WannaMine v4: Analysis & Remediation

. crowdstrike.com/blog/weeding-out-wannamine-v4-0-analyzing-and-remediating-this-mineware-nightmare/

Collin Montenegro and Mark Robinson November 12, 2019

Although the world of mineware is not new to the security industry, it continues to grow as
adversaries develop new capabilities to compromise systems and turn them into bots used
for mining cryptocurrency. In this blog, we hope to provide some deeper insight into the world
of mineware. We will discuss in-depth one of the most notorious mineware malware variants
out there, “WannaMine.”

Our deep dive will analyze the latest WannaMine variant currently being used in the wild,
dubbed “WannaMine v4.0,” and outline how you can successfully identify and remediate a
WannaMine v4.0 infected host.

Cryptojacking and WannaMine

In essence, cryptojacking is the unauthorized use of a computing device to mine
cryptocurrency. It occurs when adversaries compromise an organization’s systems and use
their resources to mine cryptocurrency, freeing them from having to purchase hardware and
electricity (more detailed information can be found in previous blogs on cryptomining and
cryptojacking). Many times, this malicious mining occurs without the victim ever realizing it
due to a lack of security monitoring.

As adversaries and cybercriminals searched for better ways to compromise hosts en masse,
the creation of a malware dubbed “WannaMine” was born. WannaMine is a mineware
malware variant created for the sole purpose of installing and running Monero software on a

1/20

https://www.crowdstrike.com/blog/weeding-out-wannamine-v4-0-analyzing-and-remediating-this-mineware-nightmare/
https://www.crowdstrike.com/blog/cryptomining-harmless-nuisance-disruptive-threat/
https://www.crowdstrike.com/blog/whats-in-your-wallet-resource-draining-cryptojacking-attacks-are-on-the-rise-2/

victim’s system and using its processing power to mine Monero for the adversary.
WannaMine plays on the naming convention used for the notorious ransomware mentioned
at the beginning of the article, WannaCry. This is likely because WannaMine leverages
WannaCry’s exploitation code, “EternalBlue,” to compromise hosts and propagate the
Monero mining software.

WannaMine v4.0 Analysis and Remediation Overview

Like its predecessors, WannaMine v4.0 leverages the EternalBlue exploit to spread and
compromise vulnerable hosts. Its design is similar to WannaMine v3.0 in that it stores the
EternalBlue exploit binaries in a directory located in C:\Windows; however, the directory in
version 4.0 has been renamed “NetworkDistribution.” Instead of leveraging a single hard-
coded service name like WannaMine v3.0, version 4.0 will randomly generate a .dll and
service name based on a list of hard-coded strings. It does this in order to maintain
persistence on the host.

We will start with a quick high-level overview of the remediation steps that are needed, and
then follow with a more detailed step-by-step walk-through.

The remediation of WannaMine v4.0 can be broken into the following three steps:

1. Killing the malicious processes (newly spawned or injected)
2. Locating and removing the persistence mechanism (e.g., service)
3. Removing artifacts (e.g., NetworkDistribution).

The following offers details on each step:

WannaMine v4.0 Step-by-Step Remediation

Note: there are 2 scenarios. Pre-infection (CrowdStrike Falcon® is already installed and
preventions are on) and post-infection detections where Falcon has been installed on the
client’s endpoints after infection, therefore blocking it. In some of the examples shown below
we have turned on DETECTIONS ONLY and PREVENTIONS off for illustrative purposes.

STEP 1. Killing the Malicious svchost.exe and dllhostex.exe Processes

As you can see in Figure 1 and 2. , Falcon will immediately block the launch of WannaMine’s
main XMRig mining module (dllhostex.exe) and then quarantine the binary. Since the
process has been killed and the binary removed, we must find the svchost.exe process that
is being used to run the malicious service and Kill it.

Using Falcon’s process explorer, you can see that the parent process of dllhostex.exe is
svchost.exe.

2/20

https://www.crowdstrike.com/epp-101/what-is-ransomware/
https://www.crowdstrike.com/resources/cyber-attack-news/wannacry-ransomware/

o - . TACTIC & TECHNIQUE ~ DETECT TIME HOST USER NAME ASSIGNED TO STATUS
High Machine Learning via Sen.. ~ 17-08-2019 22:56:35 Unassign... In Progr...

wininit.exe

services.exe

svchost.exe 2 2
@ dilhostax.axe 3
ACTIONS TAKEN ¥ Process blocked

File quarantined

SEVERITY @ High

OBJECTIVE Faleon Detection Method

TACTIC & TECHMIQUE Machine Learning via Sensor-based ML

SPECIFIC TO THIS DETECTION This file meets the machine learning-based on-sensor AV protection's high confidence threshold for malicious
files.

