
1/7

born

API-Hashing in the Sodinokibi/REvil Ransomware – Why
and How?

blag.nullteilerfrei.de/2019/11/09/api-hashing-why-and-how/

This post is written for aspiring reverse engineers and will talk about a technique called _API
hashing_. The technique is used by malware authors to hinder reverse engineering. We will
first discuss the reasons a malware author may even consider using API hashing. Then we
will cover the necessary technical details around resolving dynamic imports at load-time and
at runtime and finally, will described API hashing and show a Python script that emulates the
hashing method used in Sodinokibi/REvil ransomware. # Top Down vs. Bottom Up One way
to think about different approaches of reverse engineering is _Top Down_ vs. _Bottom Up_.
Top Down means that you start with the entry point(s) of a binary and follow the execution
flow. Bottom Up means that you start at an *interesting location* of the binary and try to
understand, if and how the execution flow will reach it. Such a location may for example be
an interesting string embedded in the binary (http://example.com or s3cr3t for
example). So-called *imports* are also a good entry point for a Bottom Up analysis. One
strength of the Bottom Up approach is, that you can _focus_ your analysis efforts with very
little understanding of the malware or - to phrase it differently - at a very early point in time:
You want to know where the juice crypto stuff is happening? Look for calls to the Windows
API function BCryptOpenAlgorithmProvider . Want to know, where the payload, later
dropped to %TEMP%\evil.exe , comes from? Look for reference to the string \evil.exe .
Since this approach is so powerful, malware authors are highly motivated to make it harder
for the reverse engineer to use it. One of these counter-measures is called "dynamic API
resolutions with name hashing" and described in this blog post. # API Resolution at Load-
Time Under Windows, imports are listed in the import address table (IAT) of the Portable
Executable (PE) file. The table references functions that can be used during execution but
are located in an external module. If a program wants to call PathCanonicalize in
SHLWAPI.dll for example, the IAT of your executable contains an entry referencing that

function. Say, you are looking for the command & control (C2) server of the malware, then
you may want to look at the the functions referencing WININET.dll and find the
InternetConnect entry. A string containing the C2 may be referenced in the the vacinity of

calls to this function. # API Resolution at Runtime An obvious counter-measure against this
reverse engineering approach is, to not use the function pointer from the IAT but resolve it at
runtime. For this, the Windows API offers the functions LoadLibrary and
GetProcAddress . The LoadLibrary function accepts the name of a DLL and returns a

handle to it. This handle can then be passed to GetProcAddress together with a function
name to get a pointer to the corresponding function:

https://blag.nullteilerfrei.de/2019/11/09/api-hashing-why-and-how/

2/7

#include <stdio.h>
#include <windows.h>

typedef BOOL(*funcType)(LPSTR, LPCSTR);

int main() {
 char buf[MAX_PATH];
 HMODULE hModule = LoadLibrary("SHLWAPI.dll");
 funcType PathCanonicalizeA = (funcType)GetProcAddress(hModule,
"PathCanonicalizeA");
 if (! PathCanonicalizeA(buf, "A:\\path\\.\\somewhere\\..\\file.dat")) {
 return 1;
 }
 printf("%s", buf);
 FreeLibrary(hModule);
 return 0;
}

Looking at references to PathCanonicalizeA in the IAT will not lead to the call seen in the
above code listing, defeating the technique described in _Static Imports_. For convenience
reasons, one can now store the addresses retrieved by GetProcAddress in global
variables: If these global variables are named like the actual API functions, one wouldn't
even need to change old code. Switching back to the perspective of a reverse engineer, one
can look for the _string_ PathCanonicalizeA now. It needs to be passed to the
GetProcAddress function at some point. This, of course, can then be defeated by

obfuscating the strings in the binary. But we will explore a different avenue in this post: The
below-described method avoids inclusion of function names altogether. Instead, only a fix-
sized hash of the function name will be present which has the additional benefit of saving on
storage space. This is especially interesting when developing shellcode, where size
restrictions may be tough and real. # API Hashing Let's again put ourselfs into the shoes of a
malware author and let us further assume, we have a list of all exported function names for a
given DLL. We can now calculate a hash for each function name. The hash doesn't need be
cryptographically secure or even evenly distributed on the codomain. It only needs to be
relatively collision-free on the set of all exported function names. It may become clearer
soon, what that means exactly. The following hashing function - which is used in a recent
sample of the Sodinokibi/REvil ransomware - initializes a state with 0x2b and then uses
each character of the function name as argument for an arithmetic operation. It performs an
arbitrary arithmetic operation in the end and finally returns the resulting state.

