TrickBot Gang Uses Template-Based Metaprogramming
in Bazar Malware

€

Home / Endpoint
TrickBot Gang Uses Template-Based Metaprogramming in Bazar Malware

Endpoint February 2, 2022

1/10

https://securityintelligence.com/posts/trickbot-gang-template-based-metaprogramming-bazar-malware/
https://securityintelligence.com/
https://securityintelligence.com/category/topics/endpoint/
https://securityintelligence.com/category/topics/endpoint/

By Kevin Henson 6 min read

Malware authors use various techniques to obfuscate their code and protect against reverse
engineering. Techniques such as control flow obfuscation using Obfuscator-LLVM and
encryption are often observed in malware samples.

This post describes a specific technique that involves what is known as metaprogramming,
or more specifically template-based metaprogramming, with a particular focus on its
implementation in the Bazar family of malware (BazarBackdoor/BazarLoader). Bazar is best
known for its ties to the cybercrime gang that develops and uses the TrickBot Trojan. Itis a
major cybercrime syndicate that is highly active in the online crime arena.

A Few Words About Metaprogramming

Metaprogramming is a technique where programs are designed to analyze or generate new
code at runtime. Developers typically use metaprogramming techniques to make their code
more efficient, modular and maintainable. Template-based metaprogramming incorporates
templates that serve as models for code reuse. The templates can be written to handle
multiple data types.

For example, the basic function template shown below can be used to define multiple
functions that return the maximum of two values such as two numbers or two strings. The
type is generalized in the template parameter <typename T>, as a result, a and b will be
defined based on the usage of the function. One of the “magical” attributes of templates is
that the max() function doesn’t actually exist until it's called and compiled. For the example
below, three functions will be created at compile time, one for each call.

2/10

https://securityintelligence.com/author/kevin-henson/
https://github.com/obfuscator-llvm/obfuscator/wiki
https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/
https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/

//Sample function template
template<typename T>
Tmax (Ta, Tb)
{
/Il if b < a then yield a else yield b

returnb<a?a:b;

/I Calls to max()
max(10,5);
max(5.5, 8.9);

max(“reverse”, “engineering”);

Templates can be quite complex; however, this high-level understanding will suffice in
grasping how the concept is used to a malware author’s advantage.

Malware Development

Malware authors take advantage of the metaprogramming technique to both obfuscate
important data and ensure that certain elements, such as code patterns and encryption keys,
are generated uniquely with each compilation. This hinders analysis and makes developing
signatures for static detection more difficult because the encryption code changes with each
compiled sample.

The key components in metaprogramming used to accomplish this type of obfuscation are
the templates and another feature called constexpr functions. In simple terms, a constexpr
function’s return value is determined at compile time.

To illustrate how this works, the following sections will compare samples compiled from the
open-source library ADVobfuscator to Bazar samples found in the wild. The adoption of more
advanced programming techniques within the Bazar malware family is especially relevant
since the operators of Bazar are highly active in attacks against organizations across the
globe.

ADVobfuscator

3/10

To get a better understanding of how template programming is utilized with respect to string
obfuscation, let’'s take a look at two header files from ADVobfuscator. ADVobfuscator is
described as an “Obfuscation library based on C++11/14 and metaprogramming.” The
MetaRandom.h and MetaString.h header files from the library are discussed below.

MetaRandom.h

The MetaRandom.h header file generates a pseudo-random number at compile time. The file
implements the keyword constexpr in its template classes. The constexpr keyword declares
that the value of a function or variable can be evaluated at compile time and, in this example,
facilitates the generation of a pseudo-random integer seed based on the compilation time
that is then used to generate a key.

namespace
{

/I I use current (compile time) as a seed

constexpr char time[] = __ TIME__;// __TIME__ has the following format: hh:mm:ss in
24-hour time

/I Convert time string (hh:mm:ss) into a number

constexpr int DigitTolnt(char c) { return c — ‘0’; }

const int seed = DigitTolnt(time[7]) +
DigitTolnt(time[6]) * 10 +
DigitTolnt(time[4]) * 60 +
DigitTolnt(time[3]) * 600 +
DigitTolnt(time[1]) * 3600 +
DigitTolnt(time[0]) * 36000;

Figure 1: Code Block 1 MetaRandom.h

MetaString.h

The MetaString.h header file consists of versions of a template class named MetaString that
represents an encrypted string. Through template programming, MetaString can encrypt
each string with a new algorithm and key during compilation of the code. As a result, a

4/10

https://github.com/andrivet/ADVobfuscator

sample could be produced with the following string obfuscation:

o Each character in the string is XOR encrypted with the same key.

o Each character in the string is XOR encrypted with an incrementing key.

