Quick revs: Pandora Ransomware - The Box has been
open for a while...

dissectingmalwa.re/blog/pandora/

't- 56c5d86347 el 64 c6e5T1cB6 dbf5
Fle - ah

35eaetb079edebedibbll e79ea33bTh - PID: 2780 - Module: Sh56c5d86347e164 c6e571cBEdbf5bl535eaeb b7 edefedibbl] e79ea33b7h - Thread: Main Thread 2784 - ¥biddbg

Threads m Handes

B scyie 540008
File Imperts Trace Misc Help
Attach to an active process
2780 - 5b56c5d85347e 16400e 57 dbfSo1535eaetbd Mofedebedstbl le M9ea3dnib -

Imports
- advagi32.dl (7) FThunk: 00047000

- kemel32.di (111) FThunk: 00047040

#1- o mpr.dl (3) FThurk: 00047300

H-« Rstrivgr.dl (4) FThunk: 0004730

b+ shel32.dl (2) FThurk: 00047408

i 3% 2 (1) FThunk: 00047420

Show Inwalid Shiow Suspect

14T Infa

rbp WEIcome to my new malware OEP 0000000120035545 [m‘
pep UnbOXin 3 1 - VA fﬂobfdcuacu-u:au
g ‘ % S 00000428

m
L)

IAT Search Adv: Possble [AT first 0000000140047000 last 0000000 140047420 entry.
IAT Search Adv: TAT YA DO00D0M 140047000 RYA DDO0DO0ODD047D00 Size 0x0428 {1064)
IAT Search Nor: IAT VA 00000001400451EB RVA 0000000000045 1EB Saoe Ox1253 (4596)
oetdpEyYirtusladdress :: Mo Apl found 0000000 140037954
TAT parsing finished, found 127 valid APTs, missed 1 APTs

A oesib ports q

Imports: 128 B Invalid:1 Imagebase: 0000000140000000 5b56c5486347e164c6e571

Hey there, I'm finally getting around to introducing the new post category “Quick revs”,
which will feature short write-ups of various malware analysis and reverse engineering
topics. This will allow me to post more frequently, since | don’t always have to time to write
deep-dive reports in my limited free time.

Today we are going to be looking at “Pandora Ransomware”, a novel Ransomware strain
that has been monitored for a couple of days, e.g. by MalwareHunterTeam, but at first no
sample was available.

At the time of writing Pandora is claiming on their Leak site to have compromised four
companies, one of which is the japanese automotive OEM Denso, which has been covered
extensively in the media. I'm bringing up Denso here, because they were compromised by
Rook Ransomware a few months earlier, which beggs the question if the attackers

1/10

https://dissectingmalwa.re/blog/pandora/
https://twitter.com/malwrhunterteam/status/1501857263493001217
https://www.zdnet.com/article/automotive-giant-denso-reveals-hack-pandora-ransomware-group-takes-credit/

somehow were able to maintain access and just rebranded from Rook to Pandora. Of
course this is just speculation on my part and | don’t consider signifficant similarities in the
ransomware samples of both strains as sufficient proof either, but in my opinion one could
shed light on this relation by investigating their TTPs and other details of the intrusions.

& Pandora Data Leak x|+

& > C © vbgehs 77vusSfrdpuaiid.onion

(e}
&«
i

@ Pandora Data Leak

On the 14th of March 2022 the Pandora sample below was obtained by vx-underground:

Pandora Ransomware (packed)

Original file names: "ivfrkijrt.dl1l", "M3DO2.exe"

File size: 223232 bytes

Architecture: x64

MD5: 0c4a84b66832a08dccc42b478d9d5elb

SHA-1: 160320b920a5ef22ac17b48146152ffbef60461f

SHA-256: 5b56c5d86347e164c6e571c86dbf5b1535eae6b979fedebed66b01e79ea33b7b

Download: vx-underground | Malware Bazaar | VirusTotal

| already tweeted about this sample, but since | got a few questions regarding the
unpacking process and similarities to other ransomware strains (specifically Rook and
NightSky) | thought | should write it down in a blog post.

