
1/21

Alex.Turing December 23, 2019

Mozi, Another Botnet Using DHT
blog.netlab.360.com/mozi-another-botnet-using-dht/

23 December 2019 / Botnet

Overview

On September 03, 2019, a suspicious file was tagged by our new threat monitoring system
and a quick checking on VT shows most engines flagged it as Gafgyt. The sample does
reuse part of the Gafgyt code, but it is not really Gafgyt.

The sample represents a brand new P2P botnet implemented based on the DHT protocol,
the last botnet which uses DHT is the Hajime, and we call it Mozi according to the
characteristics of its propagation sample file name Mozi.m , Mozi.a .

Mozi Botnet relies on the DHT protocol to build a P2P network, and uses ECDSA384 and the
xor algorithm to ensure the integrity and security of its components and P2P network. The
sample spreads via Telnet with weak passwords and some known exploits (see the list
below). In terms of functions, the execution of the instructions of each node in the Mozi
botnet is driven by a Payload called Config issued by the Botnet Master. The main
instructions include:

DDoS attack
Collecting Bot Information
Execute the payload of the specified URL
Update the sample from the specified URL
Execute system or custom commands

https://blog.netlab.360.com/mozi-another-botnet-using-dht/
https://blog.netlab.360.com/tag/botnet/


2/21

The overall network structure is shown in the following figure:

Sample Spread

Mozi infects new devices through weak telnet passwords and exploits.The infection process
is as follows:

The current Bot node randomly uses a local port to start the http service to provide
sample downloads or receives the sample download address in the Config file issued
by the Botnet Master.Provides a sample download address for future infected targets.
The current Bot node logs in to the target device with a weak password, writes the
downloader file in echo mode and runs it, and downloads the sample file from the
sample download address provided by the current Bot node. Or use a vulnerability to
exploit the target, and then obtain a sample file from the sample download address
provided by the current Bot node.
Run the Mozi Bot sample on the infected target device, join the Mozi P2P network to
become the new Mozi Bot node and continue to infect other new devices.

The vulnerabilities used by Mozi Botnet are shown in the following table:

Vulnerability Affected Aevice

https://blog.netlab.360.com/content/images/2019/12/mozi_flow-3.png


3/21

Vulnerability Affected Aevice

Eir D1000 Wireless Router RCI Eir D1000 Router

Vacron NVR RCE Vacron NVR devices

CVE-2014-8361 Devices using the Realtek
SDK

Netgear cig-bin Command Injection Netgear R7000 and R6400

Netgear setup.cgi unauthenticated RCE DGN1000 Netgear routers

JAWS Webserver unauthenticated shell command
execution

MVPower DVR

CVE-2017-17215 Huawei Router HG532

HNAP SoapAction-Header Command Execution D-Link Devices

CVE-2018-10561, CVE-2018-10562 GPON Routers

UPnP SOAP TelnetD Command Execution D-Link Devices

CCTV/DVR Remote Code Execution CCTV DVR

At present, we do not know the exact scale of the Botnet, we do manage to become a node
to join the DHT network and are tracking some baseline numbers, we will share more details
probably in another blog later on. And from other data we have collected, we can also see

https://www.exploit-db.com/exploits/40740
https://www.exploit-db.com/exploits/6864/
https://www.exploit-db.com/exploits/37169/
https://www.exploit-db.com/exploits/41598/
https://www.exploit-db.com/exploits/43055
https://www.exploit-db.com/exploits/41471/
https://www.exploit-db.com/exploits/43414/
https://www.exploit-db.com/exploits/37171/
https://www.exploit-db.com/exploits/44576/
https://www.exploit-db.com/exploits/28333/
https://www.exploit-db.com/exploits/39596/


4/21

the number of infection has been increasing.The picture below shows the Mozi bot infection
based on the log collected by our honeypot.

 

Sample Reverse Analysis



5/21

There are three versions of Mozi Botnet, which can be distinguished by their slightly different
telnet propagation methods.

 

 

Our analysis is mainly focus on the latest version v2, and this blog will cover the key
elements such as propagation method, Config structure and its DHT network.

Sample Information

MD5:eda730498b3d0a97066807a2d98909f3

ELF 32-bit LSB executable, ARM, version 1 (ARM), statically linked, stripped

Packer: NO

Library:uclibc

Version: v2

It is worth mentioning that in the first version Mozi(sample md5:
849b165f28ae8b1cebe0c7430f44aff3 ) used upx packing. But instead of using the

common upx magic number to defeat unpacking, it used a novel method, to erase the value
of p_filesize & p_blocksize to zero, with that change, researcher need to patch the upx
source code then unpacking is possible.