INDICATORS OF INTEREST Associated 10C (SHAZ256 on library/DLL loaded)

199e8419622e108f fdd7c9de571931d9aedc4f980a602766c@fdcb] Thdddfc2a
Associated File

NPINC: \WINDOWSH\SysWOWE4\dllhostex. exe

Figure 1. Process execution tree indicating svchost.exe as the parent process of dllhostex.exe

Assaciabed IOC BHAIES on Fiwary/DLL aded)

1950041962201 804 847 chdeS 71910 dBaedc 4 IB0a60 2766 Boh) Thdddf c2a

Ansacisted Fis

TIVCS AN IMGONE Sy ewE 4] L hostex, e

@ @ &

e Laaening via en. T-08-2019 WD Unsssign Trus Po.

Figure 2. Further detail of specific process information within the UIBy looking over the process details
within Falcon, we can quickly grab the process ID associated with the svchost.exe that is running the

malicious WannaMine DLL.

082078 £0-20.58

Trus P ' Davica\aiarddivk Vobuma T Windamy Sy WOWES | dihsat s sue

3/20

® -
) 2082
T
svchost exe 2 & " "~
17-08-2079 22:56:35
o [e——] e

wi\SysWOWES svchealexe

d 10C (SHAZES on library/BLL loaded)
Sddi00fed12d44820185bELbed 280Tasbe To2ated TOIEIB0CET T4

Zel@8ffddTcAde5T19314% 4F3802682766cAfdcb] Thdddfc2a

W5 Sy swiWEd\dllhostex exe

Figure 3-4. Process execution tree provides process ID information

From there, we can query that specific svchost.exe process, via the process ID obtained
from the Falcon Ul, in order to gather the service group name being used for the malicious
service, in this case the netsvcs service group.

name : svchost.exe
processid :+ 2528

parentprocessid : 680
commandline : C:\WINDOWS\S5ysWOW64\svchost.exe -k netsvcs

Figure 5. PowerShell query to output svchost service group name. Note: This must be run within the “EDIT
& RUN SCRIPTS” tab

Note: Depending on whether the SVCHOST is grouped (Microsoft refactored the way
SVCHOST groups services in Windows 10 1703; read about that here) or if it is a single
process, the removal process will vary. Windows 10, by default, will spawn an individual
SVCHOST process per module but Windows 7 will group. Killing the grouped PID is not an
option here as we want to minimize downtime for the clients we work with. Review Appendix
A.3 for further insight into this grouping.

4/20

https://docs.microsoft.com/en-us/windows/application-management/svchost-service-refactoring

To be more specific, we can actually query the SVCHOST process using “tasklist” to output
the service name associated with it, which happens to be the exact name of the malicious
WannaMine DLL.

svchost.exe 2528 MicrosoftNetBIOSManager

Figure 6. Tasklist output to display associated service name. Note: This must be run within the “EDIT &
RUN SCRIPTS” tab.

As an extra step, you can also query the registry key that SVCHOST based on the service
group name of “netsvcs” found in the image above.

From the output below, we can see the “MicrosoftNetBIOSManager” DLL module that was
added to the netsvcs service group. This has the same name we found previously, using the
commands above.

HKEY_LOCAL_MACHINE\Software\WowE432Node\Microsoft\Windows NT\CurrentVarsion\Svchost
natsves REG_MULTI_SZ

CartPropSvch\0SCPolicySve\Olanmansarver\Ogpsve\Oiphlpsve\0msiscsilOschedule\Owinmgmiti0Sassion
Env\0TokenBroker\OFastUserSwitchingCompatibility\0las\0irmon\ONIa\OMicrosoftNetBIOSManager

Figure 7. Registry query output showing newly added malicious dll module name

Based on that information we can pivot and check the registry key where Windows services
are stored to see if we find an associated service named “MicrosoftNetBIOSManager.” As
expected, we see that there is such an entry. Looking at the values stored within the
Parameters key we find the exact path to the malicious .dll:

reg query HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MicrosoftNetBIOSManager\Parameters

Figure 8. Registry query command to output path location to .dll on disk

Properties of (HEEY LOCAL MACHINE\System\CurrentControlSet\Services\MicrosoftNetBIOSManager\Parameters) :
Property Type Value

ServiceDll ExpandString C:\WINDOWS\system32\MicrosoftNetBIOSManager.dll

Figure 9. Output of registry query command showing path location to the malicious .dlITo confirm that this
is the malicious DLL we are looking for, we can calculate the hash for the binary

filehash C:\Windows\SyswOw64\MicrosoftNetBIOSManager.dl

Figure 10. Built-in RTR command to gather filehash information.

