
1/9

Anandeshwar Unnikrishnan February 17, 2022

Technical Analysis of Code-Signed “Blister” Malware
Campaign (Part 2)

cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-2

The blister is a code-signed malware that drops a malicious DLL file on the victim’s system,

which is then executed by the loader via rundll32.exe, resulting in the deployment of a RAT/

C2 beacon, thus allowing unauthorized access to the target system over the internet. Blister

Malware campaigns have been active since 15 September 2021.

Part I of CloudSEK’s analysis provides a detailed understanding of how the loader functions.

Part 2 will delve into the details of this campaign’s second stage, which is the .dll payload,

and its internal working.

Dissecting the Malicious DLL – Blister Malware

As discussed in Part 1, the Blister dropper drops the malicious .dll file in the Temp

directory of the user, inside a newly created folder. This malicious .dll then carries out

the second stage of the campaign, in which a RAT/ agent is deployed on the system to gain

unauthorized access and steal data.

The Blister dropper calls the function LaunchColorCpl, which is one of the functions

exported by the .dll, via rundll32.exe.

https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-2/
https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-1/

2/9

Functions exported by the malicious DLL

Staging

The exported function LaunchColorCpl retrieves the staging code from the resource

section of the PE file. This staging code is protected by a simple XOR encoding scheme.

Code responsible for decoding the staging code

Encoded staging code in the resource section of the PE file

After the iterative decoding of the staging code, the control is transferred to decoded

code in the memory.

The control flow is transferred to the staging code by calling the address in the EAX

register.

3/9

Stackframe before the malware calls the

Sleep Windows API

Calling the address in the EAX register

Anti-Analysis

The staging code is heavily obfuscated, and has a logic similar to a spaghetti code, to

hinder analysis. All the calls to Windows APIs are obscured and dynamically resolved.

The first thing that the staging code does is to make the malware go to sleep by calling

the Sleep Windows API. This is a typical strategy used by most malicious codes to

bypass security sandboxes and dynamic testing of security products.

The hex value “927C0” is passed to

kernel32.759F9010 i.e the Sleep function.

This value (927C0) translates to “600000” in

decimal. Since the Sleep API takes

arguments in milliseconds (ms), the 600000

ms get converted to 10 minutes.

When the malware resumes from sleep, it

fetches the final payload from the resource section of the PE file.

Snippet of the protected payload stored in the memory

In the memory, the protected payload is decoded. The presence of a DOS header, in the

payload bytes, confirms that the payload is in PE format and not a shellcode.

4/9

Decrypted payload stored in the memory

An interesting observation from this analysis, is the addition of MZ byte after the

decryption process. In the above image, the initial byte is not MZ, rather the MZ byte is

later added at the beginning of the payload separately. This behavior is primarily for

operational security.

Addition of the MZ byte after the decryption process

Process Hollowing

In general, process hollowing allows an attacker to change the content of a legitimate process

from genuine code to malicious code before it is executed by carving out the code logic within

the target process.

After decrypting the final payload, the malware prepares for execution.

This is done by creating a new process to deploy the extracted code and then

performing process hollowing to execute the payload in the remote process. The staging

code retrieves the Rundll32.exe location from the compromised system.

Retrieval of the location of rundll32.exe

5/9

A new process of Rundll32.exe is created via the CreateProcessInternalW API in the

suspended state.

Creation of the new rendll32.exe

The malware uses the following Win32 APIs for process hollowing:

ZwUnmapViewOfSection

ZwReadVirtualMemory

ZwWriteVirtualMemory

ZwGetContextThread

ZwSetContextThread

NtResumeThread

ZwWriteVirtualMemory is used to write malicious code into the target process.

To make the thread of the new process point to newly written code, the attacker alters

the entry point of the current thread via ZwGetContextThread and

ZwSetContextThread.

These functions are used to perform processor housekeeping activities on the data

structure that stores the current context of the running thread. Process hollowing takes

advantage of these features to make the process thread run the attacker code.

Step by Step Working of the DLL

The staging code allocates a new memory via ZwAllocateVirtualMemory to transfer the

previously decrypted final payload.

Allocation of new memory via ZwAllocateVirtualMemory

6/9

Alteration of the memory protections

The payload is then copied to a newly created buffer.. Based on CloudSEK’s testing on

the extracted payload, one of the analyzed samples contained the Raccoon stealer as

the final stage payload. However, other samples used Cobalt Strike beacon and BitRAT

to compromise the target and gain unauthorized access.

Moving the payload to a newly created buffer

The staging code then injects the code into the newly created remote process i.e

Rundll32.exe.

Code injections into the newly created rendll32.exe

Later, the memory protections are changed to appropriate ones for the execution of the

residing code via NTProtectVirtualMemory.

The thread context is retrieved via ZwGetContextThread API to change the entry point

of the thread to execute the payload injected into the remote process.

Addition of the MZ byte after the decryption process

7/9

TheZwSetContextThread is used to modify the thread entry point to that of the newly

copied PE file.

Modification of the thread entry point to the copied PE file

At the final stage of process hollowing, the suspended thread of the Rundll32.exe is

resumed via NtResumeThread . Then the Rundll32.exe process starts executing the

malicious code hollowed into it by the malware.

Resuming the suspended thread

In the clean-up process, the staging code uses NtFreeVirtualMemory to release the

allocated memory, which holds the payload assembly, one by one.

Clean-up process releasing the allocated memory

The current process used for staging is terminated via the NtTerminateProcess .

Termination of the current process

8/9

Blister Malware – Maintaining Persistence

The Blister malware achieves persistence on the target system by creating an “lnk” file

named proamingsGames in the C:\Users\

<username>\AppData\Roaming\Microsft\Windows\Start Menu\Startup directory.

Whenever the user logs in, explorer.exe executes any file in the Startup folder.

As a result, when the user signs into the account, following the boot process, the

malware runs as a child process of explorer.exe .

Ink file produced in the Startup directory

The target for the lnk file is set as

C:\ProgramData\proamingsGames\proamingsGames.dll,LaunchColorCpl . Here,

the malware copies the Rundll32.exe as proamingsGames.exe and the malicious

.dll (initially into C:\ProgramData\proamingsGames directory) is dropped in the

Temp folder.

Contents of the proamingsGames.dll file

Every time that the system powers up and the user logs in, the lnk file runs a malicious

.dll through a renamed instance of Rundll32.exe .

Conclusion

Given that threat actors are actively using valid code-signing certificates in Windows

systems, to avoid detection by antivirus software, it is essential for network and endpoint

security products to be updated with the malwares’ latest Indicators of Compromise (IoCs).

The latest IoCs for the Blister Malware are enumerated in Part 1 of the technical analysis.

Anandeshwar Unnikrishnan

Threat Intelligence Researcher , CloudSEK

Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of

offensive cybersecurity. He is fuelled by his passion for cyber threats in a global context. He

https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-1/
https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/

9/9

dedicates much of his time on Try Hack Me/ Hack The Box/

Offensive Security Playground. He believes that “a strong

mind starts with a strong body.” When he is not gymming, he

finds time to nurture his passion for teaching. He also likes to

travel and experience new cultures.

Hansika Saxena

Total Posts: 2

Hansika joined CloudSEK’s Editorial team as a Technical

Writer and is a B.Sc (Hons) student at the University of

Delhi. She was previously associated with Youth India

Foundation for a year.

https://cloudsek.com/author/hansika-saxena/

