Part 1: LockBit 2.0 ransomware bugs and database
recovery attempts

=. techcommunity.microsoft.com/t5/security-compliance-and-identity/part-1-lockbit-2-0-ransomware-bugs-and-database-
recovery/ba-p/3254354

March 11, 2022

Research by: Nino (Detection and Response Team), Team Torstino (Detection and
Response Team)

Disclaimer: The technical information contained in this article is provided for general
informational and educational purposes only and is not a substitute for professional advice.
Accordingly, before taking any action based upon such information, we encourage you to
consult with the appropriate professionals. We do not provide any kind of guarantee of a
certain outcome or result based on the information provided. Therefore, the use or reliance
of any information contained in this article is solely at your own risk.

LockBit 2.0 ransomware has been one of the leading ransomware strains over the last six
months. Recently, the FBI issued a flash alert outlining the technical aspects and tactics,
techniques, and procedures (TTPs) associated with the LockBit 2.0 affiliate-based
ransomware-as-a-service.

Suffice it to say, a plethora of detailed research around this ransomware emerged as a result
of version "2.0", which surfaced back in the summer of 2021. All these public reports and
technical undertakings, however, fail to mention a critical aspect of this ransomware strain
that Microsoft Detection and Response Team (DART) researchers have discovered and is
something often not discussed when bringing up the topic of ransomware: “buggy code”, and
the unpredictable consequences that it can induce.

This post illustrates a much more direct attempt at ransomware recovery targeting MSSQL
databases, where we uncovered and further exploited bugs present in the LockBit 2.0
ransomware code, up to the point where we were able to revert the encryption process for
these database files and restore them back to a functioning state. This is often an impossible
task to carry out, given that it implies breaking decades of practical research into
cryptography-- not simply in theory, but in actual implementation.

This two-part blog series will outline all the steps taken and challenges overcome, in order to
restore the damaged database files that served as a critical core of this customer’s
infrastructure.

Background

1/13

https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-1-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254354
https://www.scmagazine.com/news/ransomware/fbi-issues-alert-for-lockbit-2-0-ransomware-group-enlists-public-for-help
https://www.bleepingcomputer.com/news/security/lockbit-ransomware-now-encrypts-windows-domains-using-group-policies/

We uncovered critical inconsistencies with the logic of this ransomware upon our first
interaction with a LockBit 2.0 afflicted customer, who, incidentally, also purchased the
software capable of restoring the destruction the ransomware is known to wreak, known as
"the decryptor" aspect of ransomware.

The unfortunate customer was soon to find out that the claims the affiliate-based
ransomware distributor made, about paying the ransom resolves to obtaining the decryptor
capable of restoring the effects of the encryption, were very dubious in their assertions. Upon
attempting to use this purchased decryptor to restore critical database files, the customer was
met with very disappointing results and was perplexed as to why the restoration of these
database files was not going as expected, and what steps to take next.

At some point, DART became engaged with this customer, obtained access to both the
encryptor and decryptor aspects of the ransomware, and with suspicions that "faulty crypto”
was at play, analysis commenced.

Our observations on the encryptor and identifying its anomalies

One of the first things we can do to make our lives easier when suspecting faulty
encryption/decryption is to first avoid the urge of digging into any literature regarding the
densely obtuse aspects of cryptography, or even more menacingly, modern cryptography.
Instead, use the power that Sysinternals handy-dandy Procmon provides in monitoring file
I/O with the hopes of spotting any kind of anomalies or inconsistencies when either the
encryptor or decryptor is running.

Through this monitoring we should get a quick (correct) picture of how the
encryption/decryption algorithm is implemented, assuming that it is not doing all of this in
memory and indeed going through the I/O manager as is generally the case.

For instance, Figure 1 shows the encryptor in action on a test dummy file we created. It’s
worth noting, when assuming faulty crypto algorithms are at play, to test on a variety of file
sizes to see how/if they pan out differently. We often see a common mistake on larger sized
files (at least 4GB or greater), especially in 32-bit encryptors, not understanding that the
larger the file size gets, the closer we get, and eventually cross, into signed territory. These
mistakes can lead to incorrect checks on file sizes, how the internal file pointer is set, and so
on, that can introduce unintended corruption by the encryptor. Something to always keep an
eye out for.

Proces... Operation Path Result Detail

#yv2c.exe BCreateFile Ci\Users\pro\Desktop\1GBTEST .txt BSUCCESS Desired Access: Read Data/List Directory, Write Data/Add File, Delete, Disg
"v2cexe BHQueryStandardinformati...C:\Users\pro\Desktop\1IGBTEST tat SUCCESS AllocationSize: 1,174,405,120, EndOfFile: 1,174,405 NumberOfLinks: 1
"v2cexe BSetEndOfFilelnformatio... C:\Users\pro\Desktop\1GBTEST .t SUCCESS EndOfFile: 1,1 ?4.40 —

1v2cexe BReadFile C:\Users\pro\Desktop\1GBTEST .txt SUCCESS Offset: 0, Length: 4,096, /O Flags: Non-cached, Priority: Normal

"yvZecexe SWriteFile C:\Users\pro\Desktop\1GBTEST .txt SUCCESS Offset: 0, Length: 4,096, I/O Flags: Non-cached, Priority: Normal

ivZcexe BWriteFile C:\Users\pro\Desktop\I{GBTEST txt SUCCESS Offset 1,1 74,405Leng|h: 512, /0 Flags: Non-cached, Priority: Normal
"vZeexe SQueryBasiclnformation... C\Users\pro\Desktop\1GBTEST txt SUCCESS CreationTime: 4:54:38 AM, LastAccessTime: 4:56:36 AM,
mvZcexe HSetRenamelnformation... C:\Users\pro\Desktop\1GBTEST .txt SUCCESS ReplacelfExists: False, FileName: C:\Users\pro\Desktop\1gbtest.txt.lockbit
ivZcexe BCloseFile C:\Users\pro\Desktop\1gbtest.bit lockbit SUCCESS