5/20

Filename : C:\Windows\SysWow64\MicrosoftNetBIOSManager.dll

MD5 : CBBF9D9FFDA536707BEZE4CE9106CE45
SHAl : ACO02169A97C8CF0792A1EBY9150EC88B76DEF3B73
SHAZ256 : 217C2F10DF9750EDOA3SE6AFF68591800698D54EAB264B1CDED50ABY960CE40C42

Figure 11. Output of the filehash command for the malicious .dll

Once we have the hash of the DLL, we notice that this has not been seen in VirusTotal,
which is abnormal for a legitimate Windows dll stored in the System32 or Sys\Wow64
directories.

In our lab environment, we infected a Windows 10 host at a specific date and time. Once
infected, we inspected the creation timestamp of the malicious DLL. The time stamp
provided was invalid, stating the DLL was created months prior to the initial infection. This
indicated timestomping techniques had been used.

Directory listing for C:\Windows\SysWow64\MicrosoftNetBIOSManager.dll -

Name Type Size (bytes) Size (MB) Last Modified (UTC) Created (UTC)

MicrosoftNetBIOSManager.dll .dll 109056 0.104 4/27/2019 B:54:47 RM 4/27/2019 8:54:47 RAM

Last Modified (UTC) Created (UTC)

4/27/2019 8:54:47 AM 4/27/2019 8:54:47 AM

Figure 12-13. Shows a creation date that pre-dated the in-lab installation

A clearer indication is seen on a Windows 7 host where the timestomping goes back to 2009.
(See A.2 Timestomping Example.)

[+] FILE FOUND! 'C:\Windows\System32\ApplicationProtocolService.dll'
305076FFBCFE1B2C3A25571E16697491D658D31509C92780345F7CF397D96A53

Creation Time (UTC) '07/13/2009 23:31:13'

Figure 14. Another image showing timestomping being used on a Windows 7 host

Reviewing the compiler timestamp for the binary, you can see that it was created recently —
in 2019 and not 2009.

6/20

description
file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp

exports-stamp

Figure 15. Reviewing compiler timestamp information that proves timestomping is in fact being used

Another method to highlight the malicious dll being loaded by SVCHOST comes from outlier
analysis (Figure 16.). We see the hard-coded path for MicrosoftNetBIOSManager (Figure
17.) which is odd and adds context to the above indicating this isn’'t native to the OS.

reg query HKLM\SYSTEM\CurrentControlSet\Services\ /8 | findstr ServiceDlII | findstr

Windows Core Module
dynamic-link-library

64-bit

GUI

Mon Mar 18 06:28:02 2019
Mon Mar 18 06:28.02 2019

Mon Mar 18 06:28:02 2019

C:\Windows\system32\

Figure 16. Registry query used to show further outlier information indicating the difference between the
known legitimate and malicious .dll. Note: This must be run within the “EDIT & RUN SCRIPTS” tab.

An example of the many ServiceDLL fields and what they look like before filtering again on

the hard-coded path C:\Windows\System32\ as opposed to %systemroot%.

7/20

ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ
ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND SZ
ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_ SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ

ServiceDllUnloadOnStop

ServiceDll REG_EXPAND_SZ

Now that we have confirmed the SVCHOST process is indeed the one associated with the
malicious WannaMine service, let’s kill the process. Gracefully stopping the service will end

the process.

get-service MicrosoftNetBlIOSManager | stop-service

Figure 18. PowerShell command to stop the malicious service. Note: This must be run within the “EDIT &

REG_DWORD 0x1

REG_DWORD 0x1l

REG DWORD 0x1

REG_DWORD 0x1

REG_DWORD 0x1

REG_DWORD 0x1

REG_DWORD Ox1

REG DWORD 0x1

REG_ DWORD 0x1

REG_DWORD 0x1

REG_DWORD 0x1

REG_ DWORD 0x1

PRI MNar 1

-Fi;g_u-r:a.17.-(-3utputrof the registry command indicating the differences

RUN SCRIPTS” tab.

