
1/30

A step-by-step analysis of the Russian APT Turla
backdoor called TinyTurla

cybergeeks.tech/a-step-by-step-analysis-of-the-russian-apt-turla-backdoor-called-tinyturla/

Summary

Turla is a Russian-based group that has impacted government, embassies, military,
education, and research companies since 2004. Our analysis focuses on a backdoor called
TinyTurla that was installed on an endpoint via a Windows Service. The list of C2 servers
and a password used for authentication with the servers are stored in the Windows registry.
The malware implements 12 different commands that include spawning and killing
processes, creating and exfiltrating files, creating pipes for process communication, and
modifying registry values used during the execution.

Analyst: @GeeksCyber

Technical analysis

SHA256: 030cbd1a51f8583ccfc3fa38a28a5550dc1c84c05d6c0f5eb887d13dedf1da01

The file is a 64-bit DLL that was installed as a service called “Microsoft Windows Time”
(https://blog.talosintelligence.com/2021/09/tinyturla.html). We’ve manually created a service
called “W64Time” and the corresponding registry keys/values by simulating the execution of
the batch script mentioned in the Talos article:

https://cybergeeks.tech/a-step-by-step-analysis-of-the-russian-apt-turla-backdoor-called-tinyturla/
https://twitter.com/GeeksCyber
https://blog.talosintelligence.com/2021/09/tinyturla.html


2/30

Figure 1

Figure 2
Because we’re analyzing a 64-bit file, the calling convention is different, and the function
arguments are passed to the  RCX, RDX, R8, and R9 registers.  Additional arguments are
pushed onto the stack (right to left).

RegisterServiceCtrlHandlerW is utilized to register a function to handle service control
requests:

Figure 3
The service status for the above service is set to 0x4 (SERVICE_RUNNING) via a function
call to SetServiceStatus:



3/30

Figure 4
After the main function finishes, the service status is set to 0x1 (SERVICE_STOPPED).

The RegOpenKeyExW API is used to open the
“SYSTEM\CurrentControlSet\Services\W64Time\Parameters” registry key (0x80000002 =
HKEY_LOCAL_MACHINE, 0x20119 = KEY_READ | KEY_WOW64_64KEY):



4/30

Figure 5
The process extracts the following registry values using RegQueryValueExW:

TimeLong – the number of milliseconds that the malware waits when the C2 servers
are not responding

TimeShort – the number of milliseconds between requesting different commands from
the C2 server

Security – password used to perform some sort of authentication

Hosts – list of C2 domains and port numbers



5/30

Figure 6

Figure 7



6/30

Figure 8

Figure 9
The malware passes the C2 IPs and port numbers to the CommandLineToArgvW routine
and extracts an array of pointers to them (the C2 server is randomly chosen for testing
purposes):



7/30

Figure 10
We’ve emulated network connections using FakeNet.

The malicious process opens the “SOFTWARE\Microsoft\Cryptography” registry key using
RegOpenKeyExW (0x80000002 = HKEY_LOCAL_MACHINE, 0x20019 = KEY_READ):

Figure 11
The “MachineGuid” value is extracted via a function call to RegQueryValueExW:



8/30

Figure 12
WinHttpOpen is utilized to initialize the use of WinHTTP functions:

Figure 13
The file initializes a connection to the C2 server by calling the WinHttpConnect API:



9/30

Figure 14
The WinHttpOpenRequest function is used to create a GET request handle (0x800000 =
WINHTTP_FLAG_SECURE):

Figure 15
The process adds an HTTP request header called “Title” containing the Machine GUID to the
HTTP request handle (0x20000000 = HTTP_ADDREQ_FLAG_ADD):

Figure 16
The security flags for the handle are set using WinHttpSetOption (0x1F =
WINHTTP_OPTION_SECURITY_FLAGS, 0x3300 =
WinHttpRequestOption_SslErrorIgnoreFlags):