2/13

https://docs.microsoft.com/en-us/sysinternals/

Figure 1. Test #1 of the encryptor in action

Test #1: high-level observations

It increases the file size

It only encrypts the first 0x1000 bytes from the start of the header (in theory, enough to
kill off any header metadata)

Appends some data at the end of the original file size (0x200 bytes)

Appends a .lockbit extension to the original filename

Spoiler: The data that it appends to the end of the encrypted file is the required decryption
information that the decryptor utilizes as part of its restoration process. Each file is
encrypted with a unique 16-byte initialization vector (IV) and AES256 key. Both are stored,
encrypted with a modified cha-cha dance, at the end of each individual encrypted file. The
decryptor in turn knows how to find this “decryption blob”, extract the unique IV and
AES256 key, and then leverage them for the decryption. Other data is stored as well in these
blobs, such as the original file size and the AES block size.

Our test #1 from the Procmon output in Figure 1 shows that the encryptor alters the original
size of the file it is about to corrupt, so it is only appropriate that it retains this original
information somewhere when the decryptor begins to attempt its restoration process. At least
this is the theory. In practice, as we’re soon to find out, something quite different has the
potential of happening.

Testing the 1GB file was a good start, but let’s try a much larger file and again, observe the
behavior of the encryptor through Procmon.

Process Name Operation Path Result Detail

N v2c exe B\ CreateFile ChiDefenseltest txt SUCCESS Desired Access: Read DatalList Directory, Write Data/Add File, Delete, Disposition: Open, Op'
B-v2cexe h QueryStandardinformationFile C:liDefenseltest. txt SUCCESS AllocationSize: 68,719,476,736, EndOfFile: 68, 719,476,736, NumberQfLinks: 1, DeletePendirns
- v2c.exe —h SetEndOfFileinformationFile CliDefenseltest txt SUCCESS EndOfFile: 68,719,477 248

W v2c.exe = ReadFile ChiDefense'test ixt SUCCESS Offset: 0, Length: 4,096, If0 Flags: Non-cached, Priority: Normal

B v2cexe ;Q\WnteFlle ChiDefenseitest xt SUCCESS Offset: 0, Length: 4,096, /0 Flags: Non-cached, Prionity: Normal

wv2cexe hWiteFile CliDefenseltest bt Offset 68,719,476,736, Length: 512, /0 Flags: Non-cached, Priority: Normal

M-v2c exe = WriteFile ChiDefenseltest txt SUCCESS Offset; 16,384, Length: 65,536, 110 Flags: Non-cached, Paging /0, Synchronous Paging /O, F
M- vicexe . WiteFile ChiDefenseltest txt SUCCESS Offsel: 81,820, Length: 65,536, 110 Flags: Non-cached, Paging /0, Synchronous Paging /O, F
- v2c exe h WriteFile CliDefenseltest txt SUCCESS Offset: 147 456, Length: 65,536, /0 Flags: Non-cached, Paging I'0, Synchronous Paging 110,
W v2c exe —h WriteFile ChiDefenseitest txt SUCCESS Offset: 212,992, Length: 65,536, /0 Flags: Non-cached, Paging 1/0, Synchronous Paging 110,
Wv2c exe —h WiiteFile ChiDefenseitest xt SUCCESS Offsel: 278,528, Length: 65,536, /0 Flags: Non-cached, Paging /O, Synchronous Paging /0,
W-v2cexe ;_1Wr'rteFiIe CliDefenseitest xt SUCCESS Offset: 344 064, Length: 65,536, 1/0 Flags: Non-cached, Paging I/0, Synchronous Paging 110,

Figure 2. Test #2 for encryptor in action
Test #2: high-level observations:

e Starts off like our first test but ends drastically different

e Procmon curiously does not generate a Result for the WriteFile operation when
appending the decryption blob

e It seems to further encrypt, at 65,536-byte intervals, more data

3/13

Having some clear differences from our first test run, the second one intrigues us enough to
continue digging deeper with the suspicion that something is seriously not right here. It gets
even more intriguing when we try to view the call stack for the WriteFile operations that
follow the instance where Procmon was unable to tell us the Result of appending the

.
decryption blob.
HARABE CLSE AR RBLIE
“Teneof Day Process Name “Oporabon “Path Result Detail
10 18:30 9767356 AM [RvEC BcreateFie CADetenseitost bt SUCCESS Desited Access: Read Data'Lst Directory, Wiite Data/Add File, Delete, Disposstion. Open, Opbons: No Buttenng, Non-Directory

V0 18:39 9549909 AM [vac eon
101839 9850934 AM [BivZc exe
10:18:30 9858342 AM [Bv2c exe

CusryStand dedinformiztion e ChDetenseibost tet SUCCESS AllecationSeee: 68,710,476,736, EndOfFile; 68,716,476, 736, MumberOTLinks: 1, DeletePendng False, Directory. False
SelEndOfFdeinfiormabonFile ChDetense'lest bd SUCCESS EndOiFie 68719477 248
ChiDefense/les! txt SUCCESS Offsel: 0, Length 4 086, 11D Flags: Non-cached, Priotly. Normal
10:18:40.0078791 AM (EivZc axa ChiDalenseibasl xt SUCCESS Offsel: 0, Langth: 4,096, 110 Flags: Non-cached, Pricaly. Normal
CuDatensellest i Offsol: 68, 719,476,735, I.eﬂgll} 512, 140 Flags: Non-cached, Priosity. Normal

