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Waterbear Returns, Uses API Hooking to Evade Security
trendmicro.com/en_us/research/19/l/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection.html

Waterbear, which has been around for several years, is a campaign that uses modular malware capable of including
additional functions remotely. It is associated with the cyberespionage group BlackTech, which mainly targets
technology companies and government agencies in East Asia (specifically Taiwan, and in some instances, Japan
and Hong Kong) and is responsible for some infamous campaigns such as PLEAD and Shrouded Crossbow. In
previous campaigns, we’ve seen Waterbear primarily being used for lateral movement, decrypting and triggering
payloads with its loader component. In most cases, the payloads are backdoors that are able to receive and load
additional modules. However, in one of its recent campaigns, we’ve discovered a piece of Waterbear payload with a
brand-new purpose: hiding its network behaviors from a specific security product by API hooking techniques. In our
analysis, we have discovered that the security vendor is APAC-based, which is consistent with BlackTech’s targeted
countries.

Knowing which specific APIs to hook might mean that the attackers are familiar with how certain security products
gather information on their clients' endpoints and networks. And since the API hooking shellcode adopts a generic
approach, a similar code snippet might be used to target other products in the future and make Waterbear harder to
detect.

A closer look at Waterbear

Waterbear employs a modular approach to its malware. It utilizes a DLL loader to decrypt and execute an RC4-
encrypted payload. Typically, the payload is the first-stage backdoor which receives and loads other executables
from external attackers. These first-stage backdoors can be divided into two types: First, to connect to a command-
and-control (C&C) server, and second, to listen in on a specific port. Sometimes, the hardcoded file paths of the
encrypted payloads are not under Windows native directories (e.g., under security products or third-party libraries'
directories), which may indicate that the attackers might have prior knowledge of their targets' environments. It is
also possible that the attackers use Waterbear as a secondary payload to help maintain presence after gaining
some levels of access to the targets’ systems. The evidence is that Waterbear frequently uses internal IPs as its own
C&C servers (for instance, b9f3a3b9452a396c3ba0ce4a644dd2b7f494905e820e7b1c6dca2fdcce069361 uses an
internal IP address of 10[.]0[.]0[.]211 as its C&C server).

The typical Waterbear infection chain
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Figure 1. A typical Waterbear infection chain

A Waterbear infection starts from a malicious DLL loader, as shown in Figure 1. We have seen two  techniques of
DLL loader triggering. One is modifying a legitimate server application to import and load the malicious DLL loader,
while the second technique is performing phantom DLL hijacking and DLL side loading. Some Windows services try
to load external DLLs with hardcoded DLL names or paths during boot-up. However, if the DLL is a legacy DLL (i.e.,
one that is no longer supported by Windows) or a third-party DLL (i.e., one that is not part of the original Windows
system DLLs), attackers can give their malicious DLL a hardcoded DLL name and place it under one of the
searched directories during the DLL loading process. After the malicious DLL is loaded, it will gain the same
permission level as the service that loads it.

During our recent Waterbear investigation, we discovered that the DLL loader loaded two payloads. The payloads
performed functionalities we have never seen in other Waterbear campaigns. The first payload injects code into a
specific security product to hide the campaign’s backdoor. The second payload is a typical Waterbear first-stage
backdoor, which we will attempt to dissect first based on a specific case we observed during our analysis.

Waterbear’s first-stage backdoor

We saw a Waterbear loader named "ociw32.dll" inside one of the folders in the %PATH% environmental variable.
This DLL name is hardcoded inside "mtxoci.dll" which is loaded by the MSDTC service during boot-up.
“mtxoci.dll” first tries to query the registry key
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\MTxOCI" to see if the value "OracleOciLib" exists. If
so, it retrieves the data inside it and loads the corresponding library. If the value doesn't exist, “mtxoci.dll” tries to
load "ociw32.dll" instead. During our investigation, we noticed that the value "OracleOciLib" was deleted from the
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victim's machine, as shown in Figure 2. Hence, the malicious loader "ociw32.dll" was loaded and successfully
executed on the host.

Figure 2. The deleted value "OracleOciLib" on the victim's host

Note: The image on the left  shows how  the DLL on a normal machine normally looks. The image on the right
showcases how the DLL on a victim's machine appears. Because there is no "OracleOciLib" value, it loads the
hardcoded DLL "ociw32.dll" instead, which triggers the malicious Waterbear DLL loader.

