
1/10

CrowdStrike Intelligence Team March 1, 2022

How to Decrypt the PartyTicket Ransomware Targeting
Ukraine

crowdstrike.com/blog/how-to-decrypt-the-partyticket-ransomware-targeting-ukraine/

Summary

On Feb. 23, 2022, destructive attacks were conducted against Ukrainian entities. Industry
reporting has claimed the Go-based ransomware dubbed PartyTicket (or HermeticRansom)
was identified at several organizations affected by the attack, among other families including
a sophisticated wiper CrowdStrike Intelligence tracks as DriveSlayer (HermeticWiper).

Analysis of the PartyTicket ransomware indicates it superficially encrypts files and does not
properly initialize the encryption key, making the encrypted file with the associated
.encryptedJB extension recoverable.

Technical Analysis

1

https://www.crowdstrike.com/blog/how-to-decrypt-the-partyticket-ransomware-targeting-ukraine/

2/10

A PartyTicket ransomware sample has a SHA256 hash of
4dc13bb83a16d4ff9865a51b3e4d24112327c526c1392e14d56f20d6f4eaf382 . It has been

observed associated with the file names cdir.exe , cname.exe , connh.exe and
intpub.exe .

The ransomware sample — written using Go version 1.10.1 — contains many symbols that
reference the U.S. political system, including voteFor403 ,
C:/projects/403forBiden/wHiteHousE and primaryElectionProcess .

The ransomware iterates over all drive letters and recursively enumerates the files in each
drive and its subfolders, excluding file paths that contain the strings Windows and Program
Files and the folder path C:\Documents and Settings (the latter folder was replaced in
Windows versions later than Windows XP with C:\Users). Files with the following
extensions are selected for encryption:

acl, avi, bat, bmp, cab, cfg, chm, cmd, com, contact, crt, css, dat, dip,
dll, doc, docx, dot, encryptedjb , epub, exe, gif, htm, html, ico, in, iso,
jpeg, jpg, mp3, msi, odt, one, ova, pdf, pgsql, png, ppt, pptx, pub, rar,
rtf, sfx, sql, txt, url, vdi, vsd, wma, wmv, wtv, xls, xlsx, xml, xps, zip

For each file path that passes the previously described path and extension checks, the
ransomware copies an instance of itself to the same directory it was executed from and
executes via the command line, passing the file path as an argument. The parent
ransomware process names its clones with a random UUID generated by a public library
that uses the current timestamp and MAC addresses of the infected host’s network adapters.

The malware developer attempted to use Go’s WaitGroup types to implement concurrency;
however, due to a likely coding error, the ransomware creates a very large number of threads
(one per enumerated file path) and copies its own binary into the current directory as many
times as there are selected files. After all encryption threads have ended, the original binary
deletes itself via the command line.

When the sample receives a file path as an argument, it encrypts the file using AES in
Galois/Counter Mode (GCM). The AES key is generated using the Go rand package’s
Intn function to select offsets in the character array
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ , generating a 32-byte key. Due to another

likely coding error, the seed for the Intn function is updated after the key is generated,
meaning the same AES key is generated each time the binary and its clones are run. All of
the files encrypted on a host are encrypted with the same key, and knowledge of the
corresponding PartyTicket sample’s key enables their decryption. A script using this flaw to
recover the encrypted files is available on the CrowdStrike Git Repository.

For each file, the AES encryption key is itself encrypted with RSA-OAEP, using a public RSA
key that has the following parameters:

2

https://github.com/CrowdStrike/PartyTicketDecryptor

3/10

Modulus (N):
0xcbb94cb189a638b51e7cfe161cd92edb7145ecbd93989e78c94f8c15c61829286fd834d80c931daed4ac

Exponent (E): 0x10001

Before encryption, the ransomware renames the file using the format <original file
name>.[vote2024forjb@protonmail[.]com].encryptedJB (“JB” very likely stands for the
initials of the United States president Joseph Biden, given the other political content in the
binary). The ransomware then overwrites the content with the encrypted data. PartyTicket
will only encrypt the first 9437184 bytes (9.44 MB) of a file. If the file passed as an argument
is larger than this limit, any data above it is left unencrypted. After the file contents are
encrypted, PartyTicket appends the RSA-encrypted AES key at the end of the file.

The ransomware also writes an HTML ransom note on the user’s desktop directory with the
name read_me.html before the file encryption starts (Figure 1). Unless they are intentional
mistakes, grammar constructs within the note suggest it was likely not written or proofread by
a fluent English speaker.