Common Functions

https://blog.netlab.360.com/content/images/2019/12/mozi_versioin.png


6/21

Mozi doesn't have much characteristics in the host behavior level. It reuses Gafgyt's code to
implements many common functions, such as single instance, process name modification,
and ACL modification.

Single instance, by binding local port
 

Change the process name to sshd or dropbear to confuse the victim
 

ACL modification, Open up the ports;block SSH, TELNET services to prevent Bot from
being re-infected by other malicious actors.

 

Perform Specific Tasks

https://blog.netlab.360.com/content/images/2019/12/mozi_bind.png
https://blog.netlab.360.com/content/images/2019/12/mozi_setname.png
https://blog.netlab.360.com/content/images/2019/12/mozi_iptables.png
https://blog.netlab.360.com/content/images/2019/12/mozi_forb.png


7/21

After Mozi establishes the p2p network through the DHT protocol, the config file is
synchronized, and the corresponding tasks are started according to the instructions in the
config file.In P2P networks, nodes are untrusted, and anyone can fake a Mozi node at a very
low cost.In order to ensure that the Mozi network is completely controllable and cannot be
stolen by others, Mozi needs to perform signature verification on each synchronized config,
and only if it can pass the signature verification can it be accepted and executed by the Mozi
node.

Document & Instruction Inspection

Mozi uses the ECDSA384 algorithm to verify the legitimacy of files and instructions. Each
sample integrates two xor-encrypted public keys, which are used to sign encrypted and
decrypted config files, respectively.

https://blog.netlab.360.com/content/images/2019/12/mozi_configproc.png


8/21

xor key:4E 66 5A 8F 80 C8 AC 23 8D AC 47 06 D5 4F 6F 7E 
------------------------------------------------------------------ 
xored publickey A  

4C B3 8F 68 C1 26 70 EB 9D C1 68 4E D8 4B 7D 5F  
69 5F 9D CA 8D E2 7D 63 FF AD 96 8D 18 8B 79 1B  
38 31 9B 12 69 73 A9 2E B6 63 29 76 AC 2F 9E 94 A1  

after decryption:  
02 d5 d5 e7 41 ee dc c8 10 6d 2f 48 0d 04 12 21  
27 39 c7 45 0d 2a d1 40 72 01 d1 8b cd c4 16 65  
76 57 c1 9d e9 bb 05 0d 3b cf 6e 70 79 60 f1 ea ef 

------------------------------------------------------------------- 
xored publickey B 

4C A6 FB CC F8 9B 12 1F 49 64 4D 2F 3C 17 D0 B8  
E9 7D 24 24 F2 DD B1 47 E9 34 D2 C2 BF 07 AC 53  
22 5F D8 92 FE ED 5F A3 C9 5B 6A 16 BE 84 40 77 88 

after decryption: 
02 c0 a1 43 78 53 be 3c c4 c8 0a 29 e9 58 bf c6  
a7 1b 7e ab 72 15 1d 64 64 98 95 c4 6a 48 c3 2d  
6c 39 82 1d 7e 25 f3 80 44 f7 2d 10 6b cb 2f 09 c6 

Config File

Each sample integrates an xor-encrypted initial config file with a length of 528 bytes. Its
structure is data (428 bytes), sign (96 bytes), flag (4 bytes). The sign field is a digital
signature and the flag field controls if the config file is updated or not.There are many control
fields in the config file. After receiving the config, the Mozi node parses the field content and
executes the corresponding subtasks.The original config file is as follows.

 

 

The decryption process is shown in the following figure, where the xor key is 4E 66 5A 8F
80 C8 AC 23 8D AC 47 06 D5 4F 6F 7E

https://blog.netlab.360.com/content/images/2019/12/mozi_enconfig.png


9/21

The decrypted config is as follows.

 

The supported keywords are as follows, which can be divided into three categories:
declaration, control, and subtask.

1：declaration 
[cpu]　　cpu arch or os 
[cpux]  cpu arch or os 
[ss] bot role 
[ssx] bot role 
[nd]  new node info which help to join DHT 
2:control 
[ver]  verify  
[sv] update  Config 
[hp]  DHT id prefix 
[dip]   URL or ip:port list which can get Mozi sample 
3:subtask 
[atk] DDOS attack 
[ud]  update 
[dr]  exec payload from specific URL  
[rn]  exec system or customized cmds 
[idp]  report bot info 

Bot Function

https://blog.netlab.360.com/content/images/2019/12/mozi_xorproc.png
https://blog.netlab.360.com/content/images/2019/12/mozi_denconfig.png


10/21

DDOS， [atk] field trigger, reuse Gafgyt attack code, support HTTP, TCP, UDP and
other attacks.