1018400428773 AM [Fv2c ona o v e
10:18:40.0429287 AM [l vac exe ChiDetenseliost tt SLICCESS “Offsol 16,384, Length' 85,536, 10 Flags. Non-Cachiod, Paging 10, Symchronous Paging 10, Priosty: Normal
1018:40.04 78491 AM (B vic - CiDefersollestbd SUCCESS Offsol. 81,920, Length, 65,536, 10 Flags. Non cached, Paging 110, Synchronous Pagng 10, Pronty Normal
=1 t . &
Event Process Stack Event Proces stack

Frame Module Location Adess Path Frame Modubs Location Address Path
K0 FLTMGRSYS FLTMGRSYS + (xdaSd codasd G AZdivorsFLTMGR SYS

K1 FLTMGRSYS FLTMGR SYS + 0x45a0 ced5al G LTMGR 5YS

K2 FLTMGRSYS FLTMGRSYS . tnd112 Ouiifite050acod 112 C\Windows\System32ubivers'FL TMGR SYS H i
K3 FLTMGRSYS FLTMGR SYS + (n3ote cedode GV . IFdivrs FLTMGR SYS ??????? L th's real ???
K rtoskamiexe nloskml exe + (o10a029 OeftfEB0S0670029 CY mms\,slemj? niboskrnd exe

K5 riloskanl axe skl + DoBb2c45 ch2cdS T L

K6 ntoskmiexe ntoskmi exe + (636706 506c367d6 C tem3zintosknd exs

K7 rlosianleaxe nlosknlexe + 0cld3c15 OuMBE0S067a3e15 ChiVindows'system32intoskin axa

Us wowbicpudl wowSicpudis Onlchbe (x77041che C Windows System 3Zwow4cpu dil

W wowSdcpudi wowSdcpudi+ 1083 07704199 CiWindows System 2 wowb4cpu dil

W10 wowddcpudl wowddcpudl+ 0n1189 Ox77041199 CiWindows! Systom 32 wowb4cpu dil

U1 wowiddl wowBa ol + T T2 773 CiWind y A2 oD dil

Uiz wowssd w4 ol + (37 o 37 S ystemIZwonss di

U3 ntdios neildil -+ O 1Beb O FIHS261 1800 CAWendows System 32 ntdl dil

U4 nidide nidildil + 07 17d3 O TIHOZE11Td3 CiWindows) System3Zntdildil

Wis ritdngn il + (17 e O MG261 17 e CWn s System X2 adi dil

W16 nidide ntclll dll + (7 1ec 770c1ele C\Windows!Sys\WOWE4intdll dil

W17 vacene V26 e + (ealia2 Oxda0B42 Cilisarsitrmin Dasklopivas e

Us kemeldzdl kemeld2 di + (16350 (75086350 CWindows SysWOWBSkemel32 di

U1e nididgm ol il + QG714 DxTT0LTE14 CIWndoSysWOWBntelll gl

Wzo ntdedn el il = O Thed 77007004 WA SysWOWBSntdll dil

Figure 3. Viewing the call stack for the WriteFile operations

Every WriteFile operation following the empty Result in the yellow highlighted row looks like
the Event Properties box on the right: empty. This is very strange indeed and requires a
deeper introspection than Procmon can give us. Before departing from the almighty
Procmon, it continues to show its worth by providing us with a valuable vantage point of
where to begin looking at: the call stack. We can see that at offset +0OxA0842 is where we
presumably never return from.

Now feels like the right time to introduce our favorite toolset for any deep troubleshooting
into the picture: Time Travel Debugging (TTD)

What exactly is the issue?

Prior to introducing the TTD framework into the picture, we will first load the encryptor into
IDA Pro and go to that offset identified by Procmon to observe the code at that location.
Doing so, we can see that we are at the return address of what is a call to ntdIll!NtWriteFile.
Depending on what we can further spot in the disassembly or decompilation, the following
plan is to re-run the encryptor again, but this time under the control of TTTracer to generate
some runtime data that we can work against.

4/13

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview

.text:00UA0825 lea eax, [ecx+lb_crypt_t.byte_offset]
.text:004A0828 push eax

.text:004A0829 push [ecx+lb_crypt_t.encrypted_size]
.text:00UA082C lea eax, [ecx+lb_crypt_t.io_statusl]
.text:00UAGB2F push [ecx+1lb_crypt_t.buffer]
.text:004A0832 push eax

.text:004A0833 push ecx

.text:004A0834 push 0

.text:004A0836 push 0

.text:00UA0838 push [esi+lb_encrypt_file_t.file_handle]
.text:004A083B call 1b: :resolve_ntwritefile ;i append tail
.text:00UA08U0 call eax

.text:00UAO8BU2 test eax, eax
text:QOUAQ8UL jns __resolve_nt_remove_io i jumptable QOUAQ@T1F default case
.text:00UAG8UA or eax, OFFFFFFFFh

Figure 4. Code responsible for writing the encrypted contents back to disk

Let’s also show the cleanup decompilation of this piece of code as well, to observe at a higher
level.

o = &CompletionValue—>byte_offset;
> = CompletionValue—>encrypted_size;
ompLet Value->buffer;

tatus CompletionValue->io_status;

e = CompletionKey->file_handle;

WriteFile 1lb: :resolve_ntwritefile();

|if (WriteFile(hfile, @, @, CompletionValue, pIoStatus, buf, filesz, p_byte_offset, 0) < 0]
&& !_InterlockedExchangeAdd(&am--.u'i;war;->Field_u8, OXFFFFFFFF))

Figure 5. Decompilation of Figure 4

As shown in both Figure 4 and 5, we can spot that something is off here; the NTSTATUS
return value for the write file is not handled correctly. In fact, it’s flat-out wrong. One way
that we can demonstrate the consequence of this improper handling of the write file
operation is to ask whether the encryptor operates asynchronously. The reasons for
introducing this in our inquiry will be explained shortly.