10/30

Figure 17
The malicious file sends the request to the C2 server using the
WinHttpSendRequest routine:

Figure 18
WinHttpReceiveResponse is used to receive the response to the GET request initiated
above:

Figure 19
The binary obtains header information associated with the request by calling the
WinHttpQueryHeaders API (0x26 = WINHTTP_QUERY_TITLE):



11/30

Figure 20
WinHttpQueryDataAvailable is utilized to extract the amount of data, in bytes, available to be
read with WinHttpReadData:

Figure 21
The response from the server is copied to a buffer via a call to WinHttpReadData:

Figure 22
TinyTurla implements 12 different commands depending on the 1st byte received in the
response. It uses a switch statement to execute a particular function:

Figure 23



12/30

1st byte = 0x00 – Authentication

The backdoor compares the “Security” value with a string starting from the 2nd byte in the
response:

Figure 24

Figure 25
Whether the two strings are equal, the malware sends “00 00” to the C2 server. Otherwise, it
sends “00 03”, indicating an unsuccessful “authentication”.

1st byte = 0x01 – create a process

The binary creates a process specified by the C2 server in the response (0x08000000 =
CREATE_NO_WINDOW):



13/30

Figure 26
The WinHttpOpenRequest routine is used to create a POST request handle (0x800000
= WINHTTP_FLAG_SECURE):

Figure 27



14/30

The backdoor adds an HTTP request header called “Title” that contains the Machine GUID to
the request handle (0x20000000 = HTTP_ADDREQ_FLAG_ADD):

Figure 28
The security flags for the handle are set using WinHttpSetOption (0x1F
= WINHTTP_OPTION_SECURITY_FLAGS, 0x3300
= WinHttpRequestOption_SslErrorIgnoreFlags):

Figure 29
The malicious process sends the POST request to the C2 server by calling the
WinHttpSendRequest API:

Figure 30
A confirmation message “01 00” is sent to the C2 server using WinHttpWriteData:



15/30

Figure 31
WinHttpReceiveResponse is utilized to halt the process until it receives the response to the
HTTP request:

Figure 32
The backdoor sleeps for “TimeShort” milliseconds and waits for further instructions:

Figure 33
1st byte = 0x02 – create a process and exfiltrate its output

The malicious file creates an anonymous pipe and returns handles to the read/write ends of
the pipe:

Figure 34
The write handle is set to be inherited by calling the SetHandleInformation routine (0x1 =
HANDLE_FLAG_INHERIT):



16/30

Figure 35
A second anonymous pipe is created via a function call to CreatePipe:

Figure 36
The read handle is set to be inherited by calling the SetHandleInformation routine (0x1 =
HANDLE_FLAG_INHERIT):

Figure 37
The malware creates a process mentioned by the C2 server in the response (0x08000000 =
CREATE_NO_WINDOW):

Figure 38
WaitForSingleObject is used to wait until the above process is in the signaled state or
0xEA60 = 60000ms = 60 seconds have elapsed:



17/30

Figure 39
The output of the created process is copied from the anonymous pipe into a buffer by calling
the PeekNamedPipe function:

Figure 40
The process reads data from the pipe using ReadFile:



18/30

Figure 41

Figure 42

The backdoor kills the process created above using the TerminateProcess routine:

Figure 43
The execution flow of creating a POST request (WinHttpOpenRequest ->
WinHttpAddRequestHeaders -> WinHttpSetOption -> WinHttpSendRequest) is repeated and
will not be detailed again. The process output is exfiltrated to the CnC server:



19/30

Figure 44
1st byte = 0x03 – create and populate a file

The backdoor creates a file specified by the C2 server using CreateFileW (0x40000000 =
GENERIC_WRITE, 0x2 = CREATE_ALWAYS, 0x80 = FILE_ATTRIBUTE_NORMAL):



20/30

Figure 45
The WriteFile API is utilized to populate the file with data received from the server:

Figure 46
A confirmation message “03 00” is sent to the C2 server.

