
1/19

Detecting Sodin
hatching.io/blog/ransomware-part2

https://hatching.io/blog/ransomware-part2

2/19

2019-12-18

3/19

triage

ransomware

Written by
Pete Cowman

Sodin - also known as Sodinokibi or REvil - is a successful ransomware family which often
employs advanced evasion techniques to avoid notice until the right time. It is developed and
operated as ransomware-as-a-service (RaaS), meaning that threat actors can pay to make
use of the software to run their campaigns.

Active from early 2019, Sodin has rapidly become a dominant force in ransomware activity,
quickly filling the gap left by the end of Gandcrab being available as a service. There are
many good writeups of the Sodin family available online, and in this blog post, we are not
doing a full analysis of the sample. Instead, we will breakdown the main ways in which Sodin
is detectable and identifiable within a dynamic sandbox environment, aiming to give
examples of some of the techniques covered in part 1 of this miniseries.

Analyzed Samples

SHA256 tria.ge Analysis

e5d23a3bb61b99e227bb8cbfc0e7f1e40fe
a34aac4dcb80acc925cfd7e3d18ec

https://tria.ge/reports/191216-
pg5st7zccj/

06b323e0b626dc4f051596a39f52c46b35f
88ea6f85a56de0fd76ec73c7f3851

https://tria.ge/reports/191216-
4zdx1n374x/

0fa207940ea53e2b54a2b769d8ab033a6b2
c5e08c78bf4d7dade79849960b54d

https://tria.ge/reports/191216-
8bfljdyw2s/

139a7d6656feebe539b2cb94b0729602f62
18f54fb5b7531b58cfe040f180548

https://tria.ge/reports/191216-
4rcmytrrka/

Ransomware Information

Ransomware is unusual among malware as it has no interest in hiding its infection from the
user once it has carried out its task. Sodin is no exception to this, dropping ransom notes to
the directories in which it has encrypted files and changing the wallpaper to point the victim
towards these files.

Ransom Note

https://hatching.io/blog/ransomware-part1/
https://tria.ge/reports/191216-pg5st7zccj/
https://tria.ge/reports/191216-4zdx1n374x/
https://tria.ge/reports/191216-8bfljdyw2s/
https://tria.ge/reports/191216-4rcmytrrka/

4/19

We took a look at ransom notes in the last blog post in this series so we won’t go over the
details again here, but in summary, they contain instructions for the victim on how to pay the
ransom and decrypt their files.

Example ransom note created by Sodin infection

In the case of the Sodin family, this note contains several URLs which the victim is meant to
visit to receive the instructions and see how much is being demanded in ransom. No bitcoin
address or information regarding the ransom is available directly in this file, which is
unfortunate (extracting these can be useful for tracking campaigns/threat actors), but these
URLs are still worth extracting for further investigation.

The name of the ransom note is defined by the nname field within the configuration
discussed later in this blog post and will include the file extension given to all encrypted files.
For example, where {"EXT"} is replaced by the extension {"EXT"}.info.txt .

Analyzing Ransom Notes via tria.ge

The tria.ge sandbox includes detections for many aspects of ransomware but there will
always be data we don’t include in the final report for one reason or another. However, our
kernel driver maintains a record of almost all activity on the VM which can be accessed
directly via the Triage API, enabling users to run custom parsers/extractors over the data. In
this section, we will do a quick example on fetching and processing this information to extract
basic information from a Sodin ransom note - although many other uses are also possible.

Documentation for the API can be found at https://tria.ge/docs/.

https://hatching.io/blog/ransomware-part1/
https://tria.ge/docs/

5/19

Onemon, the kernel driver used in Triage, records a log of system events for each task within
an analysis (a ‘task’ is a specific VM instance run during analysis - for example a sample run
on Windows 7 and Windows 10 will have 2 tasks, 1 for each VM). This data can be
downloaded in JSON format via the following command

curl -H ‘Authorization: Bearer <YOUR_API_KEY>’
‘https://api.tria.ge/v0/samples/{sampleID}/{taskID}/logs/onemon.json'

Note that you must pass your API key to access Triage endpoints. This can be found on your
[account page][acount].