But if we do dig a bit into the binary inside IDA, we can confirm the asynchrony of the
encryptor, implemented through I/O completion ports. The actual file encryption is done via
a callback routine executed as a thread, and very interestingly for the debugging enthusiasts,
hidden threads.

5/13

https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fwindows%2Fwin32%2Ffileio%2Fi-o-completion-ports&data=04%7C01%7Cdveluz%40microsoft.com%7C42b19698188843b7336e08d9e6819e5b%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637794266727598866%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=6j3WSpO%2FWM%2BILSG70uG9eiTF5LWcRQQINMNMtNTgKE0%3D&reserved=0

lumber0fProc s = NtCurrentPeb()->NumberOfProcessors;
g_CPU_COUNT_O = Nu fProcessors;
ToCompletion = 1lb::resolve_ZwCreateloCompletion();
if (IoCompletion(&g_IOCP_HANDLE_O, IO_COMPLETION_ALL_ACCESS, @, NumberOfProcessors) >= 0)
{
dword_UFBY9EC = 1b::mem_alloc((4 * g_CPU_COUNT_0));
if (dword_uFB9EC)
{
for (i =@; i < g_CPU_COUNT_@; ++i)
*(dword_UFBYEC + U * i) = lb::api::create_hidden_thread(lb::crypt::init_cleanup, g_IOCP_HANDLE_G);
goto LABEL_5;

'thread = CreateThre ad(®, 0, lpStartAddress, lpParameter, 0, lpThreadId);
if (hthread != INVALID_HANDLE_VALUE
{
NtSetInformationThread = 1lb::resolve_NtSetInformationThread();
NtSetInformationThread(hthread, ThreadHideFromDebugger, 0, 0);
J
return nthread;

Figure 6. Encryptor multi-threading initialization and using hidden threads that carry out the
encryption

What this call to NtSetInformationThread does is set the HideFromDebugger flag inside
the internal, executive thread structure, which guarantees that the debugger will never
receive any debug events for this thread, effectively missing the controllable execution of
these threads. Something to be aware of when attempting to debug this encryptor in the
traditional manner. Since we plan to use TTTracer, these anti-debug shenanigans are moot,
and we can ignore them completely.

This is great and all, but what exactly is the issue here with the NTSTATUS value? First,
LockBit 2.0 devs mistakenly assume all unsuccessful NTSTATUS values are signed. For
instance, the following ones are very relevant to the encryptor given its asynchronous
behavior and are clearly not negative numbers.

0x000000C0 A user-mode APC was delivered before the given Interval expired.
STATUS_USER_APC

0x00000101 The delay completed because the thread was alerted.
STATUS_ALERTED

0x00000102 The given Timeout interval expired.
STATUS_TIMEOQUT

0x00000103 The operation that was requested is pending completion.
STATUS_PENDING

Figure 7. NTSTATUS values

6/13

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-49e60bebca55

Second, and more importantly, they entirely neglect the handling of pending I/O operations:
STATUS_PENDING. And given the asynchronous nature of I/O on Windows, this in
theory could be every file I/O operation. Further, given that the encryption is carried out
asynchronously as well through I/O completion ports, ntdll!NtWriteFile can and will
return STATUS_PENDING, which the caller must properly account for. How does one
account for it? Patience. (See WaitForSingleObject and ZwWaitForSingleObject)

Not doing so will lead to unpredictable and potentially destructive behavior as LockBit 2.0 is
mistakenly assuming success after each write operation when the return value is not signed.
When multiple threads are at play, which they will be, you now create a situation that can
result in all these worker threads writing at unpredictable intervals. Seems like a minor
ordeal, but because of this mishandling, the entire stability of the encryptor is now in
question. These effects naturally spill over to the decryptor as well.

I0_STATUS BLOCK

NtWriteFile(
IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,

IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUTPIO_STATUS_BLOCK IoStatusBlock,

IN PVOID Buffer,

IN ULONG Length,

IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL);

)

The operating system implements support routines that write I0_STATUS_BLOCK values
to caller-supplied output buffers. For example, see ZwOpenFile or NtOpenFile. These
routines return status codes that might not match the status codes in the
I0_STATUS_BLOCK structures. If one of these routines returns
STATUS_PENDING, the caller should wait for the I/0 operation to complete,
and then check the status code in the I0_STATUS BLOCK structure to determine
the final status of the operation.

If the routine returns a status code other than STATUS_PENDING, the caller should rely on
this status code instead of the status code in the IO_STATUS_BLOCK structure.

About the broken decryptor (and decrypting files that it couldn’t)

Having now identified at least one critical flaw that can result in faulty crypto, let’s shift our
attention to the decryption process itself, because our primary goal is to confirm, and then
hopefully implement, a capacity to do what the purchased decryptor was supposed to do.