1st byte = 0x04 – exfiltrate a file to the C2 server



21/30

The process opens a file nominated by the server using CreateFileW (0x80000000 =
GENERIC_READ, 0x3 = OPEN_EXISTING, 0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 47
The size of the file is retrieved by calling the GetFileSize routine:

Figure 48
The file content is copied to a buffer via a function call to ReadFile:



22/30

Figure 49
The content extracted above is transmitted to the CnC server:

Figure 50
1st byte = 0x05 – spawn a new process

The malicious process creates an anonymous pipe using the CreatePipe API:



23/30

Figure 51
The write handle is set to be inherited by calling the SetHandleInformation routine (0x1
= HANDLE_FLAG_INHERIT):

Figure 52
A second anonymous pipe is created by the malware:

Figure 53
The read handle is set to be inherited by calling the SetHandleInformation routine (0x1
= HANDLE_FLAG_INHERIT):

Figure 54
CreateProcessW is used to create a process specified by the C2 server (0x08000000
= CREATE_NO_WINDOW):



24/30

Figure 55
A confirmation message “05 00” is sent to the C2 server.

1st byte = 0x06 – kill a process

The binary kills the process spawned in the above command by calling TerminateProcess:

Figure 56
A confirmation message “06 00” is sent to the C2 server.

1st byte = 0x07 – read/write to a pipe

The WriteFile API is utilized to write data transmitted by the CnC server to a pipe created
earlier:



25/30

Figure 57
The process reads data that is available through the pipe using the PeekNamedPipe and
ReadFile APIs:

Figure 58

Figure 59



26/30

The pipe content extracted above is exfiltrated to the C2 server.

1st byte = 0x08 – modify the “TimeLong” registry value

The malware opens the “SYSTEM\CurrentControlSet\Services\W64Time\Parameters”
registry key by calling the RegOpenKeyExW routine (0x80000002
= HKEY_LOCAL_MACHINE, 0x20006 = KEY_WRITE):

Figure 60
The “TimeLong” value is modified to a number sent by the C2 server:



27/30

Figure 61
A confirmation message “08 00” is sent to the C2 server.

1st byte = 0x09 – modify the “TimeShort” registry value

This command is similar to the one from above. The “TimeShort” value is modified
accordingly:



28/30

Figure 62
A confirmation message “09 00” is sent to the C2 server.

1st byte = 0x0A – modify the “Security” registry value

This command is similar to the one from above. The “Security” value used in the
authentication process is changed by the backdoor:



29/30

Figure 63
A confirmation message “0A 00” is sent to the C2 server.

1st byte = 0x0B – modify the “Hosts” registry value

This command is similar to the one from above. The “Hosts” value that contains the list of C2
servers is changed by the malware:



30/30

Figure 64
CommandLineToArgvW is utilized to retrieve an array of pointers to the C2 server(s):

Figure 65
A confirmation message “0B 00” is sent to the C2 server.

References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

Fakenet: https://github.com/fireeye/flare-fakenet-ng

VirusTotal:
https://www.virustotal.com/gui/file/030cbd1a51f8583ccfc3fa38a28a5550dc1c84c05d6c0f5eb
887d13dedf1da01

MalwareBazaar:
https://bazaar.abuse.ch/sample/030cbd1a51f8583ccfc3fa38a28a5550dc1c84c05d6c0f5eb88
7d13dedf1da01/

Talos article: https://blog.talosintelligence.com/2021/09/tinyturla.html

https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/fireeye/flare-fakenet-ng
https://www.virustotal.com/gui/file/030cbd1a51f8583ccfc3fa38a28a5550dc1c84c05d6c0f5eb887d13dedf1da01
https://bazaar.abuse.ch/sample/030cbd1a51f8583ccfc3fa38a28a5550dc1c84c05d6c0f5eb887d13dedf1da01/
https://blog.talosintelligence.com/2021/09/tinyturla.html