Command 
----------------------------------------- 
S     
T 
U 
KT
HTTP 

Report Bot information, [idp] field trigger, the content reported are Bot ID, IP, PORT,
file name (full path), gateway, cpu architecture.

 

https://blog.netlab.360.com/content/images/2019/12/mozi_atk.png
https://blog.netlab.360.com/content/images/2019/12/mozi_idp.png


11/21

The payload of the specified URL is executed, and the [dr]  field is triggered.

Update from the specified URL, the [ud] field is triggered. Close the current node's
network connection and related processes, download the new version from the
specified URL, save DHT node, ID and other data, and provide them as parameters for
the new version.

 

https://blog.netlab.360.com/content/images/2019/12/mozi_dr.png
https://blog.netlab.360.com/content/images/2019/12/mozi_ud.png


12/21

Execute system or Bot custom command, [rn] field trigger.
System command

 

Customize the GET command and send the Bot ID to the peer.
 

Customize the run command, execute the command issued by the peer, and
return the result.

 

DHT

Mozi Botnet uses its own extended DHT protocol to build a P2P network. There are two
benefits to this. One is to use standard DHT to quickly establish a network, and the other is
to use its own extension to hide the valid payload in the vast amount of normal DHT traffic so
detection is impossible without proper knowledge. Mozi uses 8 sets of public nodes and the
nodes specified in the [nd] field of the Config file as bootstrap nodes, toguide new nodes to
join their DHT network.

Public node, sample embedded

dht.transmissionbt.com:6881 
router.bittorrent.com:6881 
router.utorrent.com:6881 
bttracker.debian.org:6881 
212.129.33.59:6881 
82.221.103.244:6881 
130.239.18.159:6881 
87.98.162.88:6881 

https://blog.netlab.360.com/content/images/2019/12/mozi_rnsys.png
https://blog.netlab.360.com/content/images/2019/12/mozi_rnget.png
https://blog.netlab.360.com/content/images/2019/12/mozi_rnrun.png


13/21

[nd] Specified in the Config file

ID Generation

The ID is 20 bytes and consists of the prefix 888888  embedded in the sample or the prefix
specified by the config file [hp], plus a randomly generated string.

https://blog.netlab.360.com/content/images/2019/12/mozi_nd.png


14/21

Node Recognition

In order to distinguish regular traffic with its own traffic, Mozi uses 1:v4:flag(4

bytes) such an identifier to identify whether the traffic is sent by its node. The meaning of
the flag byte is as follows.

 

 

flag means is as follows

flag(4 bytes) 
---------------------------------------------- 
offset: 

0  -----random 
1  ----- hard-code(0x42) or from [ver] 

   2  -----calc by algorithm 
   3  -----calc by algorithm 

https://blog.netlab.360.com/content/images/2019/12/mozi_id.png
https://blog.netlab.360.com/content/images/2019/12/mozi_node.png


15/21

The first byte is randomly generated. The second byte is hard-coded 0x42 or specified by the
[ver] field in the config file.

 

 

The 3rd and 4th bytes are obtained by the algorithm.

ver algorithm 
---------------------------------------------- 

int first,sec; 
string ver="\x31\x3a\x76\x34\x3a\x00\x00"s; 
cout << "Please input the two number: (0x00-0xff)" << endl; 
cin.unsetf(ios::hex); 
cin >> hex >> first >> sec; 
ver[5] = char(first); 
ver[6] = char(sec); 
uint32_t va = 0; 
for(int i = 0; i < 7; i++) 
{  
 uint32_t tmp = int(ver[i]); 
 tmp = tmp << 8; 
 tmp ^= va; 
 int rnd = 8; 
while (rnd--) 
{ 
 if ((tmp & 0xffff) > 0x8000) 
 { 
  tmp *= 2; 
  tmp ^= 0xffff8005; 
 } 
 else 
  tmp *= 2; 
} 
va = tmp&0xffff; 
} 
cout  << hex  << "Final " <<  va << endl; 

Please input the two number: (0x00-0xff)
 0x44 0x42

 Final 1f71
 Enter 0x44 0x42, and get the 0x1f71  same result as in the packet.

Network Request

https://blog.netlab.360.com/content/images/2019/12/mozi_ver.png


16/21

The network requests received by Mozi nodes can be divided into two categories, DHT
requests and non-DHT requests. According to the aforementioned node identification, DHT
requests are then again divided into Mozi-DHT requests and non-Mozi-DHT requests. Mozi
supports three types of them, including ping, find_node, and get_peers. For non-DHT
requests, there are two types based on whether the network packet length is greater than 99
or not.