7/13

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-zwwaitforsingleobject
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fwindows-hardware%2Fdrivers%2Fddi%2Fwdm%2Fns-wdm-_io_status_block&data=04%7C01%7Cdveluz%40microsoft.com%7C42b19698188843b7336e08d9e6819e5b%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637794266727598866%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=OOMfdiMc353bTHYAyLEUjBc9Ch6sFALDcwOZJuPqpF8%3D&reserved=0

From the customer, we were given several MSSQL encrypted database files which had the
potential of being correctly decrypted. The reason that we can make such a claim is that the
required decryption information (recall our earlier Procmon adventures) was still intact
somewhere in the file. Not where it’s supposed to be, but it’s there, nonetheless. This
misplacement, a direct result of the improper handling of the write file operation outlined
above, is what causes the decryptor to miss retrieving this blob of data. This mishandling can
even unwittingly truncate or expand the original file size. Simply having the decryption blob
information present in the encrypted binary does not really mean anything at this stage of
what we’re trying to accomplish.

One of the first things that we tried to get the decryptor up and running accurately, was to
remove all the data that follows the decryption blob in the encrypted database file, giving it
the appearance of being “correctly” appended, as it was originally intended to be. We then
ran the decryptor against it (under TTTracer) to see what would happen. We failed to decrypt
the file with this approach but with the resulting TTD trace, we have a window to peek into
and identify the flaws in our wishful approach.

Figure 8. The decryption blob was

: ' O L (ol T4 T 2 VW 3)
found, but it’s not at the end/tail of the 3:FFFE:Ca160:{ A3 E1 3C 88 15 38 A 6E 14 77 E7 81 D1 5D Db 78 E4<E. ;Jn.wg.R10p
. 3:FFFE:CA28h:| €3 CE BA 3F A9 D4 47 25 A5 24 B3 72 CF 28 €8 80 Aleveloavsirl<E.
file as it’s supposed to be 13:FFFE:CA360: 47 5E 96 D0 AA 30 AE 32 94 BE ES BS C4 69 17 48 g~-Pe=2"la'Ri K
13:FFFE:Ca46h:| 2D 4E FC 11 CB 8B 25 EC 72 79 55 5B 77 36 70 SC -nil-Ec¥irpllut])
*FFFE: E7 12 A9 6F 8A 68 12 &4 9A &9 1C AC 7B &F 77 C9 ;.&g'éﬂ&{.i
; : 13:FFFE:C9464:] 82 FC 45 38 D3 86 CB 41 89 C8 43 F9 7A FO BF C& .GEBOEEA.ECtzdsk
Going through the generated trace file, 13:FFFE;C78h:| C5 D4 27 B8 §3 B9 A6 DT &3 44 AF 28 88 17 52 31 ﬁﬁ'_!.:v'ruc.ﬁz
; ; :FFFE:CR88n:| E3 53 2E 35 B7 77 83 T E4 CC 9% 13 BC EA BY EB AS.4-w.0al-.j0'a
we were able to identify that the 1:FFFE:CA%8h:| B0 74 BA FB BA B9 C1 69 CA 3C 5C 53 55 DD A3 47 .t0,.Aif<\"URiG
: . 3:FFFE:C2ARN:| 64 FD A6 38 AB A7 FD 56 D7 DA 48 56 2B 90 C6 57 o |BeByvudgye B
decryptor does indeed find the 3;FFFE:CAB2h:| 3% AR DB F4 [D B2 78 28 1C E2 BT 74 28 3C F3 BY 9 O8L°(.&-v <!
; 3:FFFE:CACEN:| 36 4E 12 92 3F C1 0@ AF 58 1E B4 &4 &0 &6 80 F4 6n.'74B"h..jnf.8
decryption blob correctly now and :FFFE:CA0SN:| 66 44 BY 62 C1 E8 1A AT &9 51 E4 AD F1 20 8B 88 {D'hbda.§iQE-BE..
; 13:FFFE:C8E6N:| 88 ES DF 1D 85 €3 E1 D2 1A A1 36 B2 25 5D 18 81 “&8._Aad.;6%%]..
furthermore, is able to successfully 13:TFFE:CaFen | 9D 6D €3 11 B1 01 BS F8 C1 73 39 39 AE 1F EC 3F ..5.2. oksd9®.1?
rypt i i 13:FFFE;C100h:| BA 31 62 62 20 A5 1F 18 27 29 9€ 15 F1 19 F0 70 s1bb-¥..' %.A.8)
decrypt it to acquire the necessary IV 13:FFFECI16h:| C5 4F DE 38 42 11 54 59 26 79 32 D8 &2 ED 98 20 ADEe.TvEp2ebis.
rypti {C126h:| 43 DB BE CB F3 Fé 76 69 B4 AF 92 &0 59 4F E8 BA CE3Aetvi " 1¥080
and AES key for decryption. However, :FFFE;C1325:| SF BD 87 &F A8 1E 93 30 7C FA 4C E2 BC 41 20 47 o . |dlabA-g
3 i ryp :FFFE:C14%h:| 18 F9 AE 2F 11 BS C8 1E 72 98 AS 86 6E FA B4 12 .6 ph.r'¥a”.
the file still does not get decrypted. 3:FFFE:C158h:| 20 20 SF 71 EE 59 EE 6B 48 25 61 Sb 38 48 ED 94 ,-_qniw_a'.'am
jooi i ifi i 13:FFFE:C148h:| 8B DF 79 89 90 78 [2 49 21 Ak BA 29 14 &7 28 4F ERyh.xkI!).h.g"0
Digging deeper, we identified the issue *FFFE:C178n:| A9 4B 56 82 30 7F FB 22 19 26 51 50 73 90 85 29 EXV"=.0%.80\s..)
ing in how it tri mopare tw 3:FFFE:C1860:) 26 D2 5F E D6 97 B8 FT 18 B4 92 FA 49 AE 54 38 S0 #l-ae. "0I*T8
being ow It tries to compare two 13:FFFE:C198h: 1C E8 53 29 70 43 B 45 TETEURS.. Mgt o
LARGE_INTEGERS, that of the 928 2 BA 91 A2 BS 4E B2 59 K.reQo(:. ey
— ’ *FFFE:ClBeR: 12 7 &4 D8 DE FB CB 1A AL sl 04, -dfbok.»
incoming encrypted file size and the 3:TFFE:CICEn:| 81 2E BS 2B 78 AF 83 FF 49 23 91 52 CE C1 SF 54 ..pep7fjlIe*'IAT
¢ :FFFE:C108h:| 78 D7 28 &B EZ F7 23 BF CC 38 2F 92 26 1E 42 55 pe(NA+8.10/'8.00
AES block size stored in the decryption EEh:| 92 32 EE 38 25 B3 57 2F £F 58 58 BO OF 91 CB C& '21;4fV.nPX.B°EE
. . D2 E3 E3 29 A 94 96 D1 85 37 48 9E 88 37 OF 25 baa);"-flmz-7e%
blob data that it assumed it appended 0 TE 65 07 05 09 B9 B9 b £g bO BO BB BB BB B0 .
3:FFFE:C21Gh: QR AR PR R PR PA RO PO PO GO RO GO PR BB AR RO