Figure 1. Ransom note

Assessment

CrowdStrike Intelligence does not attribute the PartyTicket activity to a named adversary at
the time of writing.

4/10

The ransomware contains implementation errors, making its encryption breakable and slow.
This flaw suggests that the malware author was either inexperienced writing in Go or
invested limited efforts in testing the malware, possibly because the available development
time was limited. In particular, PartyTicket is not as advanced as DriveSlayer, which
implements low-level NTFS parsing logic. The relative immaturity and political messaging of
the ransomware, the deployment timing and the targeting of Ukrainian entities are consistent
with its use as an additional payload alongside DriveSlayer activity, rather than as a
legitimate ransomware extortion attempt.

YARA Signatures

The following YARA rule can be used to detect PartyTicket:

5/10

rule CrowdStrike_PartyTicket_01 : ransomware golang
{
 meta:
 copyright = "(c) 2022 CrowdStrike Inc."
 description = "Detects Golang-based crypter"
 version = "202202250130"
 last_modified = "2022-02-25"
 strings:
 $ = ".encryptedJB" ascii
 $start = { ff 20 47 6f 20 62 75 69 6c 64 20 49 44 3a 20 22 }
 $end = { 0a 20 ff }
 condition:
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and
 for 1 of ($end) : (@start < @ and @start + 1024 > @) and
 all of them
}

rule CrowdStrike_PartyTicket_02 : PartyTicket golang
{
 meta:
 copyright = "(c) 2022 CrowdStrike Inc."
 description = "Detects Golang-based PartyTicket ransomware"
 version = "202202250130"
 last_modified = "2022-02-25"
 strings:
 $s1 = "voteFor403"
 $s2 = "highWay60"
 $s3 = "randomiseDuration"
 $s4 = "subscribeNewPartyMember"
 $s5 = "primaryElectionProces"
 $s6 = "baggageGatherings"
 $s7 = "getBoo"
 $s8 = "selfElect"
 $s9 = "wHiteHousE"
 $s10 = "encryptedJB"
 $goid = { ff 20 47 6f 20 62 75 69 6c 64 20 49 44 3a 20 22 71 62 30 48 37 41
64 57 41 59 44 7a 66 4d 41 31 4a 38 30 42 2f 6e 4a 39 46 46 38 66 75 70 4a 6c 34 71
6e 45 34 57 76 41 35 2f 50 57 6b 77 45 4a 66 4b 55 72 52 62 59 4e 35 39 5f 4a 62 61
2f 32 6f 30 56 49 79 76 71 49 4e 46 62 4c 73 44 73 46 79 4c 32 22 0a 20 ff }
 $pdb = "C://projects//403forBiden//wHiteHousE"
 condition:
 (uint32(0) == 0x464c457f or (uint16(0) == 0x5a4d and uint16(uint32(0x3c)) ==
0x4550)) and 4 of ($s*) or $pdb or $goid
}

Script to Decrypt PartyTicket Encrypted Files

Due to the previously discussed implementation errors in the AES key generation, it is
possible to recover the AES key used for encryption by PartyTicket. The below Go script
decrypts files encrypted by PartyTicket sample
4dc13bb83a16d4ff9865a51b3e4d24112327c526c1392e14d56f20d6f4eaf382 . The script

6/10

takes the file to be decrypted as an argument via the “-p” flag and saves the decrypted
output to “decrypted.bin” in the same directory. The script can be built as an executable or
run via the Go run package; it was tested using Go version go1.16.6.

7/10

package main

import (

"crypto/aes"
"crypto/cipher"
"encoding/hex"
"fmt"
"os"
"flag"

)

func main() {

encrypted_filepath := flag.String("p", "encrypted.bin", "Path to encrypted
file")

flag.Parse()

fmt.Printf("Decrypting file : %s\n", *encrypted_filepath)
key_bytes := []byte("6FBBD7P95OE8UT5QRTTEBIWAR88S74DO")
key := hex.EncodeToString(key_bytes)
fmt.Printf("Decryption key : %s\n", key_bytes)

dat, err := os.ReadFile(*encrypted_filepath)
if err != nil {
 fmt.Println("Unable to open file, please supply path of encrypted