* The key is added to each character of the string. As a result, decryption requires
subtracting the key from each character.

Here is a sample MetaString implementation from ADVobfuscator.

This template defines a MetaString with an algorithm number (N), a key value and a list of
indexes. The algorithm number controls which of the three obfuscation methods are used
and is determined at compile time.

template<int N, char Key, typename Indexes>

struct MetaString;

Figure 2: Code Block 2 MetaString.h

This is a specific implementation of MetaString based on the above template. The algorithm
number (N) is 0, K is the pseudo-random key and | (Indexes) represent the character index
in the string. When the algorithm number 0 is generated at compile time, this implementation
is used to obfuscate the string. If the algorithm number 1 is generated, the corresponding
implementation is used. ADVobfuscator uses the C++ macro __ COUNTER__ to generate
the algorithm number.

template<char K, int... I>
struct MetaString<0, K, Indexes<lI...>>
{
/I Constructor. Evaluated at compile time.
constexpr ALWAYS_INLINE MetaString(const char* str)
- key { K}, buffer_{ encrypt(str[l], K)... } { }

/I Runtime decryption. Most of the time, inlined

inline const char* decrypt()

{

for (size_ti=0; i< sizeof...(l); ++i)

5/10

buffer_[i] = decrypt(buffer_[i]);
buffer_[sizeof...(I)] = 0;
LOG(“— Implementation #” << 0 << ” with key 0x” << hex(key_));

return const_cast<const char*>(buffer_);

private:
/I Encrypt / decrypt a character of the original string with the key
constexpr char key() const { return key _; }
constexpr char ALWAYS_INLINE encrypt(char c, int k) const { return c * k; }

constexpr char decrypt(char c) const { return encrypt(c, key()); }

volatile int key_; // key. “volatile” is important to avoid uncontrolled over-optimization by
the compiler

volatile char buffer_[sizeof...(l) + 1]; // Buffer to store the encrypted string + terminating
null byte

|

Figure 3: Code Block 3 MetaString.h

ADVobfuscator Samples

Interesting code patterns are observed when samples are built using ADVobfuscator. For
example, after compiling the Visual Studio project found in the public Github repo, the
resulting code shows the characters of the string being moved to the stack, followed by a
decryption loop.

These snippets illustrate the dynamic nature of the library. Each string is obfuscated using
one of the three obfuscation methods previously described. Not only are the methods
different, the opcodes — the values in blue, which are commonly used in developing YARA
rules — can vary as well for the same obfuscation method. This makes developing
signatures, parsers and decoders more difficult for analysts. Notably, the same patterns are
observed in BazarLoader and BazarBackdoor samples.

6/10

https://github.com/andrivet/ADVobfuscator

XOR encryption with the same key XOR encryption with an incrementing key

ext:00401681 34 79 xor al, 790

ext:00401683 88 44 24 S5E mov [esp+BABhtvar_42], al
ext:08401687 88 44 24 54 mov eax, [esp+BRohtkey]
ext:08401688 04 07 add al, 7

ext:0040168D 34 20 xor al, 2¢h

Encrypted string moved
to the stack.

ext:0040168F 88 44 24 5F mov [esp+arbhivar_a1], al
eax, [esp+BAOh+key]
E

ext:084010C3 BB 44 24 54
ext:084016C7 04 08
ext:084016C9 34 53
ext:084016CE 85 44 24 60
ext:004016CF 8B 44 24 54
ext:004018D3 04 09
ext:004016D5 34 76
ext:00401607 88 44 24 61
ext:004016D8 8B 44 24 54
ext:004016DF 04 OA
ext:004010EL 34 65
ext:0B4Q1OES B8 44 24 62
ext:0B4010E7 BE 44 24 54
ext:0B4010EE 04 OB
ext:0B4010ED 34 61
ext:0B4010EF 85 44 24 63