STEP 2. Removing the Persistence

$SystemRoot%\System32\LanguageOverlayServer.dll
$SystemRoot%\System32\moshost.dll
$SystemRoot%\System32\MessagingService.dll

C:\WINDOWS\system32\MicrosoftNetBIOSManager.dll
tSystemRoots\system32Z\mpssvc.dll

$systemroot¥\system3Z\iscsiexe.dll

$SystemRoot%\System32\NaturalAuth.d1ll

tSystemRoot®\System32\ncasvc.dll

$SystemRoott\System32\ncbservice.dll

tSystemRoots\System32\NcdAutoSetup.dll

$SystemRoott\system32\netlogon.dll
$SystemRoot%\System3Z\netman.dll

$SystemRoot%\System32\netprofmsve.dll

$SystemRoot%\System32\NetSetupSve.dll

$SystemRoot%\System32\NgcCtnrSvc.dll

While discovering and killing the svchost.exe process being used to launch the WannaMine
service, we found and confirmed the service name being used for persistence.

Now we remove the service so WannaMine v4.0 no longer has persistence in place.

Get-WmiObject win32_service | ?{$_.name -match MicrosoftNetBIOSManager} [remove-wmiobject

Figure 19. Powershell command to remove the service after it has been stopped. Note: This must be run
within the “EDIT & RUN SCRIPTS” tab.

8/20

ExitCode : 0

Name : MicrosoftNetBIOSManager

ProcessId : 0
StartMode : RAuto
State : Stopped
Status : OK

Figure 20. Output provided after running the service removal command

Just like that, we have removed the malicious service and relinquished WannaMine v4.0’s
persistence!

STEP 3. Removing Remaining Artifacts

Now that we have killed the SVCHOST process and removed the persistence, it's time to
clean up and remove the remaining artifacts.

Based on our research, WannaMine v4.0 has a few specific artifacts that it places on the
host. The first one is the NetworkDistribution folder located in C:\Windows. This folder
contains all of the Equation Group binaries (e.g., EternalBlue, Double Pulsar, etc.) and needs
to be removed.

9/20

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\cnli-1.dll
DB0831E19A4E3A736EA7498DADC2D6702342F75FD8F7FBAE1894EE2E9738C2B4

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\coli-0.dll
0439628816CABE113315751E7113A9E9F720D7E499FFDD78ACBAC1ED8BA35887

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\crli-0.dl1l
B556B5C077E38BDCB65D21A707C19618D02EOAGS5FF3F9887323728EC078660CC3

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\dmgd-1.d1ll
9BBECS5D0C10CCDD3933B7712BA40065D1BODD3FFAT7968FB28AD426CD5EEES001

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\dmgd-4.d1l1l
50F329E034DB96BA254328CD1EOF588AF6126C341ED92DDF4AEB96BC76835937

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\esco-0.dll
19690E5B862042D9011DBDD92504F5012C08D51EFCA36828A5E9BDFE27D88842

Figure 21. Depicts the folder named “NetworkDistribution” and some of its contents

rm C:\Windows\NetworkDistribution -force

Figure 22. Command used to remove the entire directory

The next artifact to remove is the malicious DLL that we discovered in step one. This is
located in C:\Windows\System32.

rm C:\Windows\syswOwW64\MicrosoftNetBIOSManager.dll

Figure 23. Built-in RTR command used to remove the malicious .dll

Next, we have the dllhostex.exe that is the binary that WannaMine v4.0 uses to run the
XMRig miner module. As seen Figure 1, Falcon quarantines this binary; however, if it was
not quarantined you can find it in C:\Windows\System32.

rm C:\Windows\SyswOw6E4\dllhostex.exe

Figure 24. Built-in RTR command used to remove the XMRig miner module binary

Lastly, a registry entry that contains the descriptive text for the service.

reg delete '"HKLM\Software\Microsoft\windows NT\CurrentVersion\NetworkPlatform'’ fv ‘Location Awareness’ /f

Figure 25. PowerShell command to remove the remaining registry artifact. Note: This must be run within
the “EDIT & RUN SCRIPTS” tab.

10/20

Completion

Congratulations! If you followed the above steps, you have successfully discovered and
remediated the pesky WannaMine v4.0 malware.

