
1/7

December 20, 2019

Unveiling JsOutProx: A New Enterprise Grade Implant
blog.yoroi.company/research/unveiling-jsoutprox-a-new-enterprise-grade-implant/

12/20/2019

Introduction

During our threat intelligence source monitoring operations, we spotted a new sophisticated
malware implant that seems to be unrelated to mainstream cyber weapons. In fact, the
recovered sample raised many interrogatives into the malware research community due to
the extensive usage of obfuscation anti-reverse techniques, hardening the investigative
efforts.

For this reason, we decided to dig into this piece of malware and figure out its inner secrets,
uncovering a modular architecture with advanced offensive capabilities, such as the
presence of functionalities able to deal with multi factor authentication (MFA).

Technical Analysis

Hash 6bf0d9a7ca91f27a708c793832b0c7b6e3bc4c3b511e8b30e3d1ca2e3e2b90a7

Threat JsOutProx

Brief
Description

Malicious JS file

Ssdeep 12288:9jAtRUr07Jo0W9vrd6ye8hKaVimlc+/eHFca7
+mJO1Za6D4aYQZdV81u34YYbga0:RAO07JbAvrsype6lZTv

Table 1. Sample information

https://blog.yoroi.company/research/unveiling-jsoutprox-a-new-enterprise-grade-implant/

2/7

The starting point is a Javascript file containing more than ten thousand lines of heavily
obfuscated code.

The first line of this file embeds a huge array of Base64 encoded elements, but its raw
decoding led only to other incomprehensible data, evidencing the presence of a more
complex layer of protection.

Figure 1. Array with Base64 encoded elements.
Navigating the code, we identified a series of instructions resembling a sort of initialization
that grabbed our attention. The function “t_ey” is used as deobfuscation function for some of
the string chucks preconfigured into the “t_ep” array, enabling us to recover some cleartext.

This initial code cleanup revealed interesting information such as some of the static
configuration initialized during the initial malware execution stages. Among these info, we
recovered also its remote C2 address 91.189.180.199, operated by “ServeTheWorld”, an
Norwegian provider renting his servers in Oslo, and a particular tag reporting the name
“JsOutProx”. Extremely characteristic.

Figure 2. Initialization of basic malware information.
Continuing to analyze the code, we reconstructed the approach used by the attacker to
obfuscate the payload: all the necessary information has been encrypted, splitted, and then
encoded in Base64 chunks stored into different structures named as “ta”, “t_ep”, “t_eq”.

Figure 3. Other structures containing Base64 data.
As anticipated before, thanks to the decoding routine “t_ey” it is possible to retrieve at
runtime the cleartext code to reify the structure of the malware, stored in the “t_fT” object
visible in the next figure.

Figure 4. Core structure of the malware.
The structure contains objects and functions used by the malware to pursue its malicious
actions. In many cases we noticed a naming correspondence between couples of objects, for
example between “Outlook” and “OutlookPlugin”, or “Proxy” and “ProxyPlugin” objects. This
indicates the malware has a modular structure containing specific plugins able to perform a
wide range of actions, such as exfiltrate data by populating the associated object. For
example, the "OutlookPlugin" is able to steal information about emails and contacts and it
does that by filling the Outlook object shown in the previous figure.

Each plugin embeds an obfuscated function named “receive”, which has the purpose to
perform the specific action. This function name is constant and represent a sort of common
interface between malware modules.

Figure 5. “receive” function into “InfoPlugin”.

Check-in and Command List

3/7

Once created the main structure, the first function ran by the malware is “init”. It is designed
to create an identification string for the victim machine, gathering from system information
and storing them into the “t_fT[“ID”]” variable.

As visible the next picture, the identification string is composed using the computer name,
username, OS version. Then, an additional suffix will be appended to it containing the
current action the malware is performing. In this specific case it is “ping”, a sort of heartbeat
to make sure the command and control services is up and running.

Figure 6. Creation of victim ID.
Then, the malware moves in an endless loop in which it invokes the “receive” function every
5 seconds. Substantially, this function is an interface that allows the attacker to interact with
the implant.

The malware, in fact, connects to the C2 and retrieves a string indicating the next command
to execute into the “np[0x0]” variable. It has many capabilities and it able to handle a
complete infection life-cycle. It can update itself, restart itself, execute another JavaScript
code, other VB scripts and even remove its traces.

Figure 7. Switch structure with supported commands.
Summing up, the analyzed version of the implant supports the following actions:

Command Action

upd Update the implant

rst Restart the implant

l32 Start another process with the same script

dcn Kill the implant

rbt Reboot the machine

shd Shutdown the machine

lgf ??

ejs Evaluate Javascript code

epg ??

evb Execute VisualBasic code

idn ??

sdn Load a .NET dll

uis Uninstall the implant

4/7

ins Install the implant

int.g Send the sleep time to C2

int.s Update the sleep time

Table 2. Supported commands.

Additionally, the default case of the main loop structure includes a series of IF-Else
evaluating the received string in order to check for specific prefixes. Each prefix is associated
to a plugin module.

Figure 8. Invocation of plugins.
Analyzing this selection chain was possible to reconstruct the full list of supported plugin for
this version of the implant.

Command Plugin

pr ProcessPlugin

cl ClipboardPlugin

fi FilePlugin

lb LibraryPlugin

do DownloadPlugin

sc ScreenPlugin

ou OutlookPlugin

px ProxyPlugin

cn ShellPlugin

tk TokensPlugin

in InfoPlugin

ds DnsPlugin

pm PromptPlugin

Table 3. Malware’s plugins.