Correctly_ 13:FFFE:C22%h: B9 68 68 08 08 06 B8 B0 B9 B9 B0 5O B0 B0 84 B8
13:FFFE:C236h: 90 09 B0 B B8 06 B0 B0 GO GO BO DO DO DA BA 8Docenvr

8/13

General Details Previous Versions

j encrypted_database_file.lockbit |

Type of file: LOCKBIT File (.lockbit)

Opens with: 4| Pick an app | Change...
Location: D:
Size: 79.9 GB (85,899,268,096 bytes)

Size on disk: 80.0 GB (85,899,345,920 bytes)

Figure 9. File size and the encrypted database file we’re working against

9/13

// disassembly responsible for initiating this sequence, by storing the incoming file
size

.text:00428721 mov esi, dword ptr [eax+lb_encrypt_file_t.og_filesz] ; fetch the
LowerPart of the file size

.text:00428724 mov eax, [eax+lb_encrypt_file_t.og_filesz.anonymous_0.HighPart] ;
fetch the HighPart of the file size

.text:00428727 mov [esp+1Ch], eax ; store the HighPart of the file size
.text:0042872B lea eax, [esp+3E8h+var_268]

.text:00428732 push eax

.text:00428733 mov [esp+18h], esi ; save the LowerPart of the file size

// in the TTD trace, looking at the incoming file size being stored as a
LARGE_INTEGER

00428724 8b4024 mov eax,dword ptr [eax+24h]

ds:002b:1c9e0024=00000013

0:014> dd @eax

1c9e0000 OOOOEOOO OOEOOEOO OOEEOOEO OO

1c9e0010 OOOOEOOO OOEOOEOO OOOEOOEO OO

1c9e0020 fffec200 00000013 OOOOOEOO OOOOOEOO1L

// size of the incoming file

0:014> dt ntdll!_LARGE_INTEGER 1c9e€0020 QuadPart
OXx00000013 fffec200

+0x000 QuadPart

// code that does the check after the offset has been calculated from the decryption
blob

.text:004288E6 mov eax, [esi+lb_encrypt_file_t.byte_offset.anonymous_0.HighPart]
.text:004288E9 add edx, ecx

.text:004288EB adc edi, eax

.text:004288ED cmp [esp+1Ch], edx ; now check the LowerPart

.text:004288F1 jnz _ _size_check_fail_cleanup

.text:004288F7 cmp [esp+18h], edi ; now check the HigherPart

.text:004288FB jnz _ size_check_fail_cleanup
__success_go_for_decryption_of_encrypted_content

// go to the location where the check and “bug” is at

0:014> dx @%calls(0x4288ED).First().TimeStart.SeekTo()

Time Travel Position: 1CC3E8:F20 [Unindexed] Index

0:014> u . 14

decryptor+0x288ed:

004288ed cmpdword ptr [esp+1Ch],edx ; compare against LowerPart

004288f1 jne __size_check_fail cleanup ; they have to match, otherwise decryption is
skipped

004288f7 cmp dword ptr [esp+18h],edi ; compare against the HighPart

004288fb jne __size_check_fail cleanup ; they have to match, otherwise decryption is
skipped

0:014> r edx

edx=00000200 ; AES block size calculated out of the data inside the decryption blob
0:014> dd @esp+ic 11

1a73fb9c fffec200 ; LowPart of incoming file size, failing when being compared to the
size of the decryption blob

0:014> r edi
edi=00000014 ; very revealing, this tells us where the decryption blob should

10/13

actually be (what the HighPart should be)

0:014> dd @esp+18 11

la73fba4 00000013 ; HighPart, we see our cutting off all the data after the
decryption blob breaks the logic here

Based on the TTD trace, simply cutting off all the data that follows the decryption blob won’t
work either, but we can spot what the issue is and even where the decryption blob is
originally supposed to be: minimum at offset 0x1400000000 in the file. The high part of
the large integer for the incoming file is at offset 0x1300000000, but it fails when
compared to the original size that was calculated out of the decryption blob:
0x1400000000. But even before that, the comparison of oxfffec200 and 0x200 also
fails, since it’s expecting to have correctly calculated the AES block size, which it did not.

Realizing this, we decided to “push” the decryption blob up to its proper offset, and then
again cut off all the data that followed it, to recreate the encrypted file once more into what
should be its originally intended structure. Once done, we re-run it through the decryptor
and excitedly await the results.