#!/usr/bin/env python3
def calc_hash(function_name):
 ret = 0x2b
 for c in function_name:
 ret = ret * 0x10f + ord(c)
 return (ret ^ 0xafb9) & 0x1fffff

The table below lists the resulting hash for a few functions exported from WINHTTP.dll .
One already may notice that all the hashes are different. In fact, they are pairwise-different

3/7

for all functions exported from WINHHTP.dll , so if we would only consider exports of that
DLL and only want to use these eleven functions, the hash can be used to uniquly identify
the API function. API function name | Hash ----------------------------|------------
WinHttpSendRequest | 0x1ce2a7 WinHttpSetOption | 0x1a5e67
WinHttpReadData | 0x064450 WinHttpCloseHandle | 0x0fd1fe WinHttpOpen |
0x0a459a WinHttpQueryDataAvailable | 0x0b8299 WinHttpReceiveResponse |
0x128d32 WinHttpConnect | 0x105ed8 WinHttpQueryHeaders | 0x09d98e
WinHttpOpenRequest | 0x066635 WinHttpCrackUrl | 0x0c17e7 You might have

guessed, what the overall goal now is: somehow get a list of all API function names together
with their addresses, calculate the hashes for each of their names and only use the hash
when referring to them. This way, we would avoid inclusion of any string - obfuscated or not -
that refers to the API function by name. This works as long as for each function we want to
use, the hashing method is collision-free over all considered function names. # Retrieving
API function names But how do we get a list of all exported functions, potentially for all kinds
of DLLs? As already described in the _Static Imports_ section, every Portable Executable
(PE) file, including DLLs, contain a table with all exported functions. And since all the data
from a PE file is loaded into memory, these table is present in memory too. To be precise, the
table is the first entry of the DataDirectory array of the _Optional Header_ of the PE. The
Optional Header is a structure of type IMAGE_OPTIONAL_HEADER and part of another
structure called _PE Header_, which is located at offset 0x18 . The PE Header is of type
IMAGE_NT_HEADERS and can be found when following the address at the very end of the

DOS Header (that is at offset 0x3c). The DOS Header is of type IMAGE_DOS_HEADER .
To summarize this rambling the other way around: * The _DOS Header_ is located at the
beginning of a PE file. * The _PE Header_ is referenced at position 0x3c of the _DOS
header_. * The _Optional Header_ is part of the PE header at offset 0x18 . * All _Data
Directories_ are stored at offset 0x60 of the Optional Header. * The _Export Directory_ is
the first Data Directory. If you prefere code over words, the following pseudo-C-snippet
shows, how to retrieve the export directory starting from a pointer to a PE in memory:

IMAGE_DOS_HEADER pe_file = get_ptr_to_memory_containing_pe();
IMAGE_NT_HEADERS pe_header = *(pe_file + 0x3c);
IMAGE_OPTIONAL_HEADER optional_header = pe_header + 0x18;
DATA_DIRECTORY data_directories[16] = optional_header + 0x60;
IMAGE_EXPORT_DIRECTORY export_directory = data_directories[0];

#lifehack: offsets 0x3c and 0x78 (which is the sum of the two offsets 0x18 + 0x60
from the listing above) appearing in assembly or decompiled code indicate that PE parsing is
going on with the goal to retrieve exports from a PE file. # Listing exports of DLLs Let's get
our hands dirty: In this section, we will briefly explain, how to easily collect API function
names from Windows DLLs. This is useful independently of the malware family one analysis.
In the section after, we will look at a concret sample of the Sodinokibi/REvil ransomware.
With the help of a Python script, we will calculate API hashes for the collected function
names and compare the resulting hashes with the content of a buffer embedded in the
malware. The following Python script accepts a list of DLLs on the command line. Each line

4/7

of its output is the name of the DLL followed by a space and the name of an export of the
DLL.