Decryption Loop

ext:004010F3 8B 44 24 54
ext:004010F7 04 OC
ext:084010F9 34 72
ext:004010F8 88 44 24 64

ext:004010FF 8B 44 24 54
ext:00401103 04 0D
ext:08401105 (6 44 24 66 00
ext 108401104 34 73
ext:0840110C B8 44 24 65
ext:08401110 BA 44 24 58
ext 100401114 33 €O

_ i
FEIE]
text:00401116
.text:08401116 loc_201116:
.text:88401116 BA 4C B4 58 mov cl, [espteaxt@Adh+encrypted string 8]
.texti@040111A 85 54 24 54 mov edx, [esp+Aghtkey]
.text:9e40111E 02 DO add d1, al
.text:9e401120 32 D1
text:00401122 88 54 84 58 pted_string 8], dl
text:00401126 40
text:00401127 83 F8 OF cmp eax, och
text:0040112A 72 EA b short loc_de1116
T

Figure 4: Compiled ADVobfuscator Exemplar Samples

BazarBackdoor/BazarLoader

BazarLoader and BazarBackdoor are malware families attributed to the TrickBot threat
group, a.k.a. ITG23. Both are written in C++ and compiled for 64bit and 32bit Windows.
BazarLoader is known to download and execute BazarBackdoor, and both use the Emercoin
DNS domain (.bazar) when communicating with their C2 servers.

Other attributes of the loader and backdoor include extensive use of API function hashing
and string obfuscation where each string is encrypted with varying keys. The string
obfuscation methodology implemented in these files is interesting when compared with the
ADVobfuscator samples previously described.

Bazar String Obfuscation

The string obfuscation implemented in variants of BazarLoader and BazarBackdoor is similar
to what is implemented in ADVobfuscator. For example, the BazarBackdoor sample
189cbe03c6ce7bdb691f915a0ddd05e11adda0d8d83703c037276726f32dff56 detailed in
Figure 5 contains a modified version of the string obfuscation techniques found in
ADVobfuscator. In Figure 5, the string is moved to the stack four bytes at a time and the key
used in the decryption loop is four bytes.

7/10

FFIE]
.text:@@48296D 044 EG 6A ED FF FF call sub 40172C
.text:004829C2 044 BA 64 push esh ; 'd’
.text:004829C4 047 =0 pop ecx
.text:004029C5 044 Encrypted Slring mov edi, eax
text:004829C7 044 K call sub_4e700D
“text:oasnzacc e MOVEd tO stacl mov [ebp+var_34], 386BCCA3h
.text:004829D3 @44 B9 80 AD 07 54 mov ecx, 5407AD@6h
.text:004629D8 044 C7 45 D@ 20 E2 77 31 mov [ebp+var_3e], 3177£220h
.text:004029DF 044 85 FO mov esi, eax
.text:@@4829E1 @44 C7 45 D4 6E FD 75 38 mov [ebp+var_2C], 3875FDGER
.text:@@4029E8 044 C7 45 DB 63 (8 74 27 mov [ebp+var_28], 2774C863h
.text:@@4829EF 044 C7 45 DC 20 CB 66 30 mov [ebp+var_24], 3De6CE20h
.text:0@4829F6 044 C7 45 €0 6C (8 63 78 mov [ebp+var_2e], 7863C86Ch
. text:@@4829FD 044 C7 45 €4 20 (8 75 26 mov [ebp+var_1C], 2675C820h
.text:00462A04 044 C7 45 €8 6F DF 27 37 mov [ebp+var_18], 3727DF6Fh
.text:@@482A06 044 C7 45 EC 6F (9 62 6E mov [ebp+var_14], 6E62C96Fh
.text:00482A12 044 C7 45 F® 20 88 63 S5 mov [ebp+var_1e], Sc638820h
.text:@e482A19 044 89 4D F4 mov [ebp+var C], ecx
. text:@@482A1C @44 8B 45 CC mov eax, [ebp+var_34]
.text:@@402A1F @44 85 5D F8 mov [ebp+var 8], bl
.text:0@482A22 @44 38 5D F8 cmp [ebp+var 8], bl
. text:00482A25 044 75 10 jnz short loc 482437