PowerShell Enumeration Script

In an effort to automate the remediation processing, we can leverage the RTR RUNSCRIPT
feature of the Falcon agent to easily create and save re-runnable scripts to help identify and
triage systems ready for remediation. Using a “query first then kill” methodology, you can
confirm a host is infected prior to running any remediation Kill scripts. This helps our analysts
quickly remediate systems at scale.

Remediation RTR Runscript Code

WannaMine Scannear

RUNSCRIFT wersion

fglobal:logger = @();

WannaMine Removal

fglobalrarmaval = @({);

$global:ramaval2 = @0;

fglobakramaovald = @();

fglobalramavald = @{);

$global:rarmavals = @{):

fglobalkramavals = @;

#dictionary list of WannaMine keywards

Fstringl = "Windows","Microsoft”,'Network™,"Remote”,"Function”,"Secure”,"Application”;
fetring2 = "Update™ ' Tima""NetBIOS""RPC", Protocol”,"S5DP","UPHP™;

$stringd = "Service","Host""Client".'Event”,"Manager”,"Halpar","System”;

$servicename = @0;

#sting list combinations

Foreach ($x in $stringl) {

foreach ($y in $string2) {

foreach (%2 in $string3) {

$servicename 4= (Ex+85y+52)

}

}

1

#hash function

function sha256 {param ([paramater{Mandatory=$true)] [ValidateMotNullOrEmpty ()] $filenama);
|_r.’. :'

$shagsfobiact = New-Object System.Security.Cryptography. SHAZ 56CryptoServiceProvidar,
$hash = [Systarm BitConvarter]:ToString(

$sha25Gobject.ComputaHash([System 0 Fila]:ReadallBytas(Efilenamel));

$hash -raplace -

11/20

]

cateh(

acho “gathering hash failed”
]

L

#file/dll timastamps

function fileinfo {param ([parameter{Mandatory=$true]] [ValidateNotNullorEmpty()1$fileinfo);

try {

ftimestamp = (Get-ltarm Property -path $fileinfo).CreationTimalite;
$global:logger += “Creation Time (UTC) ‘$timestamp™;

]

cateh(

acho “gathering fileinfo failed”

]

L

#sarvices hunt

foreach ($s in $servicenamal{

if (test-path "C:\windows\System 32\ $s.d11)

{

acho “TWANNAMINE V4.0 ARTIFACTS FOUND]";

BT oo o o o

acho “[+] FILE FOUND! C\Windows\Systern32\$s.dil’;

acho ™

sha256 "Ci\windows\System 32\ §s.dil*;

filainfo "CAWindows\System32\Gsdll";

$service = get-service | #{$_Mame -match $5]) | selact -exp Namae;
if(Esarviced{

achao “[+] SERVICE FOUMD!: $s"

acho ™

fglobakremaval€ += “[4] Stop Service: pwsh Get-service $s | stop-service™

$globakramaoval += ™

$globaliramavalé += “[+] Remowve Service: pwsh Get-WmiObject win32_sarvica | 7% _.name -match '$s7 |

ramova-wmiobject™

]

alse {

acho “[-] NO SERVICE®

]

]

if (test-path “C:\Windows\SyswOwe4\$s.d11%)
{

acho “TWANNAMINE V4.0 ARTIFACTS FOUND]";
B e e e e e e e e e e
acho “[+] FILE FOUND! CA\Windows\ SyswWowe4\ $s.dil™;
sha256 C:AWindows\ SyswWowe4\Ss.dll;

acho ™

filainfo C\Windows\SysWowWe4\ $s.dll;

$service = get-service | #{$_Mame -match $5]) | selact -exp Namae;

12/20

if(Esarviced{

acho “[+] SERVICE FOUMD!: $s"

acho ™

fglobakremaval6 += “[4] Stop Service: pwsh Get-service 85 | stop-service”
$globakramaoval += ™

$global:ramovals += “[+] Remowve Service: pwsh Get-WmiObject win32_sarvica | 7 $_.name -match '$s7 |
ramova-wmiobject™

]

alsa {

acho “[-] NO SERVICE"

]

]

L

#process hunt

$wannaProcess = get-process [7{$_.Mame -ne JIsass' -and $_.Name -match ‘dilhostex};
if ($wannaProcass -na $null) {

foreach ($Proc in $WannaProcass){

$ProcHame = ($Proc.Name)