Unpacking

After the initial assessment of the sample with Detect it Easy a signature for UPX Version 3
was found. Packer detections in Detect it Easy should always be taken with a grain of salt,
but it gives us a first hint as to what to look for in the next steps.

2/10

https://twitter.com/vxunderground/status/1503204578258472962
https://samples.vx-underground.org/samples/Families/PandoraRansomware/Samples/
https://bazaar.abuse.ch/sample/5b56c5d86347e164c6e571c86dbf5b1535eae6b979fede6ed66b01e79ea33b7b/
https://www.virustotal.com/gui/file/5b56c5d86347e164c6e571c86dbf5b1535eae6b979fede6ed66b01e79ea33b7b
https://twitter.com/f0wlsec/status/1503357444054999043

Detect It Easy v3.00 =8 E=m ===

File name

C:fUsers fjad:/Desktop/5h56c5d36347e 1649c6e 57 1c86dbf5b 1535eae6b 3 79fedeteds6bl 12 79ea3307h

File type Entry point Base address Hash

PEG4 000000014007 bca0 = Disasm 0000000140000000 Memory map Strings

PE il Impaort LESOUrCes N 3 Overlay Entropy

Sections Hex
0003 * 20 3-10 01:39:27 00074000 Wz T Version

Scan Endianness Mode Architecture

Detect It Easy(DiE) LE 54 AMDB4

packer [-]

linker Microsoft Linker(14.0, Visual Studio 2015 14.0%)[DLLG4, console]

Options

Signatures JEED 5Ca About

r I'!M > B89 msec Exit

Looking at the Entropy graph we can see that we have one section (cccc) with a very high
value, which indicates it contains packed code and a .rsrc section with a significantly
lower value.

Entropy

Total

s Reload
7.89019 _— C 00036800

Name Offse opy Status

3 packed

—rr————— 7 T T
50,000 150,000

Switching over to pestudio Pro since its section layout is a lot cleaner than the one in Detect
it easy we can see that there is another section called pppp which is virtualized and
therefore has a raw-size of 0 bytes. This section layout closely resembles the one used by
UPX. UPXO (pppp in this case) is the empty section where the compressed contents of
UPX1 (cccc) will be decompressed to by the unpacking program stub. At this point | am
fairly confident to say that is packer is based on UPX, but looking at the section names they
likely messed around with their UPX version.

3/10

property value value walue

name PERP COCC JEre

md5 2OFE31 CECBATAI ASTOOEFSC... 492EAQGDO0SFE2C ER4GED...
entropy 7.898 4412

file-ratio (99.54 %) 99,08 % 046 %

raw-address 000000400 000000400 000036400

raw-size (222208 bytes) 0400000000 (0 bytes) (0200036000 (221184 bytes) 0200000400 (1024 bytes)
virtual-address (:00000000400021000 0:0000000040046000 0000000004007 CO00
virtual-size (507904 bytes) 0200045000 (282624 bytes) (00036000 (221184 bytes) 000001000 (4096 bytes)
entry-point 0x0007BCA0

characteristics (xEQO000E0 0xE0000040 (e CO000040

writable X x X

executable X 3

shareable =

discardable

initialized-data

uninitialized-data

unreadable

self-rmadifying X b4

virtualized

file

A very simple way to test if we are dealing with a modified version of UPX is to just try to
decompress the sample with the vanilla UPX utility. As you can see below it does not
decompress! UPX is even telling us that the file was likely messed with. | was able to
identify the following modifications to the UPX packer:

altered section names (as we noticed before)
 old version of UPX / altered version number in the leading header
e missing/overwritten 12-byte trailing header

Alright, as the simple approach does not work and retdec also falls through for now, we’ll
have to unpack it manually. First of all I'll switch to the Memory Map view and Follow in
Dump on the pppp section (UPXO0) to monitor it.

