasy do its magic:

let us define the entry point: right-click at address 0 and chose Force function start in
the context menu
run the script speakeasy_shellcode.py (Ctrl+U to run user scripts)

... and voila, Malcat should open the result in a new file. A PE file has been detected by
Malcat's file format parser at address 0x2000, perfect! Just double-click the PE file under
"Carved Files" to open it.

13/15

Figure 9: decrypted d54hdan9c9ebsx

Stage 3: Lokibot and config extraction

The last (and final) stage we get is a PE file of sha
02dee91a81652e5234414e452622307fd61e7988e82bec43665f699f805c3151 (VT).

Judging by the low entropy and the visible strings, the file does not seem to be obfuscated,
good news. So which kind of malware do we face? Malcat's Yara rules already spotted one
of main malware intent: stealing credentials, as we can see in the screenshot below:

Figure 10: file summary, displaying matching Yara rules
If we want to be more precise, we can use Malcat's online intelligence view (Ctrl+I, only for
paid versions). Normally I would avoid using Virustotal to identify a malware family (because
of packer reuse among threat actors). But here we are dealing with the plain text final

https://www.virustotal.com/gui/file/02dee91a81652e5234414e452622307fd61e7988e82bec43665f699f805c3151

14/15

malware, so we should get at least some valid labels. In our case, it seems to be Lokibot, a
simple password stealer:

Figure 11: querying online intelligence
Can we go further? The last section of the PE file is weirdly named ".x" . It contains a
single method at address 0x4a0000 and a few bytes of referenced data at address
0x4a0074 . Looking at the function, it seems to decode the data using a XOR opcode, with

the key 0xDDDDFFFF . But actually, only the first byte of the key is used (0xFF), so it is
strictly equivalent to performing a simple NOT on the data. Great, let us decrypt these few
bytes using Malcat's transform:

15/15

Figure 12: decrypting the data buffer in the .x section
Great, we got the address of the command and control server for this sample. This was a
pretty easy catch ^^

Conclusion

NSIS installers have been abused by malware authors for some years now. While the NSIS
VM instruction set is relatively limited, DLL plugins allow malicious actors to extend installer
capabilities and obfuscate malware. In this example, two layers of shellcodes were used by
the NSIS installer in order to deliver its final payload: a LokiBot password stealer.

Instead of running everything in a VM, we made great use of Malcat's NSIS disassembler,
Malcat's transforms and speakeasy emulator in order to quickly unpack these two layers
statically.

We hope you enjoyed this new quick-and-dirty malware unpacking sessions. Future blog
posts will be more focused toward beginners as we will introduce a few of Malcat's features
as in-depth tutorials.