$ProciD = ($Prockid

fglobal:logger += "[+] PROCESS FOUND!: ‘SProcMame’ PID: $ProciD®;

fglobal:loggar +=";

$global:ramaval += "[+] Process Kill: ‘pwsh get-process | 7{%_name -aq ‘$ProcName} | Stop-Process
-Foree™;

]

Jelsa

$global:logger += "[-] NO PROCESS™;

]

#file hunt

Sartafacts = @{)

if (test-path C\Windows\NetworkDistributiony) {

$artafacts += (goi -path C\Windows\NetworkDistribution, | select -axp FullNamea);
$globalramaoval? += “[+] Rermave Folder: 'rm Ciwindows\NetworkDistribution -force™
]

alsa {

$global:logger += “[-] No NetworkDistribution Found®;

]

#check for XMRIg miner

if(tast-path “C:\Windows!\Systam3z2\dilhostexexe™){

$artafacts += "C:\Windows\ System32\dllhostexaxe®;

$globakramaval3 += “[+] Rermowva File: 'rm C\Windows'\Systam 32\ dllhostexexe™

]

if(tast-path "C:\Windows\ SyswOwe4\dllhostexexa)|

$artafacts += "Ci\Windows\ Syswowe4\dilhostaxexa®;

$globakramaval3 += “[+] Remove File: 'rm C\Windows\SyswOwed\dilhostexexe™

]

#check for encrypted SHADOWERDKERS payload

$fancpayload = goi -path C\Windowslsys®™\ -include
*rdphxfxsl*rdpnoglog rdpufldat, *rdpizn.tlb. rdpciumsc. rdppap.log *rdpucv.ini -recurse -force -aa 0;

13/20

it {$ancpayload) {
foreach ($payloadfile in $ancpayload)

fartafacts += "[+] ENCRYFTED PAYLOAD FOLMD!: $Eim‘g_m

$globalramovald += “[+] Rermove File: rm C\Windows\Systemn32\ Spayloadfile™

)

]

foreach ($a in $artefacts) {

fglobal:loggar += "[4] FILESS FOUND!: $a";

fgloballogger += sha256 $a;

fglobakloggar 4=

]

#ragistry hunt

if(Test-Path -Path 'HELMY SOFTWARE\Microsoft\Windows NT\CurrentVersion\MetworkPlatformiLocation
Hwaranass)

$global:loggar += “[+] REGISTRY KEY FOUND!: HELM\SOFTWARE \Microsoft\Windows
MT\CurrentVersion\NetworkPlatform\Location Awareness"™;

$globalramovals += “[+] Rermove Registry Key: ‘reg delete "HKLM\SOFTWARE\Microsoft\Windows
HT\CurrentVersion\NetworkPlatform' /v ‘Location Awaraness’ [

)

#lLoggar

$loggar

acho ™

acho “[REMOVAL COMMANDS]";

gehg e e

Framovalé;

acho ™,

Framaval;

acho ™

Framoval;

acho ™

Framovald;

acho ™

framavald;

acho ™

$ramaovals;

Figure 26. Image of the full PowerShell runscript

RTR Runscript Output Example

14/20

Host Name: NN

[WANNAMINE V4.0 ARTIFACTS FOUND]

[+] FILE FOUND! C:\Windows\SysWOW64\NetworkRPCManager.dll
7EA9954ED18D6E68D35E341AA2A0852562DB2C3A6E4F055A9172B243CBB99C30

[+] SERVICE FOUND!: NetworkRPCManager

Creation Time (UTC) '07/13/2009 23:19:28'
[+] PROCESS FOUND!: 'dllhostex' PID: 8356

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\adfw-2.d1ll
FO6D02359666B763E189402B7FBF9DFAB3BA6GF4DAZE7TDO37B3F9AEBEFD2D5A45

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\adfw.dll
C51BCE247BEE4A6F4CD2D7D45483B5B1D9B53F8CCOEQ04FB4F4221283E356959D

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\cnli-0.dll
D3DB1lE56360B25E7F36ABB822E03C18D23A19A9B5F198E16C16E06785FC8C5FA

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\cnli-1l.dll
DBO0831E19A4E3A736EA7498DADC2D6702342F75FD8F7FBAEL1894EE2E9738C2B4