 



17/21

 

For Mozi, Different requests have different processing logic, see below
 

https://blog.netlab.360.com/content/images/2019/12/mozi_net-1.png


18/21

Number 2: ping, DHT request, reply to pong directly according to standard DHT
process.

 

Number 3: find_node, DHT request.

https://blog.netlab.360.com/content/images/2019/12/mozi_query.png
https://blog.netlab.360.com/content/images/2019/12/mozi_ping.png


19/21

Number 4: get_peers, DHT request.
Mozi combines find_node  and get_peers  into one. If the request comes from the
Mozi node, there is a certain probability to send its Config content to the other party; if
the request comes from a non-Mozi node, it is processed according to the standard
DHT process。

https://blog.netlab.360.com/content/images/2019/12/mozi_getnode.png


20/21

raw data, first 128 bytes: 
00000000  64 31 3a 72 64 32 3a 69 64 32 30 3a 38 38 38 38  |d1:rd2:id20:8888| 
00000010  38 38 38 38 b7 96 a0 9e 66 e1 71 98 e5 4d 3e 69  |8888·. .fáq.åM>i| 
00000020  35 3a 6e 6f 64 65 73 36 32 34 3a 15 15 29 d2 f3  |5:nodes624:..)Òó| 
00000030  a3 f7 0c fe df 1a 5d bd 3f 32 46 76 5e 62 b7 b8  |£÷.þß.]½?2Fv^b·¸| 
00000040  f0 94 78 a2 c4 37 5b 8e 2c 00 0b 20 12 07 e7 f4  |ð.x¢Ä7[.,.. ..çô| 
00000050  bc dc 19 a2 83 2e 67 fb 7a 5e 50 22 07 75 e8 ef  |¼Ü.¢..gûz^P".uèï| 
00000060  f9 93 4a e9 91 75 36 e4 76 57 4b 7c 51 7c ff f5  |ù.Jé.u6ävWK|Q|ÿõ| 
00000070  f5 c4 57 f9 dc 62 35 b4 6a 5d 18 6b 54 3c ed e1  |õÄWùÜb5´j].kT<íá| 
00000080  a1 c8 56 a3 cf 28 6b fa 14 06 1a 3e 3b 01 a0 e3  |¡ÈV£Ï(kú...>;. ã| 

The encrypted Config is located after "5:nodes624:", using xor key (4E 66 5A 8F 80 C8 
AC 23 8D AC 47 06 D5 4F 6F 7E), the content after decryption: 

raw data: 
00000000  64 31 3a 72 64 32 3a 69 64 32 30 3a 38 38 38 38  |d1:rd2:id20:8888| 
00000010  38 38 38 38 b7 96 a0 9e 66 e1 71 98 e5 4d 3e 69  |8888·. .fáq.åM>i| 
00000020  35 3a 6e 6f 64 65 73 36 32 34 3a        
|5:nodes624: 

configuration: 
00000000  5b 73 73 5d 73 6b 5b 2f 73 73 5d 5b 68 70 5d 38  |[ss]sk[/ss][hp]8| 
00000010  38 38 38 38 38 38 38 5b 2f 68 70 5d 5b 63 6f 75  |8888888[/hp][cou| 
00000020  6e 74 5d 68 74 74 70 3a 2f 2f 69 61 2e 35 31 2e  |nt]http://ia.51.| 
00000030  6c 61 2f 67 6f 31 3f 69 64 3d 32 30 31 39 38 35  |la/go1?id=201985| 
00000040  32 37 26 70 75 3d 68 74 74 70 25 33 61 25 32 66  |27&pu=http%3a%2f| 

Number 5: announce_peer  not supported
 

Number 6: Non-DHT request. The data packet length is less than 99 bytes. When the
node receives this request, it will send its config content to the requester.

 

https://blog.netlab.360.com/content/images/2019/12/mozi_ann.png
https://blog.netlab.360.com/content/images/2019/12/mozi_6proc.png


21/21

Number 7: Non-DHT request, the data packet length is greater than 99 bytes. When
the node receives this request, it indicates that the received data is an encrypted
Config file. For the execution process, refer to the previous section.

 

Suggestions

We recommend that users update the patch in a timely manner, and determine whether they
are infected by looking up the process and file name, and HTTP, DHT network connection
characteristics created by Mozi Botnet.

Contact us

Readers are always welcomed to reach us on twitter, WeChat 360Netlab or email to netlab
at 360 dot cn.

IoC list

Sample MD5:

eda730498b3d0a97066807a2d98909f3 
849b165f28ae8b1cebe0c7430f44aff3 

https://blog.netlab.360.com/content/images/2019/12/mozi_payload.png
https://twitter.com/360Netlab