The taskID field should simply be replaced by a string like task1 referencing the exact
analysis you would like to access - for reference, the taskID value can be seen in the final
part of the URL when viewing a report online.

As an example, requesting the onemon.json file for the first sample linked in this blogpost
looks as follows:

curl -H 'Authorization: Bearer <YOUR_API_KEY>' \
 'https://api.tria.ge/v0/samples/191216-pg5st7zccj/task1/logs/onemon.json'

The file received from the API contains 1 JSON object per line, each representing an event
within the system. The results below have been prettified for readability.

https://api.tria.ge/v0/samples/%7BsampleID%7D/%7BtaskID%7D/logs/onemon.json'

6/19

{
 "kind": "onemon.File",
 "event": {
 "dstpath": "",
 "flags": "NoFileFlags",
 "id": 844424930209781,
 "kind": "CreateModify",
 "pid": 1444,
 "srcpath": "C:\\Users\\Admin\\AppData\\Local\\Temp\\st748h0795z.bmp",
 "status": 0,
 "ts": 36769
 }
}
{
 "kind": "onemon.Registry",
 "event": {
 "kind": "SetValueKeyStr",
 "path": "\\REGISTRY\\USER\\S-1-5-21-1774239815-1814403401-2200974991-
1000\\Control Panel\\Desktop\\Wallpaper",
 "pid": 1444,
 "status": 0,
 "ts": 36769,
 "valued": null,
 "valuei": 0,
 "values": "C:\\Users\\Admin\\AppData\\Local\\Temp\\st748h0795z.bmp"
 }
}
{
 "kind": "onemon.NetworkFlow",
 "event": {
 "dstip": 134744072,
 "dstport": 53,
 "pid": 284,
 "proto": 17,
 "srcip": 285214474,
 "srcport": 60531,
 "ts": 36894
 }
}

Example events in onemon.json

Each line includes a ‘kind’ tag which defines the structure contained within the following
‘event’ tag. There are many different ‘kind’ definitions, but likely the main ones which will be
of interest are onemon.Registry , onemon.Process , and onemon.File . We can
combine the ‘kind’ tag and the ‘status’ tag within the event structure to form filters using grep,
e.g., to show only events where a write operation took place in the registry, we could use
grep onemon.Registry | grep SetValueKeyStr .

In this example, we are interested in the ransom notes dropped by Sodin during analysis. By
default, Triage dumps the contents of all .txt files created by a sample so that automated
processing can be carried out on the files, e.g., to extract URLs. These dumps are (currently)

7/19

stored as FileContents blocks within the onemon log:

{
 "kind": "onemon.FileContents",
 "event": {
 "buf":
"SABlAGwAbABvACAAZABlAGEAcgAgAGYAcgBpAGUAbgBkACEADQAKAA0ACgBZAG8AdQByACAAZgBpAGwAZQBzA

 "id": 844424930209780,
 "pid": 1444,
 "ts": 33462
 }
}

Sodin ransom note in onemon.json

The onemon.FileContents blocks are linked to standard onemon.File events where the
sample performed a CreateFile operation for a .txt file. These blocks contain metadata useful
for relating the file dumps to their original file names and paths, the ID value shown above
acts as the reference. Note the "flags": "DumpContents" field in this event type

{
 "kind": "onemon.File",
 "event": {
 "dstpath": "",
 "flags": "DumpContents",
 "id": 844424930209780,
 "kind": "CreateModify",
 "pid": 1444,
 "srcpath": "C:\\Users\\Public\\Videos\\Sample Videos\\43s40i71l.info.txt",
 "status": 0,
 "ts": 33462
 }
}

If we are looking for a specific file, we can grep through the json for the file name and then
pick out the specific FileContents block that we were looking for based on the ID value.