#!/usr/bin/env python3
import sys
import pefile
import glob

for arg in sys.argv[1:]:
 for file_name in glob.glob(arg):
 try:
 with open(file_name, 'rb') as fp:
 pe = pefile.PE(data=fp.read())
 except pefile.PEFormatError:
 continue

 if not hasattr(pe, 'DIRECTORY_ENTRY_EXPORT'):
 continue
 export = pe.DIRECTORY_ENTRY_EXPORT
 dll_name = pe.get_string_at_rva(export.struct.Name)
 if not dll_name:
 continue
 if len(export.symbols) == 0:
 continue
 for pe_export in export.symbols:
 if not pe_export.name:
 continue
 print(dll_name.decode('utf-8'), pe_export.name.decode('utf-8'))

You can use the script to accumulate exports for as many DLLs as possible. We will collect
the result in a file called exports.txt . # API Hashing in Sodinokibi/REvil Ransomware
Let's consider the sample with SHA-256 hash
5f56d5748940e4039053f85978074bde16d64bd5ba97f6f0026ba8172cb29e93 . It belongs

to the Sodinokibi/REvil ransomware family and contains a build timestamp of 2019-06-10
15:29:32. Reverse engineering with Ghidra yields the buffer shown below in hex-encoded
format.

ae91d3b60313b7aca7e29c9ff53a4b505bf85fc37c42ad39da426c2851aa6caeaad50b9f84573f3d142cbc

Right after startup, the malware interprets it as an array of length 0x230 storing a DWORD
in each entry. Each DWORD corresponds to an API function and Sodinokibi/REvil uses API
hashing to resolve the corresponding addresses. The Python script listed in the _Appendix_
emulates the behaviour of the malware: it reads all exports from exports.txt , calculate all
hashes for all exports, and list each DWORD of the buffer stored in buffer.bin together
with their API function name: DLL Name | API Hash | Function Name ---------------|--------------
|------------------------------ ADVAPI32.dll | 0x2b7d106b | CheckTokenMembership
ADVAPI32.dll | 0x40b57bbe | FreeSid ADVAPI32.dll | 0x431d781e | IsValidSid
ADVAPI32.dll | 0x43e878e7 | GetTokenInformation ADVAPI32.dll | 0x45357e2f |
GetUserNameW ADVAPI32.dll | 0x49d572d6 | OpenProcessToken ADVAPI32.dll |

5/7

0x5b2a6022 | CryptAcquireContextW ADVAPI32.dll | 0x8012bb13 |
ImpersonateLoggedOnUser ADVAPI32.dll | 0x8c2cb729 | RegCloseKey ADVAPI32.dll |
0x8f6ab47f | RevertToSelf ADVAPI32.dll | 0x9c12a701 | RegOpenKeyExW ADVAPI32.dll

| 0x9d3ca625 | RegSetValueExW ADVAPI32.dll | 0xc35ff85b | RegQueryValueExW
ADVAPI32.dll | 0xd48aef93 | RegCreateKeyExW ADVAPI32.dll | 0xda1fe106 |
AllocateAndInitializeSid ADVAPI32.dll | 0xe46bdf69 | CryptGenRandom combase.dll |
0x39ad427c | CreateStreamOnHGlobal CRTDLL.dll | 0x958c2a38 | _snwprintf

CRYPT32.dll | 0x2dc78a5e | CryptStringToBinaryW CRYPT32.dll | 0xadcf0a5e |
CryptBinaryToStringW GDI32.dll | 0x3371decc | DeleteObject GDI32.dll | 0x346dd9cc |
DeleteDC GDI32.dll | 0x4bc6a666 | SetTextColor GDI32.dll | 0x5829b59a | SetBkColor
GDI32.dll | 0x6e5983e6 | SetPixel GDI32.dll | 0x842f699b | GetDeviceCaps GDI32.dll |
0x8c936138 | CreateFontW GDI32.dll | 0xab3e468f | GetDIBits GDI32.dll | 0xc1bc2c14

| GetObjectW GDI32.dll | 0xd0803d2a | SetBkMode GDI32.dll | 0xeb6406c3 |
CreateCompatibleBitmap GDI32.dll | 0xec0601b3 | GetStockObject GDI32.dll |
0xedc4007f | SelectObject GDI32.dll | 0xf7bc1a03 | CreateCompatibleDC KERNEL32.dll

| 0x08c76270 | MapViewOfFile KERNEL32.dll | 0x0924639c | DeleteFileW KERNEL32.dll
| 0x0b6061c9 | WaitForSingleObject KERNEL32.dll | 0x0f5c65e6 | GetNativeSystemInfo
KERNEL32.dll | 0x13dbba0b | timeBeginPeriod KERNEL32.dll | 0x15fc7f40 |
GetFileAttributesW KERNEL32.dll | 0x1b4f71f8 | Process32NextW KERNEL32.dll |
0x1ce07649 | GetVolumeInformationW KERNEL32.dll | 0x286c42da |