After the Waterbear DLL loader is executed, it searches for a hardcoded path and tries to decrypt the corresponding
payload, which is a piece of encrypted shellcode. The decryption algorithm is RC4, which takes the hardcoded path
to form the decryption key. If the decrypted payload is valid, it picks a specific existing Windows Service —
LanmanServer, which is run by svchost.exe — and injects the decrypted shellcode into the legitimate service. In
most cases, the payload is a first-stage backdoor, and its main purpose is to retrieve second-stage payloads —
either by connecting to a C&C server or opening a port to wait for external connections and load incoming
executables.

Configuration of the first-stage backdoor

Waterbear’s first-stage backdoor configuration contains the information required for the proper execution of and
communication with external entities.

Offset 0x00, Size 0x10: Encryption / decryption key for the functions
Offset 0x10, Size 0x04: 0x0BB8 (reserved)
Offset 0x14, Size 0x10: Version (e.g., 0.13, 0.14, 0.16, and so on)
Offset 0x24, Size 0x10: Mutex or reserved bytes
Offset 0x34, Size 0x78: C&C server address which is XOR-encrypted by key 0xFF. If the backdoor is intended
to listen in on a specific port, this section will be filled with 0x00.
Offset 0xAC, Size 0x02: Port
Offset 0xAE, Size 0x5A: Reserved bytes
Table: The function address table of the payload. The block is initially filled with 0x00 and will be propagated
during runtime.
Table: The sizes of functions
Table: The API address table. The block is initially filled with 0x00 and will be filled with loaded API addresses
during runtime.
Table: The API hashes for dynamic API loading
A list of DLL names and the number of APIs to be loaded
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Figure 3. The first-stage backdoor’s configuration structure

Anti-memory scanning of shellcode payload

In order to avoid in-memory scanning during runtime, the payload encrypts all of the function blocks before
executing the actual malicious routine. Afterwards, whenever it needs to use a function, it will decrypt the function,
execute it, and encrypt the function back again, as can be seen in Figure 4. If a function will not be used on the rest
of the execution, it will be scrambled by another mess-up function, as illustrated in Figure 6. The mess-up function
muddles up the bytes with random values and makes the input blocks unrecoverable. The purpose of this is to
further avoid being detected by a certain cybersecurity solution.

Figure 4. The decryption-execution-encryption flow in the shellcode execution routine

Figure 5. The function for the function block encryption and decryption
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Figure 6. The payload’s mess-up function

Same Waterbear, different story

During our investigation, we found a peculiar incident that stands out from most of the Waterbear infections we’ve
previously seen. This time, the DLL loader loaded two payloads – the first payload performed functionalities we have
not seen before: It injected codes into a specific security product to do API hooking in order to hide the backdoor
from the product. Meanwhile, the second payload is a typical Waterbear first-stage backdoor.
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Figure 7. An unusual Waterbear infection chain

Both payloads were encrypted and stored on the victim’s disk and were injected into the same service, which was, in
this case, LanmanServer. We have observed that the loader tried to read the payloads from the files, decrypted
them, and performed thread injections with the following conditions:

1. If the first payload could not be found on the disk, the loader would be terminated without loading the second
one.

2. If the first payload was successfully decrypted and injected into the service, the second piece would also be
loaded and injected regardless of what happened to the first thread.

3. In the first injected thread, if the necessary executable from the security product was not found, the thread
would be terminated without performing other malicious routines. Note that only the thread would be
terminated, but the service would still be running.

Regardless if the API hooking was performed or otherwise, the second backdoor would still be executed after having
been successfully loaded.

API hooking to evade detection

In order to hide the behaviors of the first-stage backdoor (which is the second payload), the first payload uses API
hooking techniques to avoid being detected by a specific security product and to make an interference in the result
of the function execution. It hooks two different APIs, namely "ZwOpenProcess" and "GetExtendedTcpTable", to
hide its specific processes. The payload only modifies the functions in the memory of the security product process,
hence the original system DLL files remain unchanged.

The payload is composed of a two-stage shellcode. The first-stage shellcode finds a specific security product's
process with a hardcoded name and injects the second-stage shellcode into  that process. The second-stage
shellcode then performs API hooking inside the targeted process.