file with flag -p, default file path is ./encrypted.bin")
 os.Exit(3)
}

decrypted_filepath := "decrypted.bin"
filecontents := dat
encrypted_contents := filecontents[:len(filecontents) - 288]
enc_size := len(encrypted_contents)
bsize := 1048604
cycles := enc_size / bsize

if cycles == 0{

 encrypted := hex.EncodeToString(encrypted_contents)
 decrypted := decrypt(encrypted, key)
 write_output(decrypted_filepath, decrypted)
 } else {
 for i:=0; i<cycles; i++ { if i >= 9 {
 start := 9 * bsize
 end := enc_size
 data := string(encrypted_contents[start:end])
 write_output(decrypted_filepath, data)
 break
 }
 block_start := i * bsize
 block_end := (i+1) * bsize
 if block_end > enc_size{
 block_end := enc_size

encrypted:=hex.EncodeToString(encrypted_contents[block_start:block_end])

8/10

 decrypted := decrypt(encrypted, key)
 write_output(decrypted_filepath, decrypted)

 }

encrypted:=hex.EncodeToString(encrypted_contents[block_start:block_end])
 decrypted := decrypt(encrypted, key)
 write_output(decrypted_filepath, decrypted)
 }
 }

 fmt.Printf("Decrypted file written to : %s\n", decrypted_filepath)

}

func write_output(filepath string, data string) {

 f, err := os.OpenFile(filepath, os.O_APPEND|os.O_CREATE|os.O_WRONLY,
0644)

 if err != nil {
 panic(err)
 }
 byte_data := []byte(data)
 f.Write(byte_data)
 f.Close()

}

func decrypt(encryptedString string, keyString string) (decryptedString string) {

key, _ := hex.DecodeString(keyString)
enc, _ := hex.DecodeString(encryptedString)

block, err := aes.NewCipher(key)
if err != nil {
 panic(err.Error())
}
aesGCM, err := cipher.NewGCM(block)
if err != nil {
 panic(err.Error())
}
nonceSize := aesGCM.NonceSize()
nonce, ciphertext := enc[:nonceSize], enc[nonceSize:]
plaintext, err := aesGCM.Open(nil, nonce, ciphertext, nil)
if err != nil {
 panic(err.Error())
}

return fmt.Sprintf("%s", plaintext)

}

Endnotes

1. https[:]//symantec-enterprise-blogs.security[.]com/blogs/threat-intelligence/ukraine-
wiper-malware-russia

9/10

2. https[:]//pkg.go.dev/github[.]com/satori/go.uuid#NewV1

Additional Resources

Read more about use of offensive cyber operations against Ukraine: Lessons Learned
From Successive Use of Offensive Cyber Operations Against Ukraine and What May
Be Next.
Learn how CrowdStrike Falcon provides continuous protection against DriveSlayer and
wiper-style threats: CrowdStrike Falcon Protects from New Wiper Malware Used in
Ukraine Cyberattacks
Read about about WhisperGate in this CrowdStrike Intelligence blog: Technical
Analysis of the WhisperGate Malicious Bootloader.
Learn about the powerful, cloud-native CrowdStrike Falcon platform by visiting the
product webpage.
Get a full-featured free trial of CrowdStrike Falcon Prevent to see for yourself how true
next-gen AV performs against today’s most sophisticated threats.

PROPHET SPIDER Exploits Citrix ShareFile Remote Code Execution Vulnerability CVE-2021-22941 to
Deliver Webshell

At the start of 2022, CrowdStrike Intelligence and CrowdStrike Services investigated an
incident in which PROPHET SPIDER exploited CVE-2021-22941 — a remote code
execution (RCE) vulnerability impacting Citrix ShareFile Storage Zones Controller — to
compromise a Microsoft Internet Information Services (IIS) web server. The adversary
exploited the vulnerability to deploy a webshell that enabled the […]

https://www.crowdstrike.com/blog/lessons-from-past-cyber-operations-against-ukraine/
https://www.crowdstrike.com/blog/how-crowdstrike-falcon-protects-against-wiper-malware-used-in-ukraine-attacks/
https://www.crowdstrike.com/blog/technical-analysis-of-whispergate-malware/
https://www.crowdstrike.com/endpoint-security-products/
https://go.crowdstrike.com/try-falcon-prevent.html
https://www.crowdstrike.com/blog/prophet-spider-exploits-citrix-sharefile/

10/10

https://www.crowdstrike.com/blog/prophet-spider-exploits-citrix-sharefile/