FEQQDD :] |
86dbf5bls:

R

CEes

able code
lized data
ion information

P

g
o
o
=
>
=
>
MK

4/10

https://github.com/avast/retdec/issues/1069

Up next I'm placing a Hardware Breakpoint on Access on the pppp section, so we can see
when the data is decompressed into it. Hit this breakpoint once or twice to check that it is
working and we’ll continue onto the next step.

/ Madify Value E g 0 T ; S EEEEFFFEFFE
Breakpoint . Hardware, Access

Find Pattern... "+ Hardware, Write

» Hardware, Execute

Dword '}

", Mem CCEss Qword

Integer

#ASFE1
M oump 4 1l Dump 5 & watch 1
IT

Scroll down until you see the end of the stub with the two jumps followed by junk
instructions for padding. The last jump instruction is the so-called tail jump, which will
transfer to the Original Entrypoint (OEP). I'll place a breakpoint on the tail jump to make
sure Pandora doesn’t run away and potentially encrypt the VM :D Once we hit this
breakpoint we can check in the dump of pppp that the section should be filled now, so let’s
jump in!

;,q'.-.w:uru:l ptr ss:[

0000

After following the tail jump we can scroll down a bit again to find the OEP (push rbp) and
place a breakpoint there. Get ready to dump it like it's hot ¢

5/10

¥ 5bS6c5dB6347e164 c6e571 cBEdbFSb1535eaebbd70f edebedbbbi1 e70ea33bTh - PID: 2780 - Module: 5b56c5d86347 1646571 c86 dbf5bl535 eaebbd70fedeb edb6b01 70ea33b7b - Thread: Main Thread 2784 - wBddbg
w Debug Tracng Flugine Fa

w» Y E | =0

B oo 1 Ca ok oR a nbols Source teferences =¥ Threads

2120000

C4 20

= ebug Tradng Plugins

O E |+ n|*

. Log -

B scylla 641098 =l @ ==

File Imports Trace Misc Help

Attach to an active process

(2780 - sos6csdss347e 164cse57 1ca6dnFsb 15350 ae6ba 79fedesedobl le79ea3307b - Ci\User v | [PickDLL |

Imports .

advapi32.dl (7) FThunk: 00047000
kernel32.dll {111) FThunk: 00047040
mpr.dll (3) FThunk: 000473C0
RstriMgr.dll (4) FThunk: 000473E0
shell32.dll {2) FThunk: 00047408

% 7 (1) FThunk: 00047420

B - B

Show Invalid I [Show Suspect]

1AT Info 2 Actions 4 Dump
.
OEP 00000D01400366A5 IAT Autosearch I PE Rebuild

VA 0000000 140047000
5 ShS&EC5dS BACBEST &b F sed6Eh01eT 3 _GetIm arts
EBAS SbSecsd 5 bfSb b37 sfedecede6boler e Size 00000428 —

Dump 2 Tl Dump 3) Watd 3
* L
He o9

IAT Search Adv: Possible IAT first 0000000140047000 last 0000000 140047420 entry.
IAT Search Adv: IAT VA 0000000140047000 RVA 0000000000047000 Size 0x0428 (1064)
IAT Search Mor: IAT VA 0000000140046 158 RVA 0000000000046 1ES Size 0x1258 (4696)
getApiByVirtualAddress :: No Api found 0000000 1400375F4
IAT ing finished, found 127 valid APIs, missed 1 APIs

ssible direct imports with 0

Imports: 128 ® Invalid: 1 Imagebase: 0000000140000000 5b56c5dB6347elbdchesT1

Fire up Scylla and make sure that the correct process is selected (1). After that we’ll run the
IAT Autosearch (2) and Get Imports (3) to show them in the textbox above (notice that they

significantly differ from the functions imported by the UPX unpacking stub). Finally dump the
process to disk (4) and fix the dump (5) to complete the unpacking process. Congratulations
to the ones playing along at home, you are now able to manually unpack UPX (and it works
for x86 binaries as well).