Figure 10. Correctly aligning the

. U3:FEFT:FFCEh: DO 89 00 PO DD B8 ©0 08 &0 00 @3 00 Mo 0o B0 o0
decryption blob before we re-run the FFFT-TFDGh: 88 69 B9 B9 69 B 89 08 B3 69 63 86 B3 B0 69 66
. . 95:FFFF:FFEGR: BB B2 B0 B2 B2 B8 S0 BR B3 B8 B3 B8 BS B0 B2 28
danmmr%mmﬂﬁ 3;FETTTFEAL; 8 6@ B 69 90 50 99 66 99 0O B9 00 09 00 B9 80
33 Ch 531 26 28 CD CA 37 73 C2 85 1C BE 3C 95 88 afs$e1E7af

Teoonoroninn: 86 AF 45 B3 TH 35 BE 14 21 90 £ AR D4 AF 74 88 CEMed. ottt

1 1 1 2h: EB BC 10 EE 9C 5E 28 9% E2 B1 AB E& FF 80 A7 AF E..Ie"(-3.727.%

Upon runnlng the decryptor thlS tlme 17 62 9D AT CY ED DT €6 OC 11 &C 98 5E 32 AB BS .h.EE;‘;ﬂ.E.‘Zw

JE S5 49 IE'TC 3951 73 €5 F8 48 B4 1F 50 ES B »VI.| ol .P4"

around’ we SucceSSquy decrypted the OF D& A5 1B 3F 87 B5 63 BS 16 24 1F 59 28 D7 24 BOW,7.p.p. 5. P(=4

ﬁ1e| FE 84 AF 31 80 B2 &8 C3 B% 75 &1 80 15 36 1A A4 [:l.'l...E’u...E-.ﬂ

° F1 ED 48 40 BF 9F 19 F1 08 D& 25 EA 89 2F 03 97 AO6M.Y.A001eA/ ..

B4 61 FF 88 0 9% B3 AR 35 80 F6 34 F OF B& 38 “afbe”f 5.8:.54;

27 E7 &0 4C BB 34 7% C5 45 BS 1D 87 ED 16 B2 14 'é”L,i".'uEll-Fl.'.

G4 &9 3C B8 12 A7 B& Ed FE OF 58 80 BT B8 48 99 Ti<..§.8p.[.-"0"

Th Bk SC SF TE 67 20 9C &8 8% 42 12 E5 9E 4C D3 2.\~ = MB.&2L0

BF AF &E 32 BA A4 22 A% 7@ 1E &2 84 25 BE FE FT . M2.="Gp.bid.h#

1F 9 FD 8& 84 D2 ED 84 EC OF 6D F9 BF 45 E2 &5 _iy.f0i.i..0.Eke

Ch B0 BB AF 99 D4 10 78 74 OE FE DA 61 BA 48 78 K.»""0.xz.elalk]

07 17 26 05 74 FB 27 FB 30 38 45 10 D7 12 BC 35 =, [ud"a8:E.=.45

{188h: TD B2 2E 33 ED FD FE EB 9C &F 5C 34 7D E2 54 IC }'.Eiypieced AT,

16k: 3A 37 4D CE 8K 29 88 A7 FB 72 YE EV FC 20 70 54 :TME.).BerZed qv

EF AD EC C2 85 83 &2 8B Dé 54 2D 35 88 C4 EB C& F-1E_.be0T-5°REE

9E BC &C 5F EO 08 88 13 5B C7 &1 AS OF 44 11 56 ML A...[C.¥. 0V

F9 F2 28 63 Th D& 98 17 & EB 24 €7 50 4B A% 3C o4 czls. jaBClE"<

AF 84 86 35 BT FD CD 5D 25 14 4F E1 7E 42 30 09 “5{9-y11..0a-B..

y:8082:8]140h: 38 &3 FF 35 CE BF S0 81 7h 42 89 12 27 34 IS Bé 3:5‘“,]-1&.'4-5!

14 :6888:8] F3 BF Fi &1 DB &4 B 32 87 S5F F1 CY &F B8 4D 36 opR.00.2. RE.abs

168h: B 21 FA 50 35 BE &A 56 55 C7 59 1B AB S& A2 46 .00]5.JVOCY.«%ef

A1 F1 98 &7 BF 4E 56 BB C3 4B E3 78 A4 BC 98 IF ;A p:MEsRARxeEs.

BD D& 55 B BC CF 2C AE 14 69 EXEABE M4 TE T7 .[ﬂ.l:ﬂ.f.i!ﬂ_'-ﬁl

4h D% EB IF SF AE EA CF 93 AA A5 12 &5 F1 42 1E Jde, "BI“W.eiiB.

77 38 B2 AD 25 F2 BF €1 28 8B 3T 15 48 C5 F& 91 wo?-Nh_hei« RIS

BA TR 42 BE DS F7 B4 FA B2 A7 AD B8 56 BA 35 CA .zbeledfe-"vest

78 EA 40 BA D4 YE 48 F8 &3 4C 3C 37 EF BF C3 &0 xal.02Bafl<7i:k.

D2 EZE3 29 &A 54 %4 D1 5A 78 CECB 32 BB A2 17 I'.'l&E}J'-ﬂIpEEEn.