At this point, all the attention moves on understand what the functions and the plugins do
and how they work. So, we provide, in the next paragraphs, a brief view of the most
interesting functions and plugins.

5/7

Persistency

By the way, to ensure its survival after reboot, the malware writes a copy of the initial JS
script into the “%appdata%” and “%temp%” folder, setting the persistence on the system
through the popular “HKCU\Software\Microsoft\Windows\CurrentVersion\Run” registry key.

Figure 9. Setting of persistence.

Plugin Modules

The number of supported plugin indicates the malware is pretty mature and extremely
dangerous. Some of these supported plugins encode standard functionalities of many
RAT and recon malware, but some of them hides interesting and even uncommon features.

The “Process” Plugin

The ProcessPlugin is able to manipulate other processes running in the system. It can kill
them by PID and by name, create new processes through WSH or WMI and also collect a
memory dump of a specific process. This is an uncommon feature for a common malware,
it might indicate operators behind its command and controls could have analytical skills in
order to investigate the surrounding environment, or also exfiltrate data through memory
scraping.

Figure 10. Part of ProcessPlugin code.

The “Dns” Plugin

The DnsPlugin handles the machine’s DNS configuration. It can send to the C2 the current
configuration and also set a new one, just like visible in the following screen.

Figure 11. Part of DnsPlugin code.

The “Token” Plugin and the Object SymantecVIP

This plugin is particularly interesting. The name refers to the exfiltration of some type of
token. However, the plugin is specifically designed for the theft of SymantecVIP One Time
Password, the multifactor authentication technology used in enterprise grade Single-Sign-
On services adopted in many corporate environments.

Figure 12. Part of TokenPlugin code.

The “Outlook” Plugin

Instead, the OutlookPlugin weaponize the implant with common information stealing
capabilities enabling the attackers to gather account information and contact list.

The interesting part of this plugin is that it is the only one info-stealing plugin embedded in
the malware.

6/7

Commodity malware typically include support to multiple email clients, web browsers and ftp
clients, but this one just handle Outlook: the de facto standard email client installed in the
majority of enterprise environment.

Figure 13. Part of OutlookPlugin code.

The “Prompt” Plugin

Another interesting functionality is provided by the PromptPlugin. It empowers the attacker to
present his victim a custom message prompt provided by the command and control server.

Figure 14. Part of PromptPlugin code.

The Bridge Between JS and .NET

All the JavaScript plugins seem to be only an high-level interface used by the attacker to
communicate with his implant. Digging into the code to search for the implementation of the
plugins, we come across another mysterious component named “DotUtil” which seems to be
the link between the JavaScript interface and the implementation of the actual operations.

Also, digging the JS code, a method called “hasDotnet” made us wondering about the
existence of additional .NET artifacts which may hide the implementation of some of the
above-mentioned functionalities. Moreover, this method contains references to the download
and the memory loading of an instance of a “DotUtil” module.

Figure 15. Part of DotUtil module.
Dynamically analyzing the malware, we were able to intercept the download of a .NET DLL
called “libDotJs.dll”. Analyzing it, we discover a complete mapping between the functions
implemented in it and the ones declared into “DotUtil” component.

Figure 16. Mapping between DotUtil and .NET DLL.
From a wider perspective, we can assert with a good confidence that the implant is
composed of at least two different layers: the JavaScript interface, delivered to the target
machine as first stage and subject to continuous changes to lower its detectability, providing
the core mechanism to ensure a flexible access to the target machine, and an advanced
functional layer leveraging .NET dependencies.

Figure 17. Macro perspective of the malware composition.

Conclusion

The complexity and the engineering grade of this threat, dubbed JsOutProx, are an element
of uniqueness in the current panorama. It is a toolkit with peculiar remote access capabilities.
From an architectural point of view, JsOutProx contains all the function prototypes inside the
core engine and could be remotely extended at run time.

7/7

The implementation of its functionalities has been decoupled from the JavaScript core using
shared interfaces realized through the “dotUtil” class, the loader of its NET plugins. These
classes are provided remotely through serialization, this decoupling provides a malleable
modular implementation enabling the implant operators to a versatile code management.

Another relevant aspect of JsOutProxy is the capability to deal with SymantecVIP
technology. This led us to think that, this implant, has been designed to hit High-Value
targets. Also, this new threat appears emerging during these days, it has never been publicly
seen before this December and it is probably still under development.

Cybaze-Yoroi Zlab will continue to actively hunt for it.

Indicator of Compromise

Hashes:

6bf0d9a7ca91f27a708c793832b0c7b6e3bc4c3b511e8b30e3d1ca2e3e2b90a7
af10e6d1e3a3b4ed1d5524da25b782a4deddbd14d04e259f13dd1502d43b3045

C2:

91.189.180.199:9989

Yara Rules

rule JsOutProx_Dec_2019{
meta:

 description = "Yara Rule for JsOutProx"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019-12-19"
 tlp = "white"
 category = "informational"

strings:
 $re1 = /,'([0-9a-zA-Z])+=',/

 $re2 = /[a-zA-Z]{1}_[a-zA-Z]{2}\[0x/
 $a1 = "WScript"

 $a2 = "0x"
 condition:
 $re1 and $a1 and #a2>20000 and #re2>1000
}

This blog post was authored by Antonio Farina, Luca Mella and Antonio Pirozzi of Cybaze-
Yoroi Z-LAB