If you want to skip this step of the analysis you can also download my unpacked sample
below:

Pandora Ransomware (unpacked)

6/10

File size: 509440 bytes

Architecture: x64

MD5: 511501033ca23754113686ac70f629db

SHA-1: 26a02al49aca6a8a43e2dcab5c75a6360cTfe54c50

SHA-256: 2c940a35025dd3847f7c954a282f65e9c2312d2ada28686T9d1dc73d1c500224

Download: Malshare | VirusTotal

Similarities with Rook Ransomware

According to the automated analysis by Intezer the Pandora sample from above is related
to Rook Ransomware. Since Rook is based on the leaked source code of Babuk
Ransomware so is Pandora probably.

16 5b56c5d86347e164c6e571c86dbf5bl

5b56¢ 71¢ 6b979fed

As | already mentioned I’'m not planning to do a deep-dive analysis of the features of
Pandora, so we’'ll just try to do a high-level comparison between Pandora and Rook. If you
are looking for a very in-depth analysis of Rook Ransomware, check out Chuong Dong’s
post about it.

Rook Ransomware

Original file names: "unknown", "7NM2J.txt"

File size: 174080 bytes

Architecture: x64

MD5: bec9b3480934ce3d30c25e1272f60d02

SHA-1: 104d9e31e34ba8517f701552594f1fc167550964

SHA-256: f87be226e26e873275bde549539f70210ffe5e3a129448ae807a319cbdcf7789

Download: vx-underground | Malware Bazaar | VirusTotal

Since this sample of Rook Ransomware is also packed with a modified version of UPX
(which differs from the one used for Pandora though) | manually unpacked this sample as
well using the process described above. You can download the unpacked sample here:

Rook Ransomware (unpacked)

File size: 415744 bytes

Architecture: x64

MD5: afdf739eb186e2ec8088b008797d1f6d

SHA-1: f611c2976ebb080214eddd905d3062823012280d

SHA-256: ebfdee6e5fe2aa5699280248a5e7b714cal8e5bfd284cacOba4fb88ccbcecs5b6

Download: Malshare | VirusTotal

7/10

https://malshare.com/sample.php?action=detail&hash=2c940a35025dd3847f7c954a282f65e9c2312d2ada28686f9d1dc73d1c500224
https://www.virustotal.com/gui/file/2c940a35025dd3847f7c954a282f65e9c2312d2ada28686f9d1dc73d1c500224
https://analyze.intezer.com/analyses/f8c9c4d8-37a9-4aed-868f-01e98fb63e89
https://www.bleepingcomputer.com/news/security/babuk-ransomwares-full-source-code-leaked-on-hacker-forum/
https://chuongdong.com/reverse%20engineering/2022/01/06/RookRansomware/
https://samples.vx-underground.org/samples/Families/RookRansomware/Samples/
https://bazaar.abuse.ch/sample/f87be226e26e873275bde549539f70210ffe5e3a129448ae807a319cbdcf7789/
https://www.virustotal.com/gui/file/f87be226e26e873275bde549539f70210ffe5e3a129448ae807a319cbdcf7789
https://malshare.com/sample.php?action=detail&hash=ebfdee6e5fe2aa5699280248a5e7b714ca18e5bfd284cac0ba4fb88ccbcec5b6
https://www.virustotal.com/gui/file/ebfdee6e5fe2aa5699280248a5e7b714ca18e5bfd284cac0ba4fb88ccbcec5b6

Comparing the imported Windows functions of Pandora and Rook we can see the following
changes in Pandora (+ = added, - = removed):

advapi32.dll:
- EnumDependentServicesA
- CloseServiceHandle
- OpenSCManagerA
- ControlService
- QueryServiceStatusEx
- OpenServiceA

kernel32.d1l:

+ GetQueuedCompletionStatus
PostQueuedCompletionStatus
SetPriorityClass
CreateIoCompletionPort
SetThreadAffinityMask
ResumeThread
VirtualFree
CreateFileMappingWw
MapViewOfFile
VirtualAlloc
UnmapViewOfFile
LoadLibraryw
VirtualProtect
VirtualProtectEx
WriteProcessMemory
- GetTickCount
- GetModuleFileNameWw
- ExitThread
- SetFileInformationByHandle
- ReleaseSemaphore
- CreateSemaphoreA
- RaiseException
- Process32FirstW
- Process32NextW
- Sleep
- CreateToolhelp32Snapshot

+ o+ + + 4+ + + 4+ + o+ o+ o+

mpr.dll:
- WNetGetConnectionWw

shell32.d11:
- CommandLineToArgvWw

shlwapi.dll:
- PathFileExistsw

user32.dll:
- wsprintfA

From this comparison we can deduct that there have been changes in file handling and
thread/process control.

8/10

Comparing the strings in both samples | found that Pandora removed the debug messages
which are present in the Babuk source and the Rook sample. Additionally the Ransomnote
of Pandora Ransomware has been obfuscated whereas the Rook contained it in plain text.

Of course | can’t wrap this post up before trying out a new tool, which kind of has become a
tradition here. Since the code similarities detected by Intezer are a black box for us we can
try and replicate this analysis with binlex :

Binlex allows us to extract basic blocks and functions from to samples we feed it as so-
called traits. In the case of Pandora and Rook these traits contain the re-used code and,
with some careful filtering, we can use some of them to build a Pandora-Rook Yara rule.
Unfortunately | currently don’t have the time to sift through all the extracted traits manually (I
don’t have a Goodware/Malware Traits Corpus yet to discard traits based on that), but | will
get back to this in a few weeks. The long-boi bash command below shows my testing
approach in this case, which extracted over 1700 unique (but unfiltered) shared traits from
the Pandora and Rook samples.

find sim/ -type f | while read i; do binlex -m pe:x86_64 -i $i | jq -r '.[] |
select(.type == "block" and .size < 32 and .size > 8) | .bytes' | sort | uniq; done
| sort | unig -c | sort -rn

One example were | successfully used binlex for a Yara rule a couple of weeks earlier is for
my BlackMatter Ransomware ESXi rule, which you can find here.

If you would like to give binlex a try | recommend to watch the excellent demo below, which
is a recording of a live cooperation between c3rb3ru5d3d53c and OALabs. binlex is very
easy to install and well documented, so you should definitely give it a try.

Alright, that should conclude this first look into Pandora Ransomware. I’'m sure there will be
more in-depth reports about the ransomware itself and the modus operandi of the attackers
in the coing days and weeks. As | already mentioned | do not consider the relation “Pandora
== Rook” proven based on the findings of this post, but a connection is certainly plausible.
Also Pandora will most likely not be the last Ransomware variant based on the Babuk
source, since with the leak the metaphorical box cannot be closed again.

I included a small Yara rule for the modified UPX packer below, happy hunting!

Thanks for reading this post and if you have any questions feel free to send me a message

)

Modified UPX Hunting rule

9/10

https://github.com/f0wl/yara_rules/blob/main/other/ESXi/blackmatter_linux_encryptor.yar

import "pe"

rule upx_packer_modified_pandora : Packer {

meta:
author = "Marius 'fOwL' Genheimer <hello@dissectingmalwa.re>"
description = "Detects modified UPX packer used by Pandora Ransomware"
reference = "https://dissectingmalwa.re/blog/pandora/"

date = "2022-03-16"
tlp = "WHITE"
hash = "5b56c5d86347e164c6e571c86dbf5b1535eae6b979fede6ed66b01e79ea33b7b"

strings:
$header = {33 2E 30 30 00 55 50 58 21} // 3.00.UPX!

condition:
uint16(0) == Ox5a4d
and pe.imphash() == "51a8b4c9f41b0cOca57db63e21505b0d"

and $header

and for any i in (0..pe.number_of_sections):(
pe.sections[i].name == "pppp" and
pe.sections[i+1].name == "cccc")

and filesize > 112KB // Size on Disk/2

and filesize < 1MB // Size of Image*2

10/10