CreateToolhelp32Snapshot KERNEL32.dll | 0x2f324589 | UnmapViewOfFile
KERNEL32.dll | 0x2ff4455d | FindClose KERNEL32.dll | 0x32bf580a |
GetCommandLineW KERNEL32.dll | 0x35195fa1 | GetFileSize KERNEL32.dll |
0x3c89563a | HeapCreate KERNEL32.dll | 0x3d3f5784 | OpenMutexW KERNEL32.dll |
0x40d32a7d | SetErrorMode KERNEL32.dll | 0x427728cd | FindNextFileW KERNEL32.dll

| 0x43f52945 | CreateFileMappingW KERNEL32.dll | 0x490d23af | ExitProcess
KERNEL32.dll | 0x4d1e27a2 | SystemTimeToFileTime KERNEL32.dll | 0x4f3d2599 |
WriteFile KERNEL32.dll | 0x504b3af5 | PostQueuedCompletionStatus KERNEL32.dll |
0x50733aca | CompareFileTime KERNEL32.dll | 0x588e3220 | GetModuleFileNameW

KERNEL32.dll | 0x5c6436d6 | CreateMutexW KERNEL32.dll | 0x5fcd3573 |
OpenProcess KERNEL32.dll | 0x66d30c7b | GetDiskFreeSpaceExW KERNEL32.dll |
0x6a0800be | GetUserDefaultUILanguage KERNEL32.dll | 0x719e1b29 |

GetProcessHeap KERNEL32.dll | 0x7f5b15e7 | GetDriveTypeW KERNEL32.dll |
0x8aabe016 | FindFirstFileW KERNEL32.dll | 0x8cabe614 | SetFileAttributesW

KERNEL32.dll | 0x8cdbe673 | MultiByteToWideChar KERNEL32.dll | 0x90c6fa75 | Sleep
KERNEL32.dll | 0x91f2fb5a | ReleaseMutex KERNEL32.dll | 0x93b3f91f |
GetComputerNameW KERNEL32.dll | 0x9763fdd3 | Process32FirstW KERNEL32.dll |
0x9a9bf02c | LocalAlloc KERNEL32.dll | 0x9ad6f07d | CreateFileW KERNEL32.dll |
0x9c60f6ca | GetSystemDefaultUILanguage KERNEL32.dll | 0x9e07f4be | GlobalAlloc

KERNEL32.dll | 0xa185cb2c | CloseHandle KERNEL32.dll | 0xa468cec4 |
SetFilePointerEx KERNEL32.dll | 0xaf7fc5dd | GetSystemDirectoryW KERNEL32.dll |
0xb0b6da10 | TerminateProcess KERNEL32.dll | 0xb780dd38 | GetCurrentProcess

6/7

KERNEL32.dll | 0xbf26d591 | Wow64RevertWow64FsRedirection KERNEL32.dll |
0xc1ddab7a | GetProcAddress KERNEL32.dll | 0xc610aca5 |

GetQueuedCompletionStatus KERNEL32.dll | 0xc97fa3d5 | LocalFree KERNEL32.dll |
0xca02a0b5 | GetCurrentProcessId KERNEL32.dll | 0xca0863c2 | timeGetTime

KERNEL32.dll | 0xcb37a181 | MulDiv KERNEL32.dll | 0xcbe9a151 |
Wow64DisableWow64FsRedirection KERNEL32.dll | 0xcc3aa698 | CreateThread
KERNEL32.dll | 0xcc49a6fa | GetTempPathW KERNEL32.dll | 0xd0cdba63 | GlobalFree
KERNEL32.dll | 0xdb88b122 | GetFileSizeEx KERNEL32.dll | 0xdd54b7ec | VirtualAlloc
KERNEL32.dll | 0xe2e48854 | ReadFile KERNEL32.dll | 0xe36b89db |
WideCharToMultiByte KERNEL32.dll | 0xe5a88f1a | HeapDestroy KERNEL32.dll |
0xe6c88c71 | GetSystemInfo KERNEL32.dll | 0xe96d83df | GetFileAttributesExW

KERNEL32.dll | 0xeb7281db | GetWindowsDirectoryW KERNEL32.dll | 0xee8d8436 |
MoveFileW KERNEL32.dll | 0xf1989b33 | CreateIoCompletionPort KERNELBASE.dll |
0x380572b8 | PathFindExtensionW MPR.dll | 0x7518713e | WNetEnumResourceW