Hiding process identifiers (PIDs)
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The process identifiers or PIDs to be hidden are stored in the shared memory "Global\<computer_name>." If the
shared memory doesn't exist, it takes the PID embedded by the first-stage shellcode. In this case, the intention of
the malicious code is to hide Waterbear’s  backdoor activities from the security product. Therefore, the first-stage
shellcode takes the PID of the Windows Service — which the first-stage shellcode and the succeeding backdoor
both inject into — hides the target process, and embeds that PID into the second-stage shellcode. 

 

Figure 8. Code that injects current PID into the second-stage shellcode

Hooking "ZwOpenProcess" in ntdll.dll

The purpose of hooking “ZwOpenProcess” is to protect the specific process from being accessed by the security
product. Whenever “ZwOpenProcess” is called, the injected code will first check if the opened process hits any
PIDs in the protected process ID list. If yes, it modifies the process ID, which should open on another Windows
Service PID.

First, it builds the hooked function and writes the function at the end of “ntdll.dll”. This function includes two parts,
as shown in Figure 9:

1. The PID checking procedure. It recursively checks if the PID to be opened by “ZwOpenProcess” is in the list
of the protected process IDs. If yes, it replaces the PID to be opened with another Windows Service PID that
has been written by the Waterbear loader in the beginning.

2. After the PID checking procedure, it executes the original “ZwOpenProcess” and returns the result.

Figure 9. The function hook of “ZwOpenProcess” to check and modify the output of the function

Secondly, it writes "push <ADDRESS> ret" at the beginning of the original “ZwOpenProcess” address. Hence,
when “ZwOpenProcess” is called, the modified version of “ZwOpenProcess” will be executed.

Figure 10. “ZwOpenProcess” after modification

The API hooking on “ZwOpenProcess” will only be triggered if "%temp%\KERNELBASE.dll" exists on the host. It
is possible that this check is designed according to the nature of the security product it targets.

"GetExtendedTcpTable" and "GetRTTAndHopCount" hooks in iphlpapi.dll
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The second part of API hooking hooks on “GetExtendedTcpTable.” “GetExtendedTcpTable” is used for retrieving
a table that contains a list of TCP endpoints available to the application, and it is frequently used in some network-
related commands, such as netstat. The purpose of the hook is to remove TCP endpoint records of certain PIDs. In
order to achieve that, it modifies two functions: “GetExtendedTcpTable” and “GetRTTAndHopCount.” The
second function, “GetRTTAndHopCount,” acts as the place to put the injected hooking code.

“GetExtendedTcpTable” only writes a jump to “GetRTTAndHopCount” in the beginning of the function. Only the
first 5 bytes of the code of the API "GetExtendedTcpTable" are changed, as shown in Figure 11.

Figure 11. Only 5 bytes changed in the “GetExtendedTcpTable”

The rest of the routine is all placed in “GetRTTAndHopCount.” In the first part of the code, it pushes
[“GetRTTAndHopCount”+0x3E] as the return address and then executes the first four instructions of the original
“GetExtendedTcpTable” function (which has already been replaced by the jump instruction in Figure 11). After that,
it jumps to “GetExtendedTcpTable” to execute the function normally and to catch its return values. The code is
shown in Figure 12.

Figure 12. The first part of injected code in “GetRTTAndHopCount,” which executes “GetExtendedTcpTable” and
returns back to the next instruction

After “GetExtendedTcpTable” is executed and the process returns back to the second part of the code, it iteratively
checks every record in the returned Tcp table. If any record contains the PID Waterbear wants to hide, it will remove
the corresponding record, modify the record number inside the table, and continue to check the succeeding records.
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In the end, it returns the modified table.

Fig. 13. The injected code’s second part in “GetRTTAndHopCount” that checks and removes returned records of
certain PIDs

Rather than directly disabling these two functions, this method of using API hooking makes noticing malicious
behaviors more difficult, especially since both functions still work and return results normally. Although in this case,
the affected process is specified in the first-stage shellcode, the API hooking logic is quite generic that the same
piece of shellcode can be used to hook other vendors' products.