[+] FILE/S FOUND!: C:\Windows\NetworkDistribution\coli-0.d1ll
0439628816CABE113315751E7113A9E9F720D7E499FFDD78ACBAC1ED8BA35887
Figure 27. Output provided by the PowerShell runscript listing the artifacts found on the host

[REMOVAL COMMANDS]
[+] Stop Service: 'pwsh Get-service NetworkRPCManager | stop-service
[+] Remove Service: 'pwsh Get-WmiObject win32_service | ?{$_.name -match 'NetworkRPCManager'} | remove-wmiobject'

[+] Process Kill: 'pwsh get-process | ?{$_.name -eq 'dllhostex'} | Stop-Process -Force'
Figure 28. Output provided by the PowerShell runscript listing the removal commands that you can use to
completely remediate WannaMine v4.0

Recommendations

» Gain advance visibility across your endpoints with an endpoint detection and response
(EDR) solution such as the CrowdStrike® Falcon platform. Turn on next-gen antivirus
(NGAV) preventative measures to stop malware.

o Keep systems up to date: Patch for MS17-010 to stop EternalBlue exploitation.

o Segregate the network where possible to limit lateral movement.

e Monitor / filter / block at the network level for known coinminer sites.

o Detect network scanning. Contain unapproved hosts as fast as you can.

CrowdStrike Solutions and Services

CrowdStrike provides a wide range of solutions and services to help you identify and protect
your environment from the latest threats. The following is information on some of these
solutions and services. CrowdStrike provides the technology and expertise you need to
combat today’s advanced threats, including WannaMine v4.0.

Falcon Sandbox

CrowdStrike Falcon Sandbox™ performs deep analysis of evasive and unknown threats,
enriches the results with threat intelligence, and delivers actionable indicators of compromise
(I0Cs), enabling your security team to better understand sophisticated malware attacks and
strengthen their defenses.

Learn more about Falcon Sandbox.

Try it free by visiting_this website.

Falcon Complete

CrowdStrike Falcon Complete™ saves time and resources, and reduces cost by bringing
customers to the highest level of endpoint security by combining CrowdStrike’s best
protection technologies with the people and processes necessary to provide a total hands-
off, turnkey approach to endpoint protection.

The CrowdStrike Falcon Complete Team reduces the time needed to remediate endpoints by
providing the skills and expertise required to take proper action. The Team does the
remediation for you, eliminating the arduous task of reimaging the endpoints and reducing
the risk of a breach.

The Falcon Complete Team has been following the numerous iterations of the WannaMine
malware and are well-versed in the removal of the latest variant, WannaMine v4. This
removal is done by taking a surgical approach and removing the many artifacts that
WannaMine scatters on the host, all without having to reimage the system.

For further details regarding CrowdStrike’s Falcon Complete, visit the Falcon Complete
webpage._

16/20

https://www.crowdstrike.com/epp-101/what-is-endpoint-detection-and-response-edr/
https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/epp-101/next-generation-antivirus-ngav/
https://www.crowdstrike.com/epp-101/lateral-movement/
https://www.crowdstrike.com/epp-101/threat-intelligence/
https://www.crowdstrike.com/endpoint-security-products/falcon-sandbox-malware-analysis/
https://www.hybrid-analysis.com/
https://www.crowdstrike.com/endpoint-security-products/falcon-complete/

Falcon X

CrowdStrike Falcon X™ automates the threat analysis process and delivers actionable
intelligence and custom I0Cs specifically tailored for the threats encountered on your
endpoints. With this level of automation, you can stop picking and choosing which threats to
analyze and start analyzing all threats. In addition, with Falcon X Premium, you have the
ability to escalate malware to a CrowdStrike expert for further research or a second opinion.

Learn more about Falcon X threat intelligence by visiting_ the webpage.

APPENDICES

A.1 LATERAL MOVEMENT

Please Note: In Figure 29, Falcon is configured to DETECT ONLY. Prevention was disabled
to outline the lateral movement. If Falcon was in prevention mode, it would have prevented
the post exploitation activity.

On patient zero, the injected process, Searchindexer.exe begins scanning the local subnet
for EternalBlue vulnerable hosts.