MPR.dll | 0xae6caa51 | WNetCloseEnum MPR.dll | 0xc258c662 | WNetOpenEnumW
ntdll.dll | 0x3822879e | RtlFreeHeap ntdll.dll | 0x7697c934 | RtlTimeToTimeFields ntdll.dll |
0x8fe93045 | RtlDeleteCriticalSection ntdll.dll | 0x95e62a4e | NtOpenFile ntdll.dll |
0xacb71303 | RtlGetLastWin32Error ntdll.dll | 0xb86307ce | RtlInitializeCriticalSection

ntdll.dll | 0xc09d7f3e | NtClose ntdll.dll | 0xc97676c4 | RtlEnterCriticalSection ntdll.dll |
0xd2ae6d17 | RtlLeaveCriticalSection ntdll.dll | 0xd69d6931 | RtlAllocateHeap ntdll.dll |
0xe4135ba8 | NtQueryInformationFile ntdll.dll | 0xfac34566 | RtlInitUnicodeString rtm.dll |
0x6acc17e7 | EnumOverTable SHCORE.dll | 0x2b1ca591 | CommandLineToArgvW

SHCORE.dll | 0x64472ee8 | SHDeleteValueW SHCORE.dll | 0x9f0bd5aa |
SHDeleteKeyW SHELL32.dll | 0x9cbc123d | ShellExecuteExW USER32.dll | 0x368a11e7
| GetForegroundWindow USER32.dll | 0x9359b433 | GetDC USER32.dll | 0xb6d391ae |
wsprintfW USER32.dll | 0xbda29ac3 | GetKeyboardLayoutList USER32.dll | 0xd228f54c |
SystemParametersInfoW USER32.dll | 0xec21cb5b | FillRect USER32.dll | 0xfb28dc52 |
DrawTextW USER32.dll | 0xfcbfdbc2 | ReleaseDC WINHTTP.dll | 0x1b146635 |
WinHttpOpenRequest WINHTTP.dll | 0x235a5e67 | WinHttpSetOption WINHTTP.dll |
0x23ef5ed8 | WinHttpConnect WINHTTP.dll | 0x38b7459a | WinHttpOpen WINHTTP.dll |
0x39714450 | WinHttpReadData WINHTTP.dll | 0x9f9ce2a7 | WinHttpSendRequest

WINHTTP.dll | 0xa4a0d98e | WinHttpQueryHeaders WINHTTP.dll | 0xacd6d1fe |
WinHttpCloseHandle WINHTTP.dll | 0xf0078d32 | WinHttpReceiveResponse WINHTTP.dll
| 0xffb58299 | WinHttpQueryDataAvailable This data can now be used to deduce which
functions are called and enable a Buttom Up approach again. Looking at the only references
to WinHttpConnect for example will probably lead to a C2 server. # Appendix

7/7

#!/usr/bin/env python3.7
from revil import calc_hash

def chunks(l, n):
 for i in range(0, len(l), n):
 yield l[i:i + n]

def main():
 exports = []
 with open('exports.txt', 'r') as fp:
 for line in fp:
 sp = line.strip().split(' ')
 if len(sp) != 2:
 continue
 exports.append(sp)

 with open('buffer.bin', 'rb') as fp:
 hash_buffer = fp.read()

 resolutions = {}
 for chunk in chunks(hash_buffer, 4):
 api_hash = int.from_bytes(chunk, byteorder='little')
 for dll_name, export_name in exports:
 calculated_hash = calc_hash(export_name)
 if calculated_hash == ((api_hash ^ 0x76c7) << 0x10 ^ api_hash) &
0x1fffff:
 if dll_name not in resolutions.keys():
 resolutions[dll_name] = []
 resolutions[dll_name].append((api_hash, export_name))
 break

 for dll_name, pairs in resolutions.items():
 for api_hash, export_name in pairs:
 print(F'{dll_name}\t0x{api_hash:08x}\t{export_name}')

if __name__ == '__main__':
 main()

Update (2019-11-22): No mention of the term "static import" now because it doesn't make
sense. Instead of "dynamic" vs. "static" imports, the post now talks about imports resolved at
"load-time" vs. those resolved at "runtime".
Tags: ghidra - reversing

https://blag.nullteilerfrei.de/tag/ghidra/
https://blag.nullteilerfrei.de/tag/reversing/