Conclusion

This is the first time we’ve seen Waterbear attempting to hide its backdoor activities. By the hardcoded product
name, we infer that the attackers are knowledgeable of the victims' environment and which security product(s) they
use. The attackers might also be familiar with how security products gather information on their clients’ endpoints
and networks, so that they know which APIs to hook. Since the API hooking shellcode adopts a generic approach,
the similar code snippet might be used to target other products in the future and make the activities of Waterbear
harder to detect.
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Tactic Technique ID Description

Execution Execution through
Module Load

T1129  Dynamically loads the DLLs
through the shellcode

Execution through
API

T1106  Dynamically loads the APIs
through the shellcode

Persistence  Hooking T1179  Hooks security product’s
commonly used APIs

Privilege Escalation  Process Injection T1055 Injects the decrypts payload
into svchost.exe process

Hooking T1179  Hooks security products’
commonly used APIs

Defense Evasion Binary Padding T1009 Adds junk data to evade anti-
virus scan

Disabling Security
Tools

T1089 Targets a specific security
product’s process for injection
purposes

Deobfuscate/Decode
Files or Information

T1140 Uses TROJ_WATERBEAR to
decrypt encrypted payload

Execution Guardrails T1480 Targets specific software in the
victim’s environment

DLL Side-Loading T1073  Uses modified legitimate DLL to
load the malicious DLL

Process Injection T1055 Injects the decrypted payload
into svchost.exe process

Exfiltration Exfiltration Over
Command and Control
Channel

T1041 Possibly sends collected
data to attackers via C&C
channel

Indicators of Compromise (IoCs)

SHA256 Detection Name

649675baef92381ffcdfa42e8959015e83c1ab1c7bbfd64635ce5f6f65efd651 BKDR_WATERBEAR.ZTGF

3909e837f3a96736947e387a84bb57e57974db9b77fb1d8fa5d808a89f9a401b TROJ_WATERBEAR.ZTGD

fcfdd079b5861c0192e559c80e8f393b16ba419186066a21aab0294327ea9e58 TROJ_WATERBEAR.ZTGJ

3f26a971e393d7f6ce7bf4416abdbfa1def843a0cf74d8b7bb841ca90f5c9ed9 TROJ_WATERBEAR.ZTGH

abb91dfd95d11a232375d6b5cdf94b0f7afb9683fb7af3e50bcecdb2bd6cb035 TROJ_WATERBEAR.ZTGH

bda6812c3bbba3c885584d234be353b0a2d1b1cbd29161deab0ef8814ac1e8e1 TROJ_WATERBEAR.ZTGI

53402b662679f0bfd08de3abb064930af40ff6c9ec95469ce8489f65796e36c3 TROJ_WATERBEAR.ZTGH

f9f6bc637f59ef843bc939cb6be5000da5b9277b972904bf84586ea0a17a6000 TROJ_WATERBEAR.ZTGI

3442c076c8824d5da065616063a6520ee1d9385d327779b5465292ac978dec26 BKDR_WATERBEAR.ZTGD

https://attack.mitre.org/techniques/T1129/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1179/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1179/
https://attack.mitre.org/techniques/T1009/
https://attack.mitre.org/techniques/T1089/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1480/
https://attack.mitre.org/techniques/T1073/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1041
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7858171120792e5c98cfa75ccde7cba49e62a2aeb32ed62322aae0a80a50f1ea TROJ64_WATERBEAR.ZTGI

acb2abc7fb44c2fdea0b65706d1e8b4c0bfb20e4bd4dcee5b95b346a60c6bd31 BKDR_WATERBEARENC.ZTGF

b9f3a3b9452a396c3ba0ce4a644dd2b7f494905e820e7b1c6dca2fdcce069361 BKDR64_WATERBEAR.ZTGD

7c0d2782a33debb65b488893705e71a001ea06c4eb4fe88571639ed71ac85cdd BKDR_WATERBEARENC.ZTGH

c7c7b2270767aaa2d66018894a7425ba6192730b4fe2130d290cd46af5cc0b7b BKDR_WATERBEARENC.ZTGI

7532fe7a16ba1db4d5e8d47de04b292d94882920cb672e89a48d07e77ddd0138 BKDR_WATERBEARENC.ZTGI

dea5c564c9d961ccf2ed535139fbfca4f1727373504f2972ac92acfaf21da831 BKDR_WATERBEARENC.ZTGI

05d0ab2fbeb7e0ba7547afb013d307d32588704daac9c12002a690e5c1cde3a4 BKDR64_WATERBEARENC.ZTGJ

39668008deb49a9b9a033fd01e0ea7c5243ad958afd82f79c1665fb73c7cfadf BKDR_WATERBEARENC.ZTGD