Hetwark Connact (IPwi)

Loesl Romate Pest

Burvicenaxe &2 l 2612 102 168125 448

r A 2 n 2 926 0206812 45
Network Lateral Movement / 21881112 102 168126 &

Searchindaxersxe 50 n 1 T2 IE81112 192168127 445

HZIBBINT 102168128 445

T2IEELNZ 192168120 445
svehetane 2 32
® High H2IeaIN2 192068130 45

WZIEEINZ 192168131 445

This file meots the machine learning-based an-sensor AV protection’s high confidence thrashald for malicious iRl LRR] A 1021641002 445
WZIEEINZ 192168133 445
Assacisted 1OC (SHAZEE on library/DLL loudad)

B5b3I36960 beS] 281 TRLTT Te 1647 cedfRfale3abiT42d e 23F3Tch@B25bIRbS a2 BRI 82 164134 4B

Associated File

KITAC: \WINDOWS\NetworkDistribution\svchost . exe WLIBEINT 102168135 445

® High (EFRELRR] 192168136 445

Figure 29. Process execution information within the Falcon Ul indicating network lateral movement

Newly infected victim (Figure 30) has been found and exploited by EternalBlue. Notice
LSASS process dropping out a new persistence SVCHOST service and newly generated dll.

17/20

https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/

Dwfanse Evasion wis Proce. 24082019 T3:04:38 Ursasign torm

DLL / Library Load 1

File Name

& Reglstry Gperations

ASEP Vigkue Update 2

24-08-2010 220437 A loary valun was added or medifind

GISTAY\MACHINELS

S0F TWAREWMIcrosoft\Windows NTC

Figure 30. Process execution information within the Falcon Ul showing signs of a newly infected victim

that was exploited via Eternal Blue

A.2 TIMESTOMPING EXAMPLE

Again, timestomping on the dll has occurred — even more notably than previously on our
patient zero — to further evade detection, setting it back into 2009.

[+] FILE FOUND! 'C:\Windows\System32\ApplicationProtocolService.dll'
305076FFB8CFE1B2C3A25571E16697491D658D31509C92780345F7CF397D96A53

Creation Time (UTC) '07/13/2009 23:31:13'

Figure 31. Runscript output indicating timestomping being used

Directory listing for C:\Windows\System32\ApplicationProtocolService.dll -

Name Type Size (bytes) Size (MB) Last Modified (UTC-8) Created (UTC-8)

ApplicationProtocolService.dll .dll 129024 0.123 7/13/2009 6:39:46 PM 7/13/2009 4:31:13 PM

Figure 32. Native RTR output indicating timestomping being used

18/20

description
file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp

exports-stamp

Windows Core Module
dynamic-link-library

64-bit

GUI

Mon Mar 18 06:28:02 2019
Mon Mar 18 06:28:02 2019

Mon Mar 18 06:28:02 2015

Figure 33. Image showing compiler timestamp for the binary

A.3 WINDOWS 7 SVCHOST GROUPING EXAMPLE

With a Windows 7 host, the SVCHOST grouping is also important: You should not kill off the

PID as this would disrupt the OS and could cause instability with the host.

Image MName: suchost.exe

PID: 7976

Services: AeLookupSvc

Appinfo
- licationProtocolService

Browsepr
gpsvcC
IKEERT
iphlpsvuc

LanmanServer

MMCSS
ProfSvc
Schedule
SENS

ShellHUDetection

Themes
Vinmgmt
WUAUS EPY

Figure 34. Image showing numerous services grouped with this specific svchost process

By stopping the service gracefully, we can see it no longer shows under PID 996.

19/20

Image MName: suchost.exe
PID: 776
1 AeLookupSvc

Appinfo
BITS
Brouwser
gpsvC
IKEEXT
iphlpsvc
LanmanServer
ProfSuc
Schedule
SENS
ShellHWDetection
Themes
inmgmt
WULALS EPUY

Figure 35. Image showing the malicious service has been removed from the process without killing other
legitimate system services

Additional Resources

e Find out how CrowdStrike can help your organization answer its most important
security questions: Visit the CrowdStrike Services webpage.

e Learn how any size organization can achieve optimal security with Falcon Complete by
visiting the product webpage.

e Learn more about Falcon X threat intelligence by visiting the webpage.

e Learn about CrowdStrike’s comprehensive next-gen endpoint protection platform by
visiting the Falcon products webpage.

o Test CrowdStrike next-gen AV for yourself: Start your free trial of Falcon Prevent™.

20/20

https://www.crowdstrike.com/services/
https://www.crowdstrike.com/endpoint-security-products/falcon-complete/
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/
https://www.crowdstrike.com/endpoint-security-products/
https://go.crowdstrike.com/try-falcon-prevent.html