The "buf" section of the FileContents block shown above is a base64-encoded
representation of the data written to the file, extracted by intercepting the API call for the file
write and dumping the buffer contents. In order to retrieve the original contents, simply
decode the value.

At this point the entire contents of the file are available in plaintext for any further processing
desired - extracting contact URLs/email addresses, bitcoin wallets, personal identifier codes
etc.

We have produced a simple Python script which, when passed a Triage analysis ID and your
API key, will perform the process outlined above and dump every .txt file found in the
onemon.json to the current directory. It will generate a number of .txt files. You can find

8/19

the script here. To use it, you’ll need the Triage ID, the task ID of the analysis you want to
examine, and your API key for tria.ge. Usage may look as follows:

python3 triage-ransomnote.py <API-Key> 191216-4rcmytrrka task1

Ransom Portal Overview

The URLs contained within the ransom note lead to a web portal customized to the victim
based on a generated ID value, which is the final part of the address (see ransom note
above). To make it harder for analysts to use automated tools to gather information, victims
must enter some basic information when accessing their portal - a generated ‘key’ visible in
the ransom note and the extension used when encrypting files (this can differ based on the
configuration settings).

Ransom portal landing page

After submitting this information, the victim can then access payment details and other
information, including guides on using Bitcoin; a trial decryptor that can be used on a single
file; and even a chat support feature to get assistance from the malware operators.

https://hatching.io/static/other/triage-ransomnote.py

9/19

Main elements of Sodin ransom portal

10/19

Main elements of Sodin ransom portal

The most useful information on this page is the ransom price and the Bitcoin address which
is to be used for payment - using a framework like Selenium it would be possible to automate
the gathering of these addresses for tracking.

Desktop Wallpaper Change

To make sure the victim is aware of the infection, Sodin also generates a new desktop
background image and makes it active via the registry.

The image is a bitmap created through the DrawTextW function in User32.dll. The text to be
written is defined within the malware’s JSON config section (discussed later in this post).

Sample passes string into DrawTextW to create background image

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-drawtextw

11/19

The image is saved to the user’s Local AppData directory with a random file name, and the
registry key HKCU\\Control Panel\\Desktop\\Wallpaper is set to point to the new file.

Preventing System Recovery

Like many other ransomware families, Sodin attempts to make recovery of the infected
machine more difficult by disabling or removing some Windows features. It achieves this
using common vssadmin and bcdedit commands.

Brief descriptions of these commands are provided below for reference. In a dynamic
analysis environment, these are reasonably clear indicators of maliciousness, as there are
few legitimate reasons for an application to delete backups or interfere with boot settings.

Command Description

vssadmin Delete Shadows /All
/Quiet

Delete system shadow copies

bcdedit /set {default}
recoveryenabled No

Disables Windows Error Recovery on startup

bcdedit /set {default}
bootstatuspolicy
ignoreallfailures

Sets system to ignore errors and boot as normal (NB:
this is also the default Windows setting)

Configuration

To enable threat actors to customize their Sodin campaign, the family includes a
configuration file embedded within the executable. This is packaged as a PE section with a
distinct name - the 2 variants we have examined for this blogpost used .grrr and
.zeacl .

12/19

PE sections from unpacked Sodin samples

These sections are a JSON configuration file encrypted using RC4 which contain a large
amount of information about the particular campaign the sample belongs to