11/13

decryptor_pp+0x288ed:

004288ed cmp dword ptr [esp+OCh],edx ss:002b:0271fb9c=00000200
0:007> r edx

edx=00000200// edx, as expected is 0x200

0:007> dd @esp+c 11

0271fb9c 00000200 // aes block size has correctly been calculated this time
0:007> t // step into, to validate the jne

decryptor_pp+0x288f1:

004288f1 jne decryptor_pp+0x28cOa (00428c0a) [br=0]

0:007> r zf

zf=1

0:007> t // step into to compare the next check for the HighPart
decryptor_pp+0x288f7:

004288f7 397c2414 cmp dword ptr [esp+14h],edi ss:002b:0271fba4=00000014
0:007> dd @esp+14 11

0271fbad4 00000014 // we see that they're the same, and the decryptor works as
expected

0:007> r edi
edi=00000014
0:007> t
0:007> r zf
zf=1

1: 81 OF 00 66 68 62 OB 060 60 00 06 A6 BB 66 88 88
66 66 66 9 89 88 B1 86 63 60 68 68 63 1B D6 B8c...c.0.
60 86 00 BB B4 06 00 08 AG 8B 07 @0 BE 96 87 88 A
62 86 BB B0 66 66 60 BB B0 60 60 60 7E D5 6B C4 0.4
66 86 B8 BA 86 66 60 BB 6O 60 6O 66 BB 86 BA BB
66 86 B0 BA 66 66 60 BB BG 06 0O 6O BB 06 68 6B
30 BB 08 66 B1 66 6 66 31 66 69 06 6O 40 66 68 B....... Al

85 86 DD 93 45 4E (9 BA 73 7E E A5 31 1C A4 35 _{1“ENEes~.¥1.55
CB 54 E3 F& 2B AC 2B 17 88 2B 1D AF BE (9 AC 3E ET&6+-+.7+. 3E~>
1F DB F1 EE 27 F7 5B AB A8 21 BA 2B F@ B8 14 D4 .Dfif'+[« l0+3 .0
86 12 8B 26 B6 27 C4 A4 9B BA BC 36 6B DD BA 6E t.<89'A=>.eki.n
C4 68 50 4D C6 BA 87 A9 13 B8 39 B2 23 32 34 5F A'PME2.B..9.#24_
B5 62 FF D4 67 B4 BA B4 8C D4 8C DF 8C 89 4A 91 pbily’. ‘€0.8.8)¢
5D CE 26 92 B4 E3 5D 56 FC 54 8A 88 A¢ 1E DC B8]1I&'.zIvirs-|.0

87 28 1F AF 55 88 29 5D AE 12 BD BC E8 48 07 8F #(.7U")]®.i4eH.. 89 2E 88 7F B8 7F 80 81 00 83 00 &7 B0 8B 08 8Ff.}.<..
85 38 38 64 AB 7E 22 1A 5C BF CB 3E 5@ 6F 26 73 .80d«~".\;E>Pods 86 93 66 9D @8 A7 86 B1 06 B1 68 B5 B8 B9 88 BD .“...§.:.:.p.l.3
D7 C7 9F F5 48 45 28 76 A5 E4 C3 4A D5 EA 88 C2 xCVBHE(v¥aAJ0e.R @6 C1 @8 CB 88 E7 B8 F1 68 FB 68 85 @1 15 81 1F .A.E.c.f.0......
8D 3D &F 33 A9 9D AE 42 85 11 92 E5 A9 2E 28 27 .=030.%B..’40.(" 81 2F 81 33 81 3D @1 3D B1 55 @1 65 81 65 081 65 ./.3.=.=.U.e.e.e
3C 8D 22 CB E9 67 E9 5B D& A7 7A B4 (B 63 AB 23 <."Aége[08z.Ec # 81 65 81 65 01 65 61 65 81 75 61 75 B1 75 61 TF .e.e.e.e.u.u.u..
85 22 58 BC 89 8 62 26 A3 B1 ED C4 32 EC 6E Bs ."Xikth&F.1A2ind 61 89 81 AS 01 AF 61 BF 61 DB 01 E3 81 3B 04 05 .&.¥.".;.0.5.;..
98 E8 9C BE 1F 95 D8 48 98 3F 97 BC 3F DB 89 1C .2ei.«BH">-.70.. 86 22 6D AB 54 D5 40 8A D6 48 F1 3D 76 9E 75 B4 E"m«Tﬁ@&UHm Zu.

66 82 68 B0 08 A6 60 FF FF FF FF 60 B8 BA 88 68§¥i¥.....
66 66 60 BA 66 66 60 BB BG 60 6 6O BB BB 68 68
66 66 60 BA 68 60 60 6O B0 60 0O GO B8 BB 68 BB

1D BB EA F3 28 3D A2 17 FE BA 8E FC 18 B4 3E ES .°86(=¢.pefii.">4
28 18 CO 2E EF B C8 2E 23 B7 44 5C 7A 98 EE 86 .A.i°E.#-D\z.it
1B 96 68 9A 42 Fb 87 48 37 A8 5F A4 32 86 53 B7 .-h3B5i@7 _s=21S-

Figure 11. (L) Encrypted file; (R) Successfully decrypted file

While this has the deceptive appearance of some kind of success, we must remain ever
cognizant of the fatal bug that’s inside the encryptor. The critical flaw by these ransomware
developers in misunderstanding how NTSTATUS values work, and the consequences they
can have for naive thread synchronization. Given that we don’t want to be unwitting victims
of naivety ourselves, we quickly realized that the immensity of the problem was just now
slowly starting to reveal itself.

Coming up in Part 2

In the second part of this series, we will shift our focus to outlining the issues that the
decryptor poses, uncover the file structure of the database files that we're dealing with, throw
in a little bit of crypto magic into play, and take the necessary steps to achieve our ultimate
goal: the successful restoration of all encrypted database files.

12/13

https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-2-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254421

13/13