L[

i K)
s
- text: 08402427 :
_text: 88402427 Decryption Loop loc_462427:
_text:08402A27 844 8B 44 9D CC mov eax, [ebp+ebx*dtvar_34]
_text:88402A28 844 33 C1 xor eax, ecx
_text:0840242D 844 89 44 9D CC mov [ebp+ebx*4+var_34], eax]
_text:08402431 844 43 inc ebx
_text:08402A32 844 83 FB OB cmp ebx, @Bh
_text:88402435 844 72 FO ib short loc_482427

Figure 5: XOR String Decryption 1

.text:@0408BAB 738 (7 85 58 FA FF FF DB BO 5B 12 mov BT T
.text:00408885 738 (7 85 5C FA FF FF CA AB 4B 2B mov ebp+var_S5A4], 2B4BABCAh
.text:@040866F 735 (7 85 60 FA FF FF (5 BE 18 6F mov ebptvar_540], 6FLEBECSh
.text:004088C9 738 (7 85 64 FA FF FF FE AB 51 62 mov ebp+var_53C], 6251ABFEh
.text:@04088D3 738 (7 85 68 FA FF FF 8F 8A 5D 3@ mov ebp+var_598], 385D8A8Fh
.text:0040850D 738 C7 85 6C FA FF FF DD BC 4A 31 mov ebptvar_594], 314ABCDDh
.text:@0408BE7 738 (7 85 78 FA FF FF F@ FD 51 1F mov ebp+var_598], 1F51FDFeh
.text:@0408BF1 738 (7 85 74 FA FF FF 98 F9 4F 30 mov ebp+var_58C], 384FF998h
.text:00408BFE 738 C7 85 78 FA FF FF C2 AD 5D 6F mov ebp+var_583], 6FSDADC2h
.text:0040885 738 (7 85 7C FA FF FF (3 B6 4B 36 mov ebp+var_584], 364886C3h
.text:80408COF 738 (7 85 8 FA FF FF 88 FD 51 32 mov ebp+var_588], 3251FD8Bh
.text:00408C10 738 C7 85 84 FA FF FF 85 BA 57 2C mov ebp+var_57C], 2C578A85h
.text:@0408C23 738 (7 85 88 FA FF FF DF BC 56 36 mov ebp+var_578], 3656BCDFh
.text:80408C2D 738 (7 85 8C FA FF FF 98 FB 38 42 mov ebp+var_574], 4238FB98h
.text:00408C37 738 3B 85 (8 FO FF FF mov. eax, [ebptvar_646]
.text:80408C30 738 (6 85 98 FA FF FF 00 mov. [ebp+var_578], @
.text:00408C44 738 58 BD 98 FA FF FF 00 cmp [ebp+var_578], @

. text:00408C4E 738 75 1B inz short loc_483C68

|i |
FEE] |
.text:00408C4D 738 33 (9 xor ecx, ecx|
vy

e =

- text:@0408C4F

.text:80408C4F loc_408C4F:

.text:@@4BBCAF 738 88 84 8D (B FO FF FF mo eax, [ehptecx®dtyzr 640]
.text:00408C56 738 35 AB DO 33 42
.text:80488C58 738 89 84 8D (P F9 FF FF o sbprecytituac_64B], eax
-text:00488(62 738 41 inc ecx

.text:@@408C63 733 B3 FO 34 cmp ecx, 34h ;4"
.text:80408(66 738 72 E7 ib short loc_4@8C4F

i

Figure 6: XOR String Decryption 2

TrickBot and Bazar — Ongoing Code Evolution

Based on the similarities discovered through the analysis performed by X-Force, it is evident
that the authors of BazarLoader and BazarBackdoor malware utilize template-based
metaprogramming. While it is possible to break the resulting string obfuscation, the ultimate
intent of the malware author is to hinder reverse engineering and evade signature-based
detection. Metaprogramming is just one tool in the threat actors’ toolbox. Understanding how
these techniques work helps reverse engineers create tools to increase the efficiency of
analysis and stay in step with the constant threat malware poses.

Kevin Henson
Malware Reverse Engineer, IBM

Kevin joined IBM Security’s X-Force IRIS team as a Malware Reverse Engineer in November
2018 after 21 years of experience in supporting various commercial,...

8/10

https://securityintelligence.com/author/kevin-henson/
https://www.ibm.com/events/think%20

think 2022 IEE:

IBM Think Broadcast
Let's think together.

Watch ondemand -

https://www.ibm.com/events/think%20

10/10

https://www.ibm.com/events/think%20