13/19

{
 "pk": "GadtWz2QBTacskL+55Wpo65IkwY28qJOxHoe4Xte81M=",
 "pid": "10",
 "sub": "7",
 "dbg": false,
 "fast": true,
 "wipe": true,
 "wht": {
 "fld": ["appdata", "google", "msocache", "mozilla", "program files",
"windows", "perflogs", "application data", "windows.old", "system volume
information", "program files (x86)", "$windows.~ws", "intel", "$recycle.bin",
"$windows.~bt", "programdata", "boot", "tor browser"],
 "fls": ["ntuser.dat.log", "bootsect.bak", "ntuser.dat", "iconcache.db",
"ntldr", "autorun.inf", "boot.ini", "bootfont.bin", "desktop.ini", "thumbs.db",
"ntuser.ini"],
 "ext": ["ldf", "msi", "nomedia", "msu", "wpx", "ani", "shs", "theme", "386",
"adv", "icns", "lnk", "ico", "ics", "rom", "sys", "mod", "cur", "com", "scr", "cpl",
"diagcfg", "lock", "diagcab", "msstyles", "idx", "msc", "icl", "rtp", "exe", "drv",
"hta", "nls", "deskthemepack", "cmd", "hlp", "themepack", "dll", "mpa", "msp", "ps1",
"prf", "ocx", "bat", "diagpkg", "cab", "bin", "spl", "key"]
 },
 "wfld": ["backup"],
 "prc": ["mysql.exe"],
 "dmn": "lyricalduniya.com;theboardroomafrica.com;chris-
anne.com;ownidentity.com;web865.com;[...]",
 "net":true,
 "nbody
":"SABlAGwAbABvACAAZABlAGEAcgAgAGYAcgBpAGUAbgBkACEADQAKAA0ACgBZAG8AdQByACAAZgBpAGwAZQB

 "nname": {"EXT"}.info.txt,
 "exp":false,

"img":"WQBvAHUAcgAgAGYAaQBsAGUAcwAgAGEAcgBlACAAZQBuAGMAcgB5AHAAdABlAGQAIQAgAE8AcABlAG4

}

There are quite a few useful fields in here - these are outlined in the table below.

Field
Name Description

pk Base64-encoded public key used for file encryption

pid Only used if net field is also set, sent to C2 servers. Likely related to campaign
identifier etc.

sub See pid

dbg Enable/disable debug mode (for the malware author)

fast Boolean value which changes how large files are encrypted

14/19

Field
Name Description

wipe Boolean. If set, sample will try to erase contents of folders blacklisted in the
wfld field

wht Defines whitelists for encryption process. Contains 3 sections:

1. fld : folders to ignore

2. fls : specific files to ignore

3. ext : whitelisted file extensions

wfld List of folder names. If the wipe field is set to true then the malware will
attempt to erase the contents of all folders

prc List of process names the malware will try to terminate before carrying out file
encryption

dmn List of domain names which the malware will attempt to contact to use as C2

net Boolean value. Sets whether sample should send host information to C2 servers
listed in dmn key

nbody Base64-encoded version of the ransom note dropped to the file system after
encryption

nname Filename of the ransom note

exp Boolean value. Defines whether or not the malware will use an exploit to try and
escalate privileges on the system

img Base64-encoded version of the text shown in the wallpaper background set by
the malware.

Configuration field details

When delivered to a new system Sodin samples are packed using a custom algorithm, hiding
the existence of the specially named resource sections. The malware uses a PE overwrite
approach to its unpacking mechanism - it allocates heap space using LocalAlloc, writes the
unpacker stub to it, and then passes execution to that area after marking it RWX with
VirtualProtect.

15/19

Create and call unpacker stub

The unpacker stub then writes the new PE to the address space in which the original file was
mapped, clearing the content of the entire region before writing the new executable and
jumping back to the updated Entry Point. We can now dump the executable and examine the
sections, as shown previously.

The configuration itself is still encrypted at this stage, but in its unpacked form it is possible to
analyze the decryption process and recreate it. The algorithm is RC4 - we can clearly see
the SBox creation and swapping operations

but some minor changes have been made to prevent easy decryption with standard
RC4 tools.

Examining the executable we can see that the key for the decryption is the first 32 bytes of
the resource section.

16/19

Preparing keylength and ciphertext parameters and passing them to the configuration
decryption function

With this information and analysis of the decryption function, it was possible to build a
configuration extractor to parse and report details from these configurations during dynamic
analysis of the samples. In Hatching Triage, we have implemented a system that enables
taking process memory dumps when particular conditions are met during an analysis. Using
this, we can obtain the unpacked executable and run processing on it to include the
information in the analysis report and enable easy identification of particular campaigns or
actors.

The Sodin extractor is not available on Triage yet while testing and improvements to the
memory dumping methodology are implemented, but keep an eye on our Twitter account for
updates when that is released.

File Encryption

Sodin can encrypt files on local storage or any mapped network shares, overwriting the
original files and renaming them with an extension generated on a per-infection basis. This
process is highly customizable through the embedded configuration section, allowing for
certain files/folders to be whitelisted and protected from the encryption process. The Sodin
executable also accepts a command-line parameter - by passing the value -nolan , one
can disable the encryption of mapped network shares and limit the effects to only the
infected machine.

https://twitter.com/hatching_io

17/19

"wht": {
 "fld": ["appdata", "google", "msocache", "mozilla", "program files", "windows",
"perflogs", "application data", "windows.old", "system volume information", "program
files (x86)", "$windows.~ws", "intel", "$recycle.bin", "$windows.~bt", "programdata",
"boot", "tor browser"],
 "fls": ["ntuser.dat.log", "bootsect.bak", "ntuser.dat", "iconcache.db", "ntldr",
"autorun.inf", "boot.ini", "bootfont.bin", "desktop.ini", "thumbs.db", "ntuser.ini"],
 "ext": ["ldf", "msi", "nomedia", "msu", "wpx", "ani", "shs", "theme", "386",
"adv", "icns", "lnk", "ico", "ics", "rom", "sys", "mod", "cur", "com", "scr", "cpl",
"diagcfg", "lock", "diagcab", "msstyles", "idx", "msc", "icl", "rtp", "exe", "drv",
"hta", "nls", "deskthemepack", "cmd", "hlp", "themepack", "dll", "mpa", "msp", "ps1",
"prf", "ocx", "bat", "diagpkg", "cab", "bin", "spl", "key"]
}

Whitelist configuration section

The keys specify whitelists for:

fld - folder names
fls - specific file names
ext - file extensions

The malware iterates through every directory and file on the system, checking them against
these configuration values and queuing them up for encryption if they are not excluded.
Once encrypted, the files are renamed with a new extension.

Encrypted File Extension

Before starting the encryption process, Sodin generates the random file extension which is
applied to every encrypted file. The extension is a string of letters and numbers from 5 to 10
characters long, which is generated and saved to the registry along with other information
gathered at various stages (discussed below).

18/19

File extension saved to SOFTWARE\\WOW6432Node\\recfg\\rnd_ext

The extension itself is tricky to accurately identify as Sodin-related due to the generic nature
of it, but the registry path is relatively specific and is readily detectable in a sandbox.

Other Registry Changes

As well as the file extension, Sodin saves a few other bits of data to the
Software\\Wow6432Node\\recfg registry key .

Values within the recfg registry key

None of the values assigned to these keys are static, but all of the key names are common
across Sodin samples. We won’t go into the details of these here, but the image above gives
a basic outline of the contents.

In a dynamic environment, this sort of registry structure is ideal for identifying a family.

19/19

Tria.ge signature output for registry keys

Conclusion

Sodin is a complex family with far more functionality than we have covered here, but this has
outlined the main indicators which are useful for identifying samples within a dynamic
environment like Triage. References to a number of samples used as source material for this
post can be found in the header at the top of the page.

We’ll be continuing to expand coverage over the coming weeks for ransomware families with
ransom note and configuration extractors. In the next post in this mini-series we’ll cover
another family which poses some different challenges to analysis and present ways to solve
them.

Until next time, Happy Holidays!

